

Lincoln Colony Apartments Project

Appendix F

Post Remediation Letters and Report, June 2021

This page is intentionally left blank.

June 7, 2021

Andy T. Uk Anaheim Planning & Building Department 200 South Anaheim Boulevard | Suite 162 Anaheim, CA 92805

SUBJECT: 898-914 W LINCOLN AVE, ANAHEIM (LINCOLN COLONY APARTMENT PROJECT) - NO FURTHER ACTION NEEDED

Dear Mr. Uk:

Partner Engineering and Science, Inc. (Partner) has been asked to review the "Vapor Extraction Well Installation, Post Remediation Vapor Extraction Test, And Request For No Further Action" report prepared by Frey Environmental in 2016 (Frey Report); and the "Final No Further Action/Closure Letter for the Former Anaheim Car Wash" report issued by the Regional Water Quality Control Board (RWQCB) in 2018 (Closure Letter) to determine if further soil vapor surveys would be desirable to consider the Lincoln Colony Apartment project.

The property located at 898-914 W Lincoln Avenue, is a vacant site that was formally improved with a full-service carwash. The Lincoln Colony Apartment project proposes a 43-unit apartment complex. In February 2000, three 10,000-gallon underground storage tanks were removed. Contaminated soils were removed from the site in 2003 and soil vapor extraction began in 2007.

The Frey Report documented the installation of a vapor extraction well and the results of a post remediation vapor extraction test. The Frey Report concluded that any residual soil vapor met the State of California Water Resources Control Board (SWRCB) criteria outlined in the "Low-Threat Underground Storage Tank Case Closure Policy", which was adopted by the SWRCB in August 2012, for Petroleum Vapor Intrusion to Indoor Air Media Specific Criteria and for Direct Contact and Outdoor Air Exposure. had been met. As a result of the Frey Report, the RWQCB issued the Closure Letter for unrestricted land uses.

Soil that remains impacted is at depths greater than 40 feet, which would not be encountered by the project as excavations would not occur to these depths. Accordingly, Partner concurs with the findings that residual hydrocarbons from the former underground storage tanks do not pose a significant risk to human health, safety, or the environment. Partner further concurs that no additional assessment of the site is needed.

I can be reached at 310-622-8855 or <u>dstott@partneresi.com</u> if you have any questions.

Sincerely,

OB Stott

Debbie Stott, P.G. Principal

Santa Ana Regional Water Quality Control Board

June 25, 2018

Mr. Amir Lankarani Former Anaheim Car Wash 3013 Los Feliz Boulevard Los Angeles, CA 90039

SUBJECT: FINAL NO FURTHER ACTION/CLOSURE LETTER FORMER ANAHEIM CAR WASH 900 WEST LINCOLN AVENUE, ANAHEIM UST #083003742T

Dear Mr. Lankarani:

As you are aware, the *Well Abandonment Report* submittal was delayed due to payment issues between you and your environmental consultant, Frey Environmental, Inc. (Frey). It is our understanding that Frey has received payment for services rendered and this report was uploaded to the GeoTracker Database on June 13, 2018 prior to the issuance of a final closure letter.

This letter confirms the completion of site investigation and remediation of the former underground storage tanks (USTs) and associated piping areas of the above-referenced site. A copy of the *Case Closure Summary* is enclosed. Thank you for your cooperation throughout this investigation. Your willingness and promptness in responding to our inquiries concerning this release and repair are greatly appreciated.

Based on the information in the above-referenced file and with the provision that the information provided to this agency was accurate and representative of site conditions, this agency finds that the site investigation and corrective action carried out at the above-referenced UST site is in compliance with the requirements of subdivisions (a) and (b) of Section 25296.10 of the Health and Safety Code and with corrective action regulations adopted pursuant to Section 25299.3 of the Health and Safety Code and that no further action related to the petroleum releases(s) at the site is required.

This notice is issued pursuant to subdivision (g) of Section 25296.10 of the Health and Safety Code.

Please be aware that claims for reimbursement of corrective action costs submitted to the Underground Storage Tank Cleanup Fund (Fund) more than 365 days after the date of

WILLIAM RUH, CHAIR | HOPE A. SMYTHE, EXECUTIVE OFFICER

this letter or issuance or activation of the Fund's Letter of Commitment, whichever occurs later, will not be reimbursed unless one of the following exceptions applies:

- Claims are submitted pursuant to Section 25299.57, subdivision (k) (reopened UST case); or
- Submission within the timeframe was beyond the claimant's reasonable control, ongoing work is required for closure that will result in the submission of claims beyond that time period, or that under the circumstances of the case, it would be unreasonable or inequitable to impose the 365-day time period.

If you should have any questions, please contact Kenneth R. Williams or Nancy Olson-Martin at (951) 782-4496 or 4497, respectively or via email at <u>Ken.Williams@waterboards.ca.gov</u> or <u>Nancy.Olson-Martin@waterboards.ca.gov</u>, respectively.

Sincerely,

Hope A. Smythe Executive Officer

Enclosure: Draft Case Closure Summary (14 Pages)

cc w/enclosure:

SWRCB-Benjamin Heningburg (Benjamin.Heningburg@waterboards.ca.gov) SWRCB-Kirk Larson (Kirk.Larson@waterboards.ca.gov) Orange County Water District-Roy Herndon (RHerndon@ocwd.com) Orange County Water District-David Bolin (DBolin@ocwd.com) Anaheim Public Works Department-Ralph McCaffrey (Rmccaffrey@anaheim.net) Frey Environmental, Inc.-Joe Frey (joefrey@freyinc.com) Frey Environmental, Inc.-Kent Tucker (kenttucker@freyinc.com) Frey Environmental, Inc.-Kent Tucker (kenttucker@freyinc.com) Pacific Coast Asset Management, LLC (Current Property Owner)-Jerry Zomorodian The Michael K. Daskalakis Trust-Michael K. Daskalakis (870-888 Lincoln Avenue) The Steven D. White Revocable Trust-Steven D. White (115 South Ohio Street)

NOM/Anaheim Car Wash_900 W Lincoln Ave_Anaheim_Closure Letter_draft_NOM.062518

CASE CLOSURE SUMMARY

. AGENCY IN	FORMATIO	N		la contra c		DATE: JUNE 25, 2018		
AGENCY NAM	E: CRWQCB	- Santa Ana F	Region (#8)	ADDRES	SS: 3737 Main Street, S	uite 500		
CITY/STATE/Z	P: Riverside,	CA 92501-334	8	PHONE:	(951) 782-4497 or (9	51) 782-4130		
STAFF:	Nancy Olso	on-Martin		TITLE: Sanitary Engineering Associate				
I. CASE INFO	RMATION							
SITE NAME:	Ai	naheim Car W	ash (Former)					
LOCATION:	90	00 West Lincol	n, Anaheim					
RB CASE #: UST #083003742T								
CONTACT/BUSINESS NAME Mr. Amir Lankarani 3 Anaheim Car Wash				ADDRESS 13 Los Feliz Bouk os Angeles, CA 90	evard 0039	E-MAIL ADDRESS Unknown		
TANK NO.	SIZE IN GA	ALLONS	CONTENTS	CLO	SED IN-PLACE REMOVED?	DATE		
#1	#1 10,000-gallon, single- walled, steel UST		Gasoline		Removed	February 29, 2000		
#2	See Above		Gasoline		Removed	February 29, 2000		
#3	#3 See Above		Gasoline		Removed	February 29, 2000		
SITE CHARAC MONITORING HIGHEST GW	TERIZATION WELLS INST/ DEPTH BELO	COMPLETE ALLED: Yes W GROUND	YES [X] NO []	PROPER SCR	REENED INTERVAL: Y PTH: 105 feet bgs (MW)	YES [X] NO [] I in December 2009)		
SURFACE (bgs	ION: South/south	s (MW3 in Ap	ril 2007)	NEAREST/AF	FECTED SW NAME:	NA		
MOST SENSIT	IVE CURREN	T GW USE:	MUN	OFF-SITE BENEFICIAL USE IMPACTS: NA				
GROUNDWATE	R MANAGEN	IENT ZONE:	Orange County	REPORT(S) FILED: California Regional Water Quality Control Board				
REPORT(S) ON GeoTracker Data	FILE? Yes, a base: <u>https://geo</u>	nd uploaded o	on the SWRCB's	3737 Main Street, Suite 500, Riverside, CA 92501-3348 and uploaded to SWRCB's GeoTracker Database: <u>https://geotracker.waterboards.ca.gov</u>				
		TREA	TMENT AND DISF	OSAL OF AFFE	ECTED MATERIAL			
MATERIAL	AM	OUNT	ACTION TREA	TMENT OR DISPO	OSAL W/DESTINATION	DATE		
TANKS/PIPING AND SOIL Three USTs and 125 Gallons Liquid (Non- RCRA Hazardous Waste) A total of three removed. Each walled, steel, tani were removed a Engineers and st transported by Al Recycling and California. The activities were with Inspector.			underground sto UST consisted of that contained ga nd soils were ex- ockpiled on the situ- le Environmental for Disposal facility UST removal, e ness by a City of	arage tanks (USTs) we of a 10,000-gallon singlesoline product. The US excavated by Ocean Blue. The liquid wastes we to the Crosby and Overto located in Long Beac excavation, and sampling Anaheim Fire Department	re February 28-29, 2000 e- Ts ue re on uh, ng nt			

Continued:

	TREAT	MENT AND DIS	POSAL OF AFFEC	TED MATERIAL		
MATERIAL	AMOUNT		ATMENT OR DISPOS	AL W/DESTINATION	DATE	
SOIL AND/OR GROUNDWATER	37.78 Tons (Soil)	Able Tank and F TPS Technologie facility located in	Pump transported the es Inc., a permitted t Adelanto, California.	May 8, 9, and 14, 2003		
	75.51 Pounds (Hydrocarbons)		7, two soil vapor extra al-nested wells VE1a 20 to 50 feet and	action (SVE) tests were and VE1b, which were 60 to 90 feet bgs,	April 19, 2007	
	4,551 Pounds (Hydrocarbons)	On February 7, 2 MW1, MW2, MW VE1d, VE2s, VE2 as extraction we expired SCAQME the effluent vapor	2014, the SVE system /3, VE7, VE8, VE9, an 2d, VE5s, VE5d, VE6 Ils. The system was D permit and the asym r results.	February 7, 2014 through A _{Aril} 17, 2015		
	14.96 Pounds (Hydrocarbons)	Two-step SVE te 50 in-H20 and 8 post-remediation grained soil locat feet bgs. A mo various locations used as the ext VE2d, VE6s, VE6 were used as obs	ests (two 10-hour tests 80 in-H20) were com hydrocarbons that ted beneath the site at bbile SVE unit, permit permit, operated at th traction well and wel 6d, VE7 through VE9, servations wells.	August 23-24, 2016		
		Groundwater an events were com	nd post-remedial mo ipleted.	nitoring and sampling	April 2003 through July 15, 2015	
MA		D CONTAMINAN	T CONCENTRATIO	NS - BEFORE & AFT	ER CLEANUP	
	SOIL - M	aximum (mg/kg or	ppm)	WATER – Maximum (µg/l or <u>ppb</u>)		
	Before Rem	ediation	After Remediation	Listerical Maximum		
CONTAMINANT	February 2000 UST/Piping Removal ¹	Site Assessments f 2003 & ² 2006	³ 12/15 Soil Con- formation Borings & ⁴ 8/16 Boring VE10	April 2003 – July 2015	Latest Event ^{5.6} July 15, 2015	
Total Petroleum Hydrocarbons-gasolii (TPH-g)	ne 5,600 (#T6)	¹ 3,700 (B1-45') 2 230 (B9-25')	³ 36,000 (CB2-55') ⁴ 3,400 (VE10-45')	520 (MW3-9/13)	ND<100	

¹In April 2003, borings/wells B1/VE1, B2/MW1, B3/₩₩2, 면4//도2, 면5/세₩2, 면6//도4, ard 면7//도간 were installed and compled.

²In November 2006, borings/wells B8/VE5, B9, B10, and B11/VE6 were installed and sampled.

³Confirmation soil borings (CB1 through CB5) samples were analyzed by EPA Method 8260b for total purgeable petroleum hydrocarbons (TPPH).

⁴ND = Compound was not detected at or above laboratory detection limits and NA = compound was not analyzed.

⁵On July 15, 2015, wells VE1 through VE3 were dry.

⁶Other volatile organic compounds (VOCs) were analyzed during the September 2014, February 2015, and July 2015 events for wells MW1 through MW3.

Table - continued:

	SOIL -	Maximum (mg/kg	g or <u>ppm</u>)	WATER – Maxim	um (µg/l or <u>ppb</u>)
CONTAMINANT	Before Rer February 2000 UST/Piping Removal	nediation Site Assessments ¹ 2003 & ² 2006	After Remediation ³ 12/15 Soil Con- formation Borings & ⁴ 8/16 Boring VE10	Historical Maximum Concentrations April 2003 – July 2015	Latest Event ^{5.6} July 15, 2015
Ethanol	NA	^{1,2} NA	NA	220 (MW3-12/06)	ND<100
Benzene	22.10 (#T3)	¹ 58 (B1-25') ² 1.1 (B9-25')	³ 290 (CB2-55') ⁴ 0.035 (VE10-55')	11 (MW1-4/03)	ND<0.50
Toluene	210 (#T6)	¹ 500 (B1-25') ² 5.7 (B9-25')	³ 3,100 (CB2-55') ⁴ 72 (VE10-50')	9.2 (MW3-6/06)	ND<1.0
Ethylbenzene	260 (#T6)	¹ 160 (B4-20') ² 3.3 (B9-25')	³ 590 (CB2-55') 426 (VE10-50')	11.5 (MW2-3/03)	ND<1.0
Total Xylenes	450 (#T6)	¹ 920 (B4-20') ² 9.7 (B9-25')	³ 3,900 (CB2-55') 4510 (VE-45')	56 (MW1-5/03)	ND<1.0
Methyl tertiary butyl ether (MTBE)	62 (#T5)	¹ 32 (B2-35') ² 6.4 (B8-30')	³ 67 (CB2-55') ⁴ 5.9 (VE10-50')	280 (VE1-9/07)	ND<1.0
Tert-butyl alcohol (TBA)	NA	¹ 1.2 (B5-30') ^{2ND}	³ 0.76 (CB3-50') ⁴ 0.150 (VE10-55')	74 (VE1-9/07)	ND<10
Tetrachloroethene	NA	^{1,2} NA	^{3,4} ND	6.0 (MW3-7/15)	6.0 (MW3)
n-butylbenzene	NA	^{1,2} NA	³ 72 (CB2-55') ⁴ 22 (VE10-45')	ND	ND
sec-butylbenzene	NA	^{1,2} NA	³ 0.21 (CB2-10' ⁴ ND	ND	ND
Isopropylbenzene	NA	^{1,2} NA	³ 36 (CB5-45') ⁴ ND	ND	ND
p-isopropyltoluene	NA	^{1,2} NA	³ 0.010 (CB2-10') ⁴ ND	ND	ND
Naphthalene	NA	^{1,2} NA	³ 0.13 (CB2-25') ⁴ ND	ND	ND
n-propylbenzene	NA	^{1,2} NA	³ 160 (CB2-55') ⁴ 15 (VE10-45')	ND	ND

¹In April 2003, borings/wells B1/VE1, B2/MW1, B3/MW2, B4/VE2, B5/MW3, B6/VE4, and B7/VE3 were installed and sampled.

²In November 2006, borings/wells B8/VE5, B9, B10, and B11/VE6 were installed and sampled.

³Confirmation soil borings (CB1 through CB5) samples were analyzed by EPA Method 8260b for total purgeable petroleum hydrocarbons (TPPH).

⁴ND = Compound was not detected at or above laboratory detection limits and NA = compound was not analyzed.

⁵On July 15, 2015, wells VE1 through VE3 were dry.

⁶Other volatile organic compounds (VOCs) were analyzed during the September 2014, February 2015, and July 2015 events for wells MW1 through MW3.

Table – continued:

MAXIMUM DOCUMENTED CONTAMINANT CONCENTRATIONS - BEFORE & AFTER CLEANUP								
	SOIL	- Maximum (mg/k	g or <u>ppm</u>)	WATER – Maximum (µg/l or ppb)				
Before Remediation After Remedi			After Remediation					
¹ CONTAMINANT	February 2000 UST/Piping Removal	Site Assessments 12003 & 22006	³ 12/15 Soil Con- formation Borings & ⁴ 8/16 Boring VE10	Historical Maximum Concentrations April 2003 – July 2015	Latest Event ^{5.e} July 15, 2015			
1,2,4-trimethylbenzene	NA	^{1.2} NA	³ 1,200 (CB2-55') 4310 (VE10-45')	ND	ND			
1,3,5-trimethylbenzene	NA	^{1,2} NA	³ 310 (CB2-55') ⁴ 96 (VE10-45')	ND	ND			

¹Refer to footnotes on pages 2 and 3 of this table.

IV. CLOSURE

Does completed corrective action protect beneficial uses per the Regional Board Basin Plan? YES [X] NO [] Does the corrective action protect public health for current land use? YES [X] NO [] Note: Any change to Residential Land Use may require a Human Health Risk Assessment (HHRA).

The December 2015 and August 2016 confirmation borings (CB1 through CB5 and VE10) revealed ND results for the 5.0 and 10-foot samples that were collected and analyzed for benzene and naphthalene. Ethylbenzene was detected in sample CB2-10' at 0.073 ppm. All other ethylbenzene results were ND. PAH sampling was not required for this site. Therefore, all benzene, ethylbenzene, and naphthalene results were below the State of California Water Resources Control Board (SWRCB) Low-Threat Underground Storage Tank Case Closure Policy (LTCP), Table 1 (Concentrations of Petroleum Constituents in Soil that Will Have No Significant Risk of Adversely Affecting Human Health).

V. ADDITIONAL COMMENTS, DATA, ETC.

CURRENT LAND USE

An active tunnel car wash facility operates at the subject site. This facility is located at the southwest corner of the intersection of Lincoln Avenue and Ohio Street in the City of Anaheim. Lincoln Avenue and commercial businesses are located to the north of the site. Anaheim High School is located to the northeast and residential areas are located to the northwest, southwest, south, and southeast of the site, respectively. Additional commercial and industrial land use is located to the west and east of the site. A closed underground storage tank (UST) case, former Texaco Service Station, was located approximately 657 feet west of the site at 1131 W. Lincoln Avenue, Anaheim.

<u>2000</u>

From February 28-30, 2000, three (3) USTs were removed. Petroleum hydrocarbon-impacted soils were excavated and stockpiled. The excavated USTs were transported to a permitted recycling facility for disposal. A City of Anaheim Fire Department inspector witnessed the UST removal, excavation, and sampling activities. A total of 15 piping (P1 through P15) and six UST (T1 through T6) soil samples were collected and analyzed for total petroleum hydrocarbons-gasoline (TPH-g), benzene, toluene, ethylbenzene, total xylenes (BTXE), and methyl tert-butyl ether (MTBE). TPH-g concentrations were detected in eight samples (P4, P6, and T1 through T6) and concentrations ranged from 1.1 ppm (P6) to 5,600 ppm (T6). Benzene and MTBE concentrations were detected in nine and 20 of the 21 soil samples, respectively. Benzene and MTBE concentrations ranged from 0.015 ppm (P13) to 17 ppm (T6) and 0.09 ppm (P1) to 62 ppm (T5), respectively.

The highest toluene, ethylbenzene, and total xylenes concentrations were also detected in the T6 samples at 210 ppm, 260 ppm, and 450 ppm, respectively.

Generally, the highest contaminant concentrations were detected in the samples collected from tanks T3 through T6. The former UST area was located at the southeastern corner of the property. Tank T4 and T6 soil samples were collected at the northern end of these tanks. Tank T3 and T5 samples were collected at the southern end of the tanks.

2003-2006

Site assessment included the installation of borings and/or wells in the following areas of the site:

Within the Former UST Area: Boring/well B1/VE1 was advanced (April 2003) within the mid-point area of former eastern UST.

East of the Former UST Area:

- 1. Boring/well B2/MW1 was advanced (April 2003) to the east of the former UST area and near Ohio Street.
- 2. Boring B9 was advanced (November 2006) off-site within the right-of-way of Ohio Street and east of the former UST area and well MW1.

V. ADDITIONAL COMMENTS, DATA, ETC. - Continued:

West of the Former UST Area:

- 1. Boring/well B3/MW2 was advanced (April 2003) to the west of the former UST area.
- 2. Boring/dual-nested wells B11/well VE6s and VE6d was advanced (November 2006) to the west of well MW2 and the former UST area. North of the Former UST Area:
 - 1. Boring/dual-nested wells B4/VE2s and VE2d were advanced (April 2003) to the north of the former UST area.
 - 2. Boring/dual-nested wells B6/VE4s and VE4d were advanced (April 2003) within the former northern piping area, north of the former UST, and near sample #P4.
 - Boring/dual-nested wells B7/VE3s and VE3d were advanced (April 2003) within the former northern piping area and adjacent to sample #P13.
 - Boring/dual-nested wells B8/VE5s and VE5d were advanced (November 2006) to the northeast corner of the former UST area and well VE2.

South of the Former UST Area:

- 1. Boring/well B5/MW3 was advanced south of the former UST area.
- 2. Boring B10 was advanced (November 2006) to the south of the former UST area and MW3; along the southern property line.

The borings were drilled to depths of 71.5 feet (B9), 76.5 feet (B10), 81.5 feet (B8/VE5s/VE5d and B11/wellVE6s/VE6d), 95-95.5 feet (B4/VE2 and B6/VE4), 96.5 feet (B7/VE3), 98 feet (B1/VE1), and 110 feet (B2/MW1, B3/MW2, and B5/MW3) bgs. Several of the borings were converted to wells and dual-nested vapor extraction (VE) wells. Single-casing wells (B3/MW1, B2/MW2, and B5/MW3) were screened from 80-80.5 to 110-110.5 feet bgs. The dual-nested wells were screened from 18-28 to 40-60 feet (B8/VE5), 20-50 and 60-65.5 to 90-95 feet (B1/VE1 and B4/VE2), 10-30 to 40-70 feet (B7/VE3), 15-45 to 75 feet (B6/VE4), and 38-65 to 75 feet (B11/VE6) bgs.

Soils consisted primarily of fine-grained sand, stiff silt, medium-grained sand, coarse-grained sand, hard clay, and hard silt. Depth to groundwater ranged from approximately 68 feet (B9) to 97 feet (B3//VE2, B2/MW1, and B4/VE2) bgs. A groundwater gradient flow direction to the south/southwest at 0.005 ft/ft was established.

Generally, soil samples were collected at five-foot intervals from 5 or 15 feet to 90 feet bgs. Approximately 180 soil samples were collected from 2003 through 2006. Moderate to elevated petroleum hydrocarbons were generally detected in samples collected from 20 to 45 feet bgs in borings B1 through B5. Maximum TPH-g, BTEX, and MTBE concentrations were detected in sample B1-45' and B4-20' up to 3,700 ppm, 58 ppm, 500 ppm, 160 ppm, 920 ppm, and 29 ppm, respectively. In addition, tert-butyl alcohol (TBA) concentrations were detected in sample B5-35' at 1.2 ppm. ND to low-level petroleum hydrocarbon concentrations were detected from 5-10 to 15 and 50 to 90 feet bgs.

Trace to low-level petroleum hydrocarbon concentrations were detected in borings B6 (between 40 to 65 feet bgs), B7 (40 to 60 feet bgs), B8 (10 to 60 feet) bgs, B9 (15 to 65 feet bgs), B10 (20 to 70 feet bgs), and B11 (5-10, 25-35, and 50-80 fee bgs). Most of the soil samples collected above or below these depths were generally ND or below 1.0 ppm.

Therefore, elevated petroleum hydrocarbons were detected within or surrounding the former UST area. The soil results for boring B1 revealed the maximum vertical and lateral petroleum hydrocarbons that were detected during these investigations. In addition, the November 2006 investigation satisfactorily defined the vertical and lateral extent of petroleum hydrocarbons.

On May 7-8, 2003, a total of approximately 37.78 tons of stockpiled soil was transported to TPS Technologies Inc., a permitted treatment and recycling facility located in Adelanto, California. The initial 2003 and 2006 groundwater results revealed low-level petroleum hydrocarbons detected in the groundwater samples collected from well MW1, which was advanced east of the UST area. Maximum TPH-g, BTEX, MTBE, and tert-butyl alcohol (TBA) concentrations were detected in sample MW1 at 190 ppb, 11 ppb, 2.2 ppb, 9.7 ppb, 56 ppb, 71 ppb, and 20 ppb, respectively. Groundwater results for the other fuel oxygenates were all ND.

The initial groundwater results for wells MW2 and MW3 revealed ND or trace-level contaminant concentrations. Also, the initial groundwater results for wells VE1 and VE2 were ND except for ethanol concentrations that were detected at 130 ppb and 160 ppb, respectively. Subsequent December 2006 groundwater monitoring revealed that ethanol concentrations were also detected at 190 ppb (MW1) and 220 ppb (MW3), respectively. **2007**

On April 19, 2007, two soil vapor extraction (SVE) tests were conducted on dual-nested vapor extraction wells VE1a and VE1b. A total of 75.51 pounds of hydrocarbons were recovered on that day. Also, a radius of influence (ROI) for VE1a was calculated at 66 feet. The tests revealed that SVE would be a feasible remedial option for the subject site.

On October 5, 2007, a Corrective Action Plan (CAP) was submitted to Regional Board staff. A vapor extraction system (VES) was proposed to remediate the site.

<u>2013</u>

On January 4, 2013, additional VE wells VE7, VE8, and VE9 were drilled to total depths of approximately 61.5 feet (VE7) and 21.5 feet (VE8 and VE9) bgs. The wells were installed in the following locations:

- 1. Well VE7 was installed near the southwest corner of the former UST area and in proximity to well MW3.
- 2. Well VE8 was installed between well MW2 and along the western excavation boundary of the former UST area.
- 3. Well VE9 was installed within the former UST excavation cavity and in proximity to well VE1.

V. ADDITIONAL COMMENTS, DATA, ETC. - continued:

No groundwater was encountered during the drilling activities. Based on the boring logs, slight to strong petroleum hydrocarbon odors were detected in each borehole. The borings were converted to remediation wells. Well VE7 was screened from 30 to 60 feet bgs while wells VE8 and VE9 were screened from 10 to 20 feet bgs. No soil samples were collected and analyzed due to proximity to previously sampled borings. **2014-2016**

On February 7, 2014, the SVE system was activated. A total of 14 wells (MW1 through MW3, VE1s, VE1d, VE2s, VE2d, VE5s, VE5d, VE6s, VE6d, and VE7 through VE89) were used for extraction. On April 17, 2015, the various locations South Coast Air Quality Management District (SCAQMD) permit expired and the SVE was deactivated.

From February 7, 2014 through April 17, 2015, the SVE system recovered approximately 4,551 pounds of hydrocarbons. During the last quarter of operation, only 80 pounds of hydrocarbons were recovered. The consultant calculated a mass removal rate of approximately 12 lbs/day with selected wells open on April 10, 2015. The average mass removal rate with various wells open/closed configurations for the period of operation in the second quarter (207 hours) was approximately 9.3 lbs/day.

Since the system was deactivated due to the expiration of the SCAQMD permit, no rebound samples were collected. However, the April 17, 2015 wellhead vapor results for the 14 extraction wells confirmed that TPH-g concentrations in vapor were all below 100 ppmv except for wells VE-6s and VE7, which revealed low-level TPH-g concentrations in vapor at 340 ppmv and 310 ppmv, respectively. In addition, the BTEX, MTBE, and TBA results for the 14 extraction wells were all ND or below 10 ppmv, except for well VE-6S. A total xylenes concentration of 11 ppmv was detected in the vapor samples collected from this well. Regional Board staff concluded that completion of a rebound test would not be cost-effective based on the following conditions:

- 1. The SVE's low recovery rates during the last quarter of operation.
- 2. The ND to low-level vapor TPH-g, BTEX, MTBE, and TBA results during the last quarter of operation.
- 3. The costs and time required to go through SCAQMD's site-specific permit process and required public notification process due to the nearby school.

Regional Board staff recommended soil confirmation borings to determine the effectiveness of the SVE as well as confirm the residual contaminant concentrations that remained beneath the site. In July 2015, groundwater samples were collected and analyzed. The TPH-g and full-scan VOC results were all ND except for 6.0 ppb of tetrachloroethene (PCE), which was detected in well MW3.

On December 10, 2015, a total of five soil confirmation borings (CB1 through CB5) were each advanced to a total depth of 100-100.5 feet bgs. Groundwater was encountered at approximately 90 feet (CB2 through CB5) and 100 feet (CB1) bgs. Soils encountered consisted primarily of silt, sand, and clay, fine-grained silty sand, silty with minor or trace clay, and clayey silt. Silt and clay layers were located between 30 and 55 feet bgs. Soil samples were collected from each boring at five-foot intervals from 5 to 100 feet bgs. In total, 100 soil samples were collected and analyzed during this investigation. The borings were advanced in the following locations:

- 1. Boring CB1 was advanced west of the UST cavity area in proximity to well MW-2.
- Boring CB2 was advanced within the former UST cavity area located north/northwest of former Tank #1 (southern row of former USTs #1, #3, and #5).
- 3. Boring CB3 was advanced east of the former UST cavity area and in proximity to well MW-1. The boring log noted a slight petroleum hydrocarbon odor was detected at approximately 30 to 40 and 55 to 60 feet bgs.
- Boring CB4 was advanced in proximity to former USTs #T4 and #T6 (the highest contaminant concentrations were detected in the #T6 sample) and vapor extraction well VE2.
- 5. Boring CB5 was advanced south of the UST cavity area and in proximity to wells MW3 and VE7; near the southern boundary line of the site The boring log noted slight, moderate, or strong petroleum hydrocarbon odors were detected from approximately 5 to 25 feet and 35 to 94 fee; bgs in this boring.

Maximum compound concentrations detected in the VE10 soil samples are also summarized in the table presented on pages 2 through 4 of this summary General observations noted for this investigation are summarized below:

- <u>Maximum Concentrations</u> The highest TPH-g, BTXE, and MTBE concentrations were detected in sample CB2-55' at 36,000 ppb, 290 ppb 3,100 ppb, 3,100 ppb, 590 ppb, 3,900 ppb, and 67 ppb, respectively. This boring was advanced within the former UST cavity area pocated north of former UST Tank #1.
- 2. <u>Shallow 5.0 and 10-Foot Samples</u> The 5.0 and 10-foot soil samples were all ND for benzene and naphthalene. Sample CB2-10' revealed an ethylbenzene concentration at 0.073 ppm. However, this ethylbenzene concentration was detected below the State Water Resources Control Board's Underground Storage Tank Low Threat Cleanup Policy's Table 1 (*Concentrations of Petroleum Constituents in Soil That Will Have No Significant Risk of Adversely Affecting Human Health*) for concentrations impacting Residential, Commercial/Industrial, and Utility Worker Land Use.

V. ADDITIONAL COMMENTS, DATA, ETC. – continued:

- 3. <u>Vertical Assessment</u> From 5 to 25 feet bgs, the soil results were generally ND with a few traces to minor TPH-g or VOC concentrations. Soil samples collected from the 60 to 100-foot depths were all ND for borings CB3 and CB4. In addition, the soil samples collected from the 80-85 to 100-foot depths were all ND for borings CB1, CB2, and CB5. With respect to borings CB1, CB2, and CB5, samples collected from the 65 to 80-foot depths revealed only a few TPH-g and VOCs concentrations that were detected at or below 1.4 ppm and 0.121 ppm, respectively. Based on these confirmation results, it appears that this investigation satisfactorily defined the vertical extent of contamination.
 - 4. <u>Residual Remaining Contamination and Comparison of Pre- and Post-Remediation</u> Based on the results, moderate to elevated TPH-g and VOCs (BTEX, MTBE, and TBA) concentrations were generally detected in borings CB1, CB2, CB3, and CB5 at the 30-35 to 50-55-foot depths. The soil results revealed only a few trace detections except for 9.9 ppm of MTBE detected in sample CB4-55. However, the MTBE results from CB4-55 to CB4-100 feet bgs were all ND.

The confirmation borings revealed that the SVE was successful in the remediation of contaminant concentrations present from approximately \$ to 20 and 60 to 90 feet bgs. The residual contamination appeared to remain in an alluvium zone (30 to 60 feet bgs), which included interbedded clays and silts.

During a June 8, 2016 meeting between the project consultants and Regional Board staff, it was agreed that an additional VE well be completed in the proximity of boring VE8 and that a limited SVE test be completed on this well to determine recovery rates achieved and determine whether residual contaminant concentrations remain primarily in the clay or sand unit. If recovery rates were low, this would indicate that the residual contaminants, remained in the clays and would likely not migrate. If so, this would provide justification for closure and this office would proceed with site closure. However, if recovery rates were higher, additional SVE would be warranted.

On August 6, 2016, one SVE extraction well (VE10) was advanced to approximately 60 feet below bgs in proximity to existing shallow well VP8. Boring VE10 was also advanced approximately eight (8) feet to the southwest of boring CB2, the confirmation boring that revealed the maximum contaminant concentrations. During drilling activities, soils primarily consisted of silty sand or poorly-graded fine grained sand, silt, silty sand, and a layer of clay (33 to 38 feet bgs). Boring VE10 was screened from approximately 30 to 60 feet bgs. Groundwater was not encountered during boring/well drilling and installation activities. Historically, depth to groundwater has ranged from 72.35 feet to 105 feet bgs beneath the site.

On August 5, 2016, soil samples were collected at five-foot intervals from 5 feet to 60 feet bgs and analyzed for TPH-g and VOCs. The soil samples collected from the 5.0, 10, 15, 20, 25, and 60-foot depths were all ND for TPH-g and VOCs. TPH-g concentrations were detected in four of the 12 soil samples and ranged from 0.60 ppm (55') to 3,400 ppm (45'). Benzene and TBA results were ND except for the 55-foot depth sample, which revealed concentrations at 0.035 ppm and 0.150 ppm, respectively. MTBE concentrations were detected in two of the 12 samples at 5.9 ppm (50') and 0.870 ppm (55'). Toluene, ethylbenzene, and total xylenes concentrations were detected in five, four, and six of the 12 samples, respectively. Maximum concentrations of these compounds were detected up to 72 ppm (50'), 26 pm (50'), and 510 ppm (45'), respectively.

In addition, n-butylbenzene, n-propylbenzene, 1,2,4-trimethylbenzene, and 1,3,5-trimethybenzene concentrations were detected in three, two, six, and six of the 12 samples collected and analyzed, respectively. Maximum concentrations of these compounds were detected in sample VE10-45' at 22 ppm, 15 ppm, 310 ppm, and 96 ppm, respectively.

On August 23-24, 2016, a two-step vapor extraction test (VET) was conducted, which used well VE10 as the extraction well and wells VE1s, VE1d, VE2s, VE2d, VE6s, VE6d, VE7 through VE9, and MW1 through MW3 as observation wells. A mobile SVE unit operated under a SCAQMD various locations permit. Each step of the two-step VET was performed for a total of 10 hours.

Step 1 VET started on August 23, 2016 at 6:66 AM to 4:55 PM. The influent hydrocarbon concentrations ranged in VE10 from 170 ppmv (initial 7:00 AW reading) to 370 ppmv (the last 4:55 PM reading). A total of 6.90 pounds (1.14 gallons) of hydrocarbons were collected during this 10-hour period. The two-step test used vacuums of 50 in-H20 and 80 in-H20. On August 24, 2016, the Step 2 VET was conducted on VE10 from 6:00 AM to 4:00 PM. The influent hydrocarbon concentrations ranged from 215 ppmv (1 :30 PM) to 570 ppmv (4:00 PM). During this 10-hour period, a total of 8.06 pounds (1.33 gallons) of hydrocarbons were recovered. Over the entire 2-day VET period, a total of 14.96 pounds (2.47 gallons) of hydrocarbons were recovered.

Soil vapor samples were collected in tedlar bags at the beginning, middle, and end of each 10-hour VET event. Vapor samples were analyzed for TPH-g BTEX, and fuel oxygenates. During the Step 1 VET period, TPH-g, BTEX and MTBE concentrations in vapors ranged from 170 to 370 ppmv, 3.4 to 7.2 ppmv, 6.6 to 16 ppmv, 0.20 to 1.1 ppmv, 1.2 to 15 ppmv, and 3.9 to 10 ppmv for the start and end samples, respectively. All three TBA results were al ND.

During the Step 2 VET period, TPH-g, BTEX, and MTBE concentrations in vapors ranged from 250 (start sample) to 570 ppmv (end sample), 3.4 (hiddle sample) to 5.3 ppmv (end sample), 5.3 (middle sample) to 8.2 ppmv (start sample), 0.22 (start sample) to 0.94 ppmv (end sample), 1.5 (start sample) to 3.2 ppmv (middle sample), and 7.2 (end sample) to 11 ppmv (start sample), respectively. All three (3) TBA samples were ND.

SENSITIVE RECEPTOR SURVEY- Based on the January 9, 2015 Sensitive Receptor Survey Report, the following sensitive receptors were identified within a 1.0-mile radius of the site:

 <u>Groundwater Supply Wells and Surface Water Bodies</u>: There are multiple groundwater supply wells located within a one-mile radius of the site. However, only two of the wells are currently active and are located greater than 0.75-mile from the site. These include:

V. ADDITIONAL COMMENTS, DATA, ETC. - continued:

The City of Anaheim #49 (Groundwater Supply) is screened from 580 feet to 1,450 feet bgs and site is located 0.75-mile from the site.
 The City of Anaheim #54 (Groundwater Supply) is screened from 680 feet to 1,450 feet bgs and site is located 0.75-mile from the site.

The nearest surface water bodies are Carbon Creek (located 1.0-mile to the northwest of the site) and the Santa Ana River (located 3.5-miles east of the site.

- Wetland or Wildlife Habitat No wetland or wildlife habitats were located within a 1.0-mile radius of the site.
- <u>Nearest Resident</u> Approximately 34,270 people live within a 1.0-mile radius of the site. The nearest residence is located across the alley located south (down-gradient) of the site.
- <u>Schools</u> There are 13 schools located within a 1.0-mile radius of the site. There are two (2) schools that are located within 1,000 feet of the site: Anaheim High School (811 West Lincoln Avenue) is located approximately 200 feet north (upgradient) of the site across West Lincoln Avenue and Fairmont Citron Campus (121 South Citron Street) is located 250 feet west (cross-gradient) of the site.
- <u>Day Care Centers</u> There are 38 child day-care centers located within a 1.0-mile radius of the site. One day-care center (Fairmont Schools, Inc.) is located at 121 Citron Street, Anaheim, approximately 250 feet to the west (cross-gradient) of the site.
- <u>Nursing Homes</u> There is one (1) nursing home located with a 1.0-mile radius. This nursing home is located at 861 South Harbor Boulevarg and is located 4,050 feet south-southeast of the site.
- <u>Hospitals and Clinics</u> There are 27 medical hospitals and clinics located within a 1.0-mile radius of the site. There are no hospitals or clinics, located within 1,000 feet of the site. The closest hospital or clinic is a clinic located at 200 North Harbor Boulevard 1,900 feet east/northeast (upgradient) of the site.
- <u>Retirement Homes/Convalescent Facilities</u> There are no retirement homes/convalescent facilities located within a 1.0-mile radius of the site.

CLOSURE

Closure is recommended for the subject site based on the following factors:

- In February 2000, three USTs were removed from the site. Approximately 125 gallons of liquids (non-RCRA hazardous waste) were recovered and transported to an appropriate off-site recycling and disposal facility. In May 2003, approximately 37.78 tons of contaminated soil was excavated and transported to an appropriate recycling and disposal facility.
- On April 19, 2007, SVE tests recovered 75.51 pounds of hydrocarbons. From February 7, 2014 through April 17, 2015, the SVE system
 operated and recovered an additional 4,551 pounds of hydrocarbons. In August 2016, SVE tests were conducted on VE10 and several
 extraction wells. Approximately 14.96 pounds of hydrocarbons were recovered. In 2007, and from 2013 through 2016, SVE tests and
 remediation recovered a total of 4641.47 pounds of hydrocarbons.
- The contamination plume was satisfactorily defined both laterally and vertically.
- In 2015 and 2016, confirmation borings CB1 through CB5 and VE10 revealed ND results for the 5 and 10-foot samples that were collected and analyzed for benzene and naphthalene. Ethylbenzene was detected in sample CB2-10' at 0.073 ppm. All other ethylbenzene results were ND. Therefore, all benzene, ethylbenzene, and naphthalene results were below the State of California Water Resources Control Board (SWRCB) Low-Threat Underground Storage Tank Case Closure Policy (LTCP), Table 1 (Concentrations of Petroleum Constituents in Soil that Will Have No Significant Risk of Adversely Affecting Human Health).
- The last groundwater sampling event occurred at this site in July 2015. The groundwater results were all ND except for 6.0 ppb of tetrachloroethene (PCE), which was detected in the sample collected from well MW3. Although low-level PCE concentrations were detected in historical samples collected from this well, there is no evidence that PCE was used at this site.

From 2003 through July 2015, maximum TPH-g, ethanol, BTEX, MTBE, and TBA concentrations were detected up to 520 ppb, 220 ppb, 11 ppb 9.2 ppb, 11.5 ppb, 56 ppb, 280 ppb, and 74 ppb, respectively. The historical results for other VOCs were all ND except for the PCE concentrations that were noted in well MW3 samples.

Based on the confirmation soil borings and VE10 soil sample results, as well as the 12-year low-level to ND groundwater contamination results, the remaining soil contamination appears to be restricted to the fine-grained soils beneath the site and likely not to migrate. Also, the historical and latest groundwater results confirm that BTEX, MTBE, and TBA concentrations were below the Drink Water Maximum Contaminant Levels (MCLs) or Notification Levels (NLs). Therefore, no further soil or groundwater site assessment, remediation, or further post-remedial groundwater monitoring and sampling is warranted for the subject site.

Page 8 of 9

Anaheim Car Wash Case Closure Summary

This closure summary does not include all of the data for this cleanup. It was prepared by the Santa Ana Regional Water Quality Control Board (Regional Board) for the purpose of providing a brief summary for case closure evaluation. All environmental reports pertaining to this cleanup site as well as the Regional Board case file should be reviewed in their entirety to obtain further details regarding this cleanup.

VI. REGIONAL BOARD REPRESENTATIVE DATA

RWQCB SUPERVISOR: Kenneth R. Williams	TITLE: UST Section Chief, Senior Engineering Geologist
SIGNATURE: Kamelkillin	DATE: 6/25/2018

NOM/Anaheim Car Wash_900 West Lincoln Ave_Anaheim_Draft Case Closure Summary.062518

+ A14 City of Anaheim Municipal Well

APPROXIMATE SCALE IN MILES

FORMER ANAHEIM CARWASH 900 WEST LINCOLN AVENUE ANAHEIM, CALIFORNIA

AMIR LANKARANI Client:

Project No.: 469-01

FREY ENVIRONMENTAL, INC.

SITE LOCATION MAP

NOTES:

- All locations and dimensions are approximate.
 Base map from USGS 7.5 minute Anaheim
- (dated 1965, photorevised 1981) California topographic quadrangle. 3) City of Anaheim well locations are approximate.

708-01-SL

MAY 2013 Date:

Figure 1

469-01-ST

409-01/40801-AAL-6

1)

108-01/

1)

State Water Resources Control Board

REVIEW SUMMARY REPORT – CONCUR WITH CLOSURE FIRST REVIEW – SEPTEMBER 2017

Case Information

Cleanup Fund (Fund) Claim No.: 15855	GeoTracker Global ID: T0605999123
Site Name (Site): Former Anaheim Car Wash	Site Address: 900 Lincoln Avenue
	Anaheim, CA 92801
Responsible Party: Amir Lankarani	Address: 900 Lincoln Avenue
	Anaheim, CA 92801
Fund Expenditures to Date: \$436,639	Number of Years Case Open: 17
Fund Budget Category: Unassigned	

Agency Information

Agency Name: Santa Ana Regional Water Quality Control Board (Regional Water Board)	Address: 3737 Main Street, Suite 500 Riverside, CA 92501
Agency Caseworker: Nancy Olson-Martin	Case No.: 083003742T

Consultant History

Consultant: Frey Environmental, Inc.	Years: 2005 - Present
Signatory: Joe Frey, PG	Office Phone: (949) 723-1645

This Review Summary Report is based on documents available in GeoTracker. To view all public documents for this case available on GeoTracker use the following URL: <u>http://geotracker.waterboards.ca.gov/profile_report.asp?global_id=T0605999123</u>

Summary

The Low-Threat Underground Storage Tank (UST) Case Closure Policy (Policy) contains general and media-specific criteria, and cases that meet those criteria are appropriate for closure pursuant to the Policy. This case <u>meets</u> all of the required criteria of the Policy. Highlights of the case follow:

This Site is a former commercial petroleum fueling facility and currently developed as a car wash. An unauthorized release was reported in May 2000 following the removal of three gasoline USTs. Reportedly, 38 tons of impacted soil was excavated and transported offsite in May 2003. Soil vapor extraction (SVE) pilot test was conducted for two days in April 2007, which removed 76 pounds of vapor-phase petroleum hydrocarbons. SVE was conducted between March 2009 and April 2015, which removed 4,566 pounds of vapor-phase petroleum hydrocarbons. SVE pilot tests were conducted in July 2016 in which the extraction rate was 15 pounds of petroleum hydrocarbons per day. Active remediation has not been conducted at the Site for the past year. Since 2003, three groundwater monitoring wells and vapor extraction wells have been installed and monitored. According to groundwater data, water quality objectives (WQO) have been achieved or nearly achieved for all constituents.

FELICIA MARCUS, CHAIR | EILEEN SOBECK, EXECUTIVE DIRECTOR

1001 | Street, Sacramento, CA 95814 | Mailing Address: P.O. Box 100, Sacramento, CA 95812-0100 | www.waterboards.ca.gov

Former Anaheim Car Wash 900 Lincoln Avenue, Anaheim Claim No: 15855

The petroleum release is limited to the soil and shallow groundwater. The unauthorized release is located within the service area of a public water system, as defined in the Policy. The affected shallow groundwater is not currently being used as a source of drinking water, and it is highly unlikely that the affected shallow groundwater will be used as a source of drinking water in the foreseeable future. Other designated beneficial uses of impacted groundwater are not threatened, and it is highly unlikely that they will be, considering these factors in the context of the site setting. Remaining petroleum hydrocarbon constituents are limited and stable, and concentrations are decreasing. Corrective actions have been implemented and additional corrective actions are not necessary. Any remaining petroleum hydrocarbon constituents do not pose a significant risk to human health, safety or the environment.

Rationale for Closure under the Policy

General Criteria

Site meets all eight General Criteria under the Policy.

Media-Specific Criteria

- Groundwater: Site meets the criteria in Class 1. The contaminant plume that exceeds WQO is less than 100 feet in length. There is no free product. The nearest existing water supply well or surface water body is greater than 250 feet from the defined plume boundary.
- Petroleum Vapor Intrusion to Indoor Air: Site meets Criteria 2 (a), Scenario 3. As applicable, concentrations of total petroleum hydrocarbons as gasoline and diesel combined in soil, and dissolved concentrations of benzene in groundwater meet the Policy.
- Direct Contact and Outdoor Air Exposure: Site meets Criteria 3 (a). Maximum concentrations of petroleum constituents in soil from confirmation soil samples are less than or equal to those listed in Table 1 of the Policy. Waste oil was not managed onsite and therefore poly-aromatic hydrocarbons (PAHs) soil data are not necessary to assess direct contact.

Status

In an email exchange between Regional Water Board staff and State Water Board staff on July 7, 2017, Regional Water Board staff stated they are in the process of site closure. State Water Board staff concurs that this site meets Policy closure criteria and should proceed toward closure status.

9125/017

Kirk Larson, PG **Engineering Geologist Technical Unit III** (916) 341-5663

Date

1

Date

OF

Pat G. Cullen, PG #4932 Senior Engineering Geologist Chief, Technical Unit III (916) 341-5684

FREY ENVIRONMENTAL, INC

Environmental Geologist, Engineers, Assessors 2817 A Lafayette Avenue Newport Beach, CA 92663 (949) 723-1645 Fax (949) 723-1854 Email: freyinc@freyinc.com

October 25, 2016 469-01

Ms. Nancy Olson-Martin Regional Water Quality Control Board Santa Ana Region 3737 S. Main Street #500 Riverside, CA 92501-3348

VAPOR EXTRACTION WELL INSTALLATION, POST REMEDIATION VAPOR EXTRACTION TEST, AND REQUEST FOR NO FURTHER ACTION FORMER ANAHEIM CAR WASH 900 W. LINCOLN AVENUE ANAHEIM, CALIFORNIA GLOBAL ID # T0605999123

Dear Ms. Olson-Martin:

This report has been prepared by FREY Environmental, Inc. (FREY) to document and present the installation of a vapor extraction well and results of a post remediation vapor extraction test conducted at the Former Anaheim Car Wash located at 900 W. Lincoln Avenue, in Anaheim, California (Site)(Figure 1 & 2). The work was performed in accordance with the scope of work outlined in a workplan prepared by FREY, entitled, "Workplan, Post Remediation Soil Vapor Extraction Test...," dated June 13, 2016 (FREY, 2016). The scope of work outlined in the workplan above was approved the Santa Ana Regional Water Quality Control Board (RWQCB) in a letter dated June 20, 2016 (Appendix A).

OBJECTIVES

The objectives of the vapor extraction well installation and post remediation soil vapor extraction test were to evaluate post-remediation petroleum hydrocarbon concentrations in soils and soil vapor and petroleum hydrocarbon mass removal rates from a vapor extraction well screened in primarily fine grained soils which occur beneath the Site from approximately 30 feet below ground surface (bgs) to 60 feet bgs.

SCOPE OF WORK

The scope of work, designed to provide the information needed to meet the objectives of the investigation, was as follows:

- Procure a well installation permit from the Anaheim Public Utilities;
- Notify the RWQCB, Anaheim Public Utilities, and other interested parties of proposed field activities prior to initiating field work;
- Drill and sample one (1) soil boring (VE10) to a depth of approximately 60 feet bgs;
- Install a soil vapor extraction well in soil boring VE10;
- Conduct soil vapor extraction tests (VETs) on vapor extraction well VE10;
- Survey newly-installed vapor extraction well VE10;
- Evaluate data and prepare a report documenting and presenting the above scope of work.

All activities related to the field investigation was conducted under the direction of a State of California Certified Engineering Geologist and/or Professional Geologist in accordance with accepted engineering practice and protocol. The Anaheim Public Utilities well permit is attached as Appendix B.

WELL INSTALLATION FIELD INVESTIGATION

Pre-field Activities

Prior to the commencement of field work, FREY obtained a permit (Permit No. 1540) from Anaheim Public Utilities to install a vapor extraction well at the Site. Additionally, FREY personnel visited the Site prior to drilling activities to mark the proposed vapor extraction well location for Underground Service Alert (USA) notification. FREY notified the RWQCB, Anaheim Public Utilities, and other interested parties prior to the conduct of drilling operations.

Drilling and Sampling of Soil Boring VE10

On August 6, 2016, Soil boring VE10 was drilled to a final depth of approximately 60 feet bgs using a CME-75 truck mounted drill rig equipped with 8-inch outside diameter hollow stem augers. Prior to the drilling, the boring was hand excavated with a post-hole digger to approximately 5 feet bgs in order to locate and avoid any subsurface utilities.

Soil samples were collected from the soil boring at approximate 5-foot depth intervals from approximately 5 feet bgs to the bottom of the boring. Soil samples and soil cuttings were examined in order to characterize the soil lithology and to look for evidence of the presence of petroleum hydrocarbons. Soil lithology was documented utilizing the Unified Soil Classification System (USCS). The soil samples and soil cuttings were screened in the field for undifferentiated volatile organic compounds (UVOCs) using a photo ionization detector (PID), as explained in Appendix C.

Construction of Vapor Extraction Well VE10

Vapor extraction well VE10 was constructed of 2-inch diameter schedule 40 PVC casing, screened from approximately 30 to 60 feet bgs. Vapor extraction well construction procedures are presented in Appendix C.

Soil Sample Laboratory Analyses

Soil samples were analyzed for petroleum hydrocarbons modified for gasoline (TPHg) in general accordance with EPA Method No. 8015 and for volatile organic compounds (VOCs) in general accordance with EPA Method No. 8260B. The laboratory analyses of soil samples were performed by Eurofins Calscience, a State-certified hazardous waste testing laboratory located in Garden Grove, California.

A summary of historical soil sample laboratory results is presented in Table 1. A copy of the laboratory analytical report and laboratory quality assurance/quality control report is attached as Appendix D.

Disposal of Soil Cuttings

Soil cuttings generated during the conduct of drilling operations were temporarily stored on-Site in a soil bin. The soil bin was removed by Robert's Waste and Recycling Service of Santa Ana, California, and was profiled and transported to Soil Safe, located in Adelanto, California, for recycling. The soil disposal manifest is attached as Appendix E.

Well Survey

Newly-installed vapor extraction well VE10 was surveyed for elevation, relative to a county benchmark on September 8, 2016. Well VE10 and confirmation borings CB1 through CB5 were also surveyed for location on September 8, 2016 using GPS methodology. The wells were surveyed by RDM Surveying, Inc., a California Registered Land Surveyor located in Laguna Hills, CA. The survey was conducted in accordance with State Water Resources Control Board's (SWRCB) Geotracker standards. A copy of the surveyor's report is included in Appendix F.

WELL INSTALLATION RESULTS

Subsurface Conditions

Subsurface materials encountered beneath the Site during the drilling of VE10 consisted primarily of silty sand or poorly graded fine grained sand from just below the ground surface to the bottom of the boring (60 feet bgs). Layers of silt or sandy silt were encountered from approximately 18 to 23 feet bgs, 30 to 33 feet bgs, and 43 to 58 feet bgs and a layer of clay was encountered from approximately 33 feet bgs to 38 feet bgs. Groundwater was not encountered during drilling or well installation activities.

The soil lithologies encountered drilling well VE10 are depicted on the boring log included in Appendix D. A Site sketch showing geologic cross section locations is presented in Figure 3. Cross sections depicting subsurface lithologies appear as Figures 4 and 5.

UVOC concentrations greater than 9,999 parts per million (ppm) were detected in some of the field-screened soil samples collected from boring VE10. UVOC concentration readings are recorded on the boring log presented in Appendix G.

Laboratory Results

- Concentrations of TPHg were detected in soil samples collected from VE10 at depths of 35, 45, 50, and 55 feet bgs, at concentrations ranging from 0.60 milligrams per kilogram (mg/kg) (VE10-55) to 3,400 mg/kg (VE10-45).
- Benzene was detected in one soil sample collected from VE10, at concentrations of 0.035 at 55 feet bgs.
- Toluene was detected in soil samples collected from VE10 at depths of 30, 35, 45, 50, and 55 feet bgs, at concentrations ranging from 0.029 mg/kg (VE10-55) to 72 mg/kg (VE10-50).
- Ethylbenzene was detected in soil samples collected from VE10 at depths of 30, 35, 45, and 50 feet bgs, at concentrations ranging from 0.010 mg/kg (VE10-30) to 26 mg/kg (VE10-50).
- Total xylenes were detected in soil samples collected from VE10 at depths of 30, 35, 40, 45, 50, and 55 feet bgs, at concentrations ranging from 0.0063 mg/kg (VE10-40) to 510 mg/kg (VE10-45).
- MTBE was detected in soil samples collected from VE10 at depths of 50 and 55 feet bgs at concentrations of 5.9 mg/kg and 0.870 mg/kg, respectively.
- TBA was only detected in one soil sample collected from VE10 at a depth of 55 feet bgs, at a concentration of 0.150 mg/kg.

• Additional detected VOCs included n-butyl benzene, sec-butyl benzene, npropylbenzene, 1,2,4-trimethylbenzene, and 1,3,5-trimethylbenzene in soil samples collected from VE10 at depths of 30, 35, 40, 45, 50, and 55 feet bgs.

The soil sample laboratory results for the current investigation are summarized in Tables 1 and 2. Soil laboratory and quality assurance/quality control reports appear in Appendix D.

VAPOR EXTRACTION TEST FIELD INVESTIGATION

Vapor Extraction Test Equipment

FREY conducted VETs on August 23 and 24, 2016, using equipment designed to extract soil vapor at variable extraction flow rates and applied vacuums. The vapor extraction equipment utilized to conduct the VETs consisted of a mobile vapor extraction system (VES) consisting of a 10 horsepower, 250 standard cubic feet per minute (scfm) positive displacement blower, a knock out pot, and two, 400 lb carbon vessels to treat extracted vapors. Extraction was initiated by imparting an applied vacuum to the wellhead of each extraction well with the extraction blower. The applied vacuum was adjusted by closing the VES dilution valve, as required. The mobile trailer-mounted VES was operated under a various locations permit from the South Coast Air Quality Management District (SCAQMD).

A Horiba model MEXA-554JU infra-red gas analyzer (Horiba) was utilized to measure concentrations of UVOCs, oxygen (O2), and carbon dioxide (CO2). Magnehelic differential pressure gauges were used to measure vacuums, and in combination with pitot tubes, were used to measure flow rates. The vapor extraction unit included dilution valves and required instrumentation.

The VETs provided information for the assessment of achievable vapor extraction flow rates, the radius of influence of vapor extraction wells, and petroleum hydrocarbon mass removal rates.

Pre-Field Test Activities

Prior to initiation of the VETs, PVC slip caps, fitted with brass valves, were placed on each observation well to allow for vacuum response measurements during conduct of the VETs. Baseline vacuum readings in all on-Site wells were measured and recorded using Magnehelic differential pressure gauges prior to test startup.

Vapor Extraction Testing

On August 23 and 24, 2016, FREY conducted a two-step soil VET using newly installed vapor extraction well VE10 as the extraction well (Figure 2). Wells VE1s, VE1d, VE2s, VE2d, VE6s, VE6d, VE7, VE8, VE9, MW1, MW2, and MW3 were used as observation wells. Observation wells for the VET were selected based on their radial proximity to extraction wells and their screened interval depths within alternate lithologic units.

Well construction details and boring logs for the vapor extraction well and observation wells are presented in Table 6 and Appendix G, respectively.

The VES was used to impart an applied vacuum on the vapor extraction wellhead. Each step of the two-step VET was conducted by increasing the vacuum on the extraction well. Each step of the VET was conducted for a total of 10 hours. During each test, vacuum responses were monitored at each observation well. Applied vacuums, vapor extraction flow rates, and influent UVOC concentrations were monitored at the extraction well with the Horiba.

Soil vapor samples were collected in tedlar bags from each extraction well after the start, during the middle, and prior to the end of each step in the VET. Soil vapor samples were submitted Baseline Analytical, a State-certified hazardous waste testing laboratory located in Huntington Beach, California for chemical analysis. The vapor samples were analyzed for TPHg in accordance with EPA Method No. 8015M and benzene, toluene, ethylbenzene, and total xylenes (BTEX) and fuel oxygenates, in accordance with EPA Method No. 8260B. Copies of the laboratory analytical reports are included in Appendix H.

VAPOR EXTRACTION TESTING RESULTS

On August 23, 2016, FREY conducted Step 1 of the VET. A vacuum of approximately 50 inches of water (in-H2O) was applied to the wellhead of vapor extraction well VE10. The corresponding flow rate at the wellhead of VE10 ranged from approximately 135 scfm to 144 scfm. Vacuum response was observed in all observation wells. Maximum observed vacuum responses ranged from 0.52 in-H2O (VE8) to 3.70 in-H2O (VE6s) during Step 1 of the VET. Oxygen percentage measured in the influent vapor ranged from 7.04% to 15.70%. TPHg concentrations in the influent samples were detected at 170 ppmv at the start of Step 1, 310 ppmv during the middle of Step 1, and 370 ppmv at the end of Step 1. Hydrocarbon removal rates estimated with measured flow rates and influent petroleum hydrocarbon concentrations averaged 0.69 pounds per hour (lbs/hr) during Step 1 of the VET.

Step 2 of the VET was conducted on August 24, 2016, utilizing a vacuum of approximately 80 in-H2O. The corresponding flow rate for the wellhead of VE10 ranged from approximately 182 scfm to 188 scfm. Vacuum response was observed in all observation wells. Maximum observed vacuum responses in each well ranged from 0.32 in-H2O (VE8) to 4.40 in-H2O (VE6s) during Step 2 of the VET. Oxygen percentage measured in the influent vapor ranged from 15.20% to 18.54%. TPHg concentrations in the influent samples were detected at 250 ppmv at the start of Step 2, 430 ppmv during the middle of Step 2, and 570 ppmv at the end of Step 2 of the VET. Hydrocarbon removal rates estimated with measured flow rates and influent petroleum hydrocarbon concentrations averaged 0.81 lbs/hr during Step 2 of the VET.

Utilizing vapor influent concentrations and estimated mass removal rates, a total of 14.96 pounds (2.47 gallons) of hydrocarbons were removed during the 16 hours of vapor extraction conducted during the VET.

A summary of vapor extraction data is presented as Table 3. An estimate of hydrocarbon mass removal rates during the VET including oxygen percentage is presented as Table 4. A table summarizing chemical analyses of VET vapor samples is presented as Table 5.

CONCLUSIONS

Based on the laboratory results of soil samples collected during the drilling and installation of vapor extraction well VE10, it appears that residual concentrations of petroleum hydrocarbons are present in the fine grained soil located at 35 feet bgs and between 45 to 50 feet bgs.

Based on the results of the post remediation VET, vapor extraction remediation is able to extract residual petroleum hydrocarbons from the subsurface at average removal rates of 0.69 and 0.81 lbs/hr, utilizing vacuums of 50 in-H2O and 80 in-H2O, respectively. However, based on the relatively low remaining petroleum hydrocarbon concentrations in soils, and the relatively low vapor influent concentrations collected during the VET, continuation of vapor extraction remediation at the Site would not be expected to remove any significant mass of petroleum hydrocarbons from subsurface vadose zone soils. Additionally, based on the relatively high oxygen percentages measured from the influent vapors during the VET, residual petroleum hydrocarbons in the subsurface soils would be expected to naturally attenuate over time.

LOW THREAT CLOSURE EVALUATION

To evaluate whether the Site meets the State of California Water Resources Control Board (SWRCB) Low-Threat Case Closure criteria, FREY evaluated general and media specific criteria items given in the SWRCB document entitled "Low-Threat Underground Storage Tank Case Closure Policy", adopted by the SWRCB in August, 2012, using the checklist referenced in Policy (SWRCB, 2012). Using available Site data, sensitive receptor information, and information collected during post remediation (confirmation) sampling events, FREY completed the checklist and found that the Site complies with the Policy. A copy of the Policy checklist is included in Appendix I.

General Criteria

The Site meets the following general criteria presented under the Policy:

- a. The unauthorized release is located within the service area of a public water system (Anaheim Public Utilities);
- b. The unauthorized release consists only of petroleum hydrocarbons (see Tables 1 and 2);
- c. The unauthorized ("primary") release from the UST system has been stopped (USTs and related piping have been removed);
- d. Free product has been removed to the maximum extent practicable (free product has never been reported);
- e. A conceptual site model that assesses the nature, extent, and mobility of the release has been developed;

- f. Secondary source has been removed to the maximum extent practicable by vapor extraction remediation conducted at the Site. Vapor extraction was operated for a total of 9,131 hours at the Site between February 7, 2014 and April 17, 2015, and is estimated to have removed approximately 4,551 pounds (752 gallons) of vapor phase petroleum hydrocarbons from subsurface soils;
- g. Soil and groundwater have been tested for MTBE and the results have been reported to the RWQCB herein in accordance with Health and Safety Code section 25296.15 (Tables 1 and 2); and,
- h. Nuisance as defined by Water Code section 13050 does not exist at the Site.

Media Specific Criteria

Releases from USTs can impact human health and the environment through contact with any or all off the following media: groundwater, surface water, soil, and soil vapor. Although this contact can occur through ingestion, dermal contact, or inhalation of the various media, the most common drivers of health risk are ingestion of groundwater from drinking water wells, inhalation of vapors accumulated in buildings, contact with near surface contaminated soil, and inhalation of vapors in the outdoor environment (SWRCB, 2012).

The Site meets the media-specific criteria presented under the Policy (the following sections coincide with those letters and numbers specified in the Policy) as described in the following sections.

1. Groundwater-Specific Criteria

State Water Board Resolution 92-49, the policy for water quality control as it applies to UST cleanup cases, directs that water affected by an unauthorized release needs to attain either background water quality or the maximum reasonable water quality that can be achieved if background water quality cannot be restored. Any alternative level of water quality less stringent than background quality must be consistent with the maximum benefit to the people of the State, not unreasonably affect current and anticipated beneficial use of affected water, and not result in water quality less than that prescribed in the water quality control plan for the basin within which the site is located. Water quality control plans generally establish background water quality as a restorative endpoint. General groundwater cleanup goals for the Site are the State drinking water maximum contaminant level (MCL) or action level (AL) as follows:

Constituent	MCL or AL (ug/L)	Proposed Cleanup Levels (ug/L)		
MTBE	13 (MCL)	13		
TBA	12 (AL)	12		
Benzene	1 (MCL)	1		
Toluene	150 (MCL)	150		
Ethylbenzene	700 (MCL)	700		
Total Xylenes	1,750 (MCL)	1,750		

FREY Environmental, Inc.

The current concentrations of residual MTBE, TBA, and BTEX in groundwater are below the water quality objectives presented above.

Sites with soil that does not contain sufficient mobile constituents to cause groundwater to exceed the groundwater criteria in this policy shall be considered low-threat sites for the groundwater medium. For older releases, the absence of current groundwater impact is often a good indication that residual concentrations present in the soil are not a source for groundwater pollution. As such, in our professional judgment, the Site meets the LTCP's groundwater-specific criteria for low threat case closure.

2. Petroleum Vapor Intrusion to Indoor Air

Based on the results of confirmation soil sampling, the Site meets the Petroleum Vapor Intrusion to Indoor Air Media Specific Criteria. The site-specific conditions at the Site satisfies all of the characteristics and criteria of scenarios 1 through 3 of the LTCP as applicable.

3. Direct Contact and Outdoor Air Exposure

Results of confirmation soil sampling have also demonstrated that the Media Specific Criteria for Direct Contact and Outdoor Air Exposure have been met.

Benzene, ethylbenzene, and naphthalene concentrations were less than or equal to the maximum concentrations of petroleum constituents in soil listed in Table 1 of the LTCP for the specified depth below ground surface. Soils were not tested for PAH as sampling and analysis for PAH is only necessary where soil is affected by either waste oil or Bunker C fuel.

REQUEST FOR NO FURTHER ACTION

- Data from 13 years of groundwater monitoring and sampling demonstrate that the limited very low concentrations of petroleum hydrocarbons in groundwater have been mitigated (FREY, 2015). Based on the high oxygen content measured in the influent vapor during the VET, it is expected that natural attenuation will further reduce the remaining residual petroleum hydrocarbons in soil from reaching groundwater.
- Review of the LTCP indicates that migration pathways and exposure routes for potential sensitive receptors are incomplete.
- In-situ remediation was conducted using soil vapor extraction remediation for approximately 14 months between February 2014 and April 2015. It is estimated that approximately 4,551 lbs of petroleum hydrocarbon were extracted from beneath the Site. Additionally, 14.96 lbs of petroleum hydrocarbons were extracted from subsurface soils at the Site during the current VET. However, based on the relatively low remaining

petroleum hydrocarbon concentrations in soils and the relatively low vapor influent concentrations collected during the VET, continuation of vapor extraction remediation at the Site would not be expected to remove any significant mass of petroleum hydrocarbons from subsurface vadose zone soils.

• Based on this post remediation vapor extraction well installation and vapor extraction test, past remedial action and site assessments, it is FREY's professional judgement that no further action is warranted for this Site.

If you have any questions regarding the information presented in this report please contact us at (831) 464-1634.

Sincerely, FREY Environmen Joe Frey Principal Certified ATEOFC Engineering Geologis CEG #1500 Mollie Banh

Kent Tucker

Kent Tucker Senior Project Geologist PG #7584

Staff Engineer

References

FREY (FREY Environmental, Inc.), 2016, Workplan Post Remediation Soil Vapor Extraction Test, Former Anaheim Carwash, 900 W. Lincoln Avenue, Anaheim, California, dated June 13, 2016.

Attachments

- Table 1Historical Chemical Analyses of Soil Samples
- Table 2Additional Detected VOCs
- Table 3Summary of Vapor Extraction Data
- Table 4Estimate of Hydrocarbon Mass Removal Rates
- Table 5Chemical Analyses of Vapor Samples
- Table 6Well Construction Summary
- Figure 1 Site Location Map
- Figure 2 Site Sketch Showing Soil Boring, Vapor Extraction Well, and Groundwater Monitoring Well Locations
- Figure 3 Site Sketch Showing Geologic Cross Section Locations A-A' and B-B'
- Figure 4 Subsurface Geologic Section A-A'
- Figure 5 Subsurface Geologic Section B-B'
- Appendix A RWQCB Approval Letter
- Appendix B Well Installation Permit
- Appendix C Field Procedures
- Appendix D Soil Sampling Laboratory Report
- Appendix E Soil Disposal Manifest
- Appendix F Surveyor's Report
- Appendix G Boring Logs
- Appendix H Vapor Influent Sampling Laboratory Report
- Appendix I LTCP Checklist
- Appendix J Example Calculation of Petroleum Hydrocarbon Mass Removal
- cc: Mr. Amir Lankarani Anaheim Car Wash
 - State Water Resources Control Board UST Clean Up Fund (Geotracker)

TABLES

TABLE 1 HISTORICAL CHEMICAL ANALYSES OF SOIL SAMPLES FORMER ANAHEIM CAR WASH 900 W. LINCOLN AVENUE ANAHEIM, CALIFORNIA

(Laboratory results in mg/kg- soil)

SAMPLE	DEPTH	DATE				ETHYL	TOTAL		
NUMBER	(feet-bgs)	SAMPLED	TPHG [1]	BENZENE [2]	TOLUENE [2]	BENZENE [2]	XYLENES [2]	MTBE [2,3]	TBA [3]
1.0	(1000-0-)	bi initi		D11,000,000 (-)	10202-1-1-1	DDI (DDI (-)		11122 [-,-]	101-[-]
OCEAN BLU	JE ENGINEE	RS, INC.							
		,							I
P1	NM	02/29/2000	ND<0.5	ND<0.005	ND<0.005	ND<0.005	ND<0.01	0.09	
P2	NM	02/29/2000	ND<0.5	ND<0.005	ND<0.005	ND<0.005	ND<0.01	0.15	
P3	NM	02/29/2000	ND<0.5	ND<0.005	ND<0.005	ND<0.005	ND<0.01	0.15	
P4	NM	02/29/2000	7.2	0.02	0.47	0.19	1.40	5	
P5	NM	02/29/2000	ND<0.5	ND<0.005	0.010	ND<0.005	ND<0.01	0.14	
P6	NM	02/29/2000	1.1	0.021	0.220	0.042	0.340	1.9	
P7	NM	02/29/2000	ND<0.5	ND<0.005	ND<0.005	ND<0.005	0.017	0.16	
P8	NM	02/29/2000	ND<0.5	0.003	0.009	ND<0.005	ND<0.01	0.17	
P9	NM	02/29/2000	ND<0.5	ND<0.005	ND<0.005	ND<0.005	ND<0.01	0.24	
P10	NM	02/29/2000	ND<0.5	ND<0.005	ND<0.005	ND<0.005	ND<0.01	0.15	
P11	NM	02/29/2000	ND<0.5	ND<0.005	ND<0.005	ND<0.005	ND<0.01	0.17	
P12	NM	02/29/2000	ND<0.5	ND<0.005	ND<0.005	ND<0.005	ND<0.01	0.13	
P13	NM	02/29/2000	ND<0.5	0.015	0.022	ND<0.005	0.095	4.5	
P14	NM	02/29/2000	ND<0.5	ND<0.005	ND<0.005	ND<0.005	ND<0.01	0.027	
P15	NM	02/29/2000	ND<0.5	ND<0.005	ND<0.005	ND<0.005	ND<0.01	ND<0.01	
T1	NM	02/29/2000	23	ND<0.005	0.21	0.13	1.30	0.27	
T2	NM	02/29/2000	580	0.65	32.00	22.50	130.00	21	
T3	NM	02/29/2000	2.400	22.10	120.00	65.00	150.00	47	
T4	NM	02/29/2000	1 200	4.90	90.00	120.00	250.00	30	
T5	NM	02/29/2000	760	3.60	77.00	38.20	230.00	62	
Тб	NM	02/29/2000	5 600	17.00	210.00	260.00	450.00	36.5	
10	1 1111	02/29/2000	5,000	17.00	210.00	200.00	-50.00	56.5	
FREY ENVIF	RONMENTA	L, INC.							
(Van an avtra a	t' - a mall VE1		t sain a D1)						
	15	04/21/2003	280	0.42	15	13	05	0.75	
DI	15	04/21/2003	200 1.800	0.42 7.0	15	15	95 220	0.75 11	 ND-0 50
1	20	04/21/2003	2,500	/.0	500	150	230	11	ND>0.50
1	25 20	04/21/2003	2,500	38 0.50	500	150	890	20	ND<0.50
1	30	04/21/2003	1/	0.50	1.57	0.59	2.2	11	
1	35	04/21/2003	60	0.29	2.5	1.0	8.8	1.5	
1	40	04/21/2003	130	0.25	3.0	3.9	23	0.81	
1	45	04/21/2003	3,700	25	46	25	160	29	0.89
1	50	04/21/2003	46	4.7	7.1	0.74	4.5	9	ND<0.50
	55	04/21/2003	350	2.7	9.7	6.9	16	9.9	
	60	04/21/2003	740	5.1	7.9	2.0	24	9.7	ND<0.50
	65	04/21/2003	ND<0.50	ND<0.0050	0.014	ND<0.0050	0.02	0.14	
1	70	04/21/2003	1.9	0.11	0.12	0.15	0.21	0.25	
1	75	04/21/2003	0.83	0.025	0.17	0.0118	0.095	0.23	
1	80	04/21/2003	1,800	11	250	120	670	8.5	
1	85	04/21/2003	76	0.73	11	1.7	26	0.60	
1	90	04/21/2003	18	0.081	1.9	0.37	5.5	0.10	
4									

TABLE 1 HISTORICAL CHEMICAL ANALYSES OF SOIL SAMPLES FORMER ANAHEIM CAR WASH 900 W. LINCOLN AVENUE ANAHEIM, CALIFORNIA

CAMPLE	DEDTU	DATE				E/THY/I	TOTAL		
SAMPLE	DEPTH	DATE	TRUG [1]			EIHYL	IOTAL		TD 4 [2]
NUMBER	(feet-bgs)	SAMPLED	TPHG [1]	BENZENE [2]	TOLUENE [2]	BENZENE [2]	XYLENES [2]	MTBE [2,3]	TBA [3]
(Groundwater	monitoring w	ell MW1 was ir	nstalled in bori	ng B2)					
B2	5	04/22/2003	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	
	10	04/22/2003	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	
	15	04/22/2003	83	0.11	0.92	1.2	8.5	0.10	
	20	04/22/2003	020	1.0	25	21	70	5.2	
	20	04/22/2003	930	1.9	23	21	19	5.5	 NID -0 50
	25	04/22/2003	1,000	12	56	31	110	17	ND<0.50
	30	04/22/2003	70	3.1	5.8	0.39	4.2	11	ND<0.50
	35	04/22/2003	3,500	26	46	13	130	32	0.56
	40	04/22/2003	300	1.5	9.8	9.4	34	5.5	ND<0.25
	45	04/22/2003	110	2.2	6.3	4.1	14	9.6	0.63
	50	04/22/2003	5.9	0.33	0.63	0.18	0.96	1.2	
	55	04/22/2003	5.6	0.74	0.015	0.04	0.71	2.9	
	60	04/22/2003	ND<0.50	0.018	0.031	0.0041	0.021	0.055	
	65	04/22/2003	ND<0.50	0.031	0.044	ND<0.0050	0.016	0.17	
	70	04/22/2003	0.07	0.091	0.044	0.024	0.010	0.17	
	70	04/22/2003	0.97	0.083	0.21	0.024	0.15	0.52	
	75	04/22/2003	ND<0.50	0.040	0.063	ND<0.0050	0.019	0.023	
	80	04/22/2003	ND<0.50	0.0096	0.022	ND<0.0050	0.012	0.025	
	85	04/22/2003	ND<0.50	0.019	0.049	ND<0.0050	0.026	0.16	
	90	04/22/2003	ND<0.50	0.011	0.058	0.011	0.063	0.15	
(Groundwater	monitoring w	vell MW2 was ir	nstalled in bori	ng B3)					
В3	5	04/23/2003	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	0.026	
	10	04/23/2003	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	0.016	
	15	04/23/2003	0.60	0.025	0.012	0.0063	0.036	0.45	
	20	04/23/2003	4.7	0.28	0.41	0.057	0.61	3.4	
	25	04/23/2003	9.4	0.63	14	0.17	1.8	4 1	
	30	04/23/2003	27	2.1	3.0	0.19	3.0	12	ND~0.25
	30	04/23/2003	700	2.1	100	16	270	12	0.29
	35	04/22/2003	/ 90	10	2.0	10	270	19	0.50
	40	04/23/2003	40	0.51	3.0	0.92	10	1.6	
	45	04/23/2003	1,700	29	260	110	590	17	ND<0.50
	50	04/23/2003	1,200	35	210	74	390	26	0.69
	55	04/23/2003	530	3.8	72	0.29	190	14	ND<0.25
	60	04/23/2003	3.2	0.034	0.083	0.014	0.091	2.7	
	65	04/23/2003	1.4	0.014	0.046	0.010	0.068	1.1	
	70	04/23/2003	1.1	0.013	0.040	0.0065	0.04	0.86	
	75	04/23/2003	ND<0.50	ND<0.0050	0.011	ND<0.0050	0.017	0.15	
	80	04/23/2003	4.4	0.0097	0.025	0.0093	0.18	4.0	
	85	04/23/2003	1.8	0.047	0.28	0.0641	0.44	0.77	
	90	04/23/2003	ND<0.50	ND<0.047	0.0056	ND<0.0050	0.0080	0.37	
	90	04/23/2003	ND<0.50	ND<0.0050	0.0050	ND <0.0050	0.0080	0.57	
(Vapor outro	tion well VEA	was installed in	horing DA)						
	uon wen vE2	04/22/2002	ND-0 50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	
D4	<i>J</i>	04/22/2003	ND~0.30	ND~0.0030	ND <0.0030	ND~0.0030	ND~0.0030	ND <0.0050	
	10	04/22/2003	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	
	15	04/22/2003	42	0.021	0.94	1.2	8.8	0.46	
	20	04/22/2003	2,400	17	290	160	920	16	0.570
	25	04/22/2003	360	1.4	21	4.0	65	4.4	
	30	04/22/2003	46	1.7	3.7	0.45	2.5	20	ND<0.25
	35	04/22/2003	2.8	0.15	0.40	0.078	0.40	1.0	
	40	04/22/2003	12	0.28	0.36	0.042	0.20	9.4	ND<0.25
	45	04/22/2003	6.9	0.026	0.13	0.2	0.99	0.93	
	50	04/22/2003	12	0.58	0.88	0.15	0.80	6.5	ND<0.25
	55	04/22/2003	17	2.7	0.47	0.33	1.8	8.8	ND<0.25
	60	04/22/2003	57	0.19	0.53	0.18	0.88	0.97	
	65	04/22/2003	ND<0.50	0.031	0.040	ND<0.0050	0.021	0.28	-
	70	04/22/2003	ND-0.50	ND-0.0050	ND-0.0050	ND~0.0050	ND<0.021	0.20	
	70	04/22/2003	ND<0.50	0.0000	0.0030	ND<0.0050	ND~0.0030	0.17	
	/5	04/22/2003	ND<0.50	0.0083	0.010	ND<0.0050	ND<0.0050	0.033	
	80	04/22/2003	ND<0.50	ND<0.0050	0.0050	ND<0.0050	ND<0.0050	0.00/1	
	85	04/22/2003	ND<0.50	0.0057	0.0093	ND<0.0050	0.0059	0.049	
	90	04/22/2003	ND<0.50	ND<0.0050	0.0069	ND<0.0050	0.0067	0.0088	
	BEBELL	D / 77					momer		
----------------	------------------	------------------	------------------	-------------------	-------------	-------------	-------------	------------	-----------------
SAMPLE	DEPTH	DATE				ETHYL	TOTAL		
NUMBER	(feet-bgs)	SAMPLED	TPHG [1]	BENZENE [2]	TOLUENE [2]	BENZENE [2]	XYLENES [2]	MTBE [2,3]	TBA [3]
(Groundwater	monitoring w	vell MW3 was in	istalled in bori	ng B5)					
В5	5	04/23/2003	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	0.015	
	10	04/23/2003	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	0.013	
	15	04/23/2003	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	0.022	
	20	04/23/2003	2.7	0.32	0.12	0.097	0.27	1.2	
	25	04/23/2003	9.3	0.76	1.3	0.20	0.85	4.1	
	30	04/23/2003	19	1.2	2.7	0.33	1.6	9.5	ND<0.25
	35	04/23/2003	270	7.3	19	9.4	31	25	1.2
	40	04/23/2003	1 400	8.1	66	47	150	94	
	45	04/23/2003	590	47	35	24	79	17	0 34
	50	04/23/2003	49	4.7	11	0.03	19	10	0.43
	55	04/23/2003	49	4.2	11 9 7	0.93	4.9	13	0.45 ND<0.25
	55	04/23/2003	40	4.9	0.7	0.90	4.7	21	ND~0.25
	60	04/23/2003	2.7	0.078	0.20	0.043	0.25	1.0	
	65	04/23/2003	0.70	0.033	0.008	0.015	0.070	0.36	
	70	04/23/2003	0.61	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	0.61	
	75	04/23/2003	ND<0.50	ND<0.0050	0.0082	ND<0.0050	0.0097	0.19	
	80	04/23/2003	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	0.058	
	85	04/23/2003	ND<0.50	0.022	0.070	0.011	0.065	0.17	
	90	04/23/2003	ND<0.50	0.018	0.085	0.014	0.083	0.15	
(Vapor extract	tion well VE4	was installed in	boring B6)						
B6	5	04/24/2003	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	
	10	04/24/2003	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	
	15	04/24/2003	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	
	20	04/24/2003	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	
	25	04/24/2003	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	
	30	04/24/2003	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	
	35	04/24/2003	ND<0.50	0.026	ND<0.0050	ND<0.0050	0.011	0.0098	ND<0.025
	40	04/24/2003	ND<0.50	0.019	0.011	ND<0.0050	0.013	0.12	ND<0.025
	40	04/24/2003	ND<0.50	0.017	0.0051	ND<0.0050	0.015	0.02	ND<0.025
	4J 50	04/24/2003	ND<0.50	0.014	0.0031	ND<0.0050	0.0078	0.064	ND <0.023
	50	04/24/2003	ND<0.30	0.024	0.025	ND<0.0030	0.019	0.0004	 ND <0.025
	55	04/24/2003	4.2	1.1 ND -0.0050	0.58	0.14	0.63	1.5	ND<0.025
	65	04/24/2003	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	0.023	ND<0.025
	70	04/24/2003	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	0.0060	
	75	04/24/2003	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	0.013	
	80	04/24/2003	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	0.0077	
	90	04/24/2003	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	
	95	04/24/2003	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	
(Vapor extract	tion well VE3	was installed in	boring B7)						
B7	5	04/24/2003	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	
	10	04/24/2003	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	
	15	04/24/2003	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	
	20	04/24/2003	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	
	25	04/24/2003	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	
	30	04/24/2003	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	
	35	04/24/2003	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	
	40	04/24/2003	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	
	45	04/24/2003	ND<0.50	ND<0.0050	0.0057	ND<0.0050	0.0066	0.013	ND<0.025
	50	04/24/2003	ND<0.50	0.0055	ND<0.0050	ND<0.0050	ND<0.0050	0.0091	ND<0.025
	55	04/24/2003	ND<0.50	0.020	0.0062	ND<0.0050	0.0096	0.0072	ND<0.025
	60	04/24/2003	ND<0.50	0.020	0.010	ND<0.0050	0.000	0.011	ND<0.025
	70	04/24/2003	ND<0.50	ND<0.050	ND<0.019	ND<0.0050	ND<0.020	ND<0.011	110 -0.043
	70	04/24/2003	ND-0.50	ND<0.0030	ND<0.0050	ND<0.0050	ND<0.0030	ND<0.0050	
	10	04/24/2003	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	
	0U 0 <i>5</i>	04/24/2003	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	
	85	04/24/2003	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	
	90	04/24/2003	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	
	95	04/24/2003	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	

SAMPLE	DEPTH	DATE				FTHVI	τοται		
NUMBER	(feet bgs)	SAMPLED	TDHG [1]	BENZENE [2]	TOLUENE [2]	DENTENE [2]	VVI ENES [2]	MTRE [2 3]	TBA [3]
NUMBER	(lect-bgs)	SAIMI LED		DENZENE [2]	IOLOENE [2]	DENZENE [2]	AT LENES [2]	WITDE [2,5]	IBA [5]
(vapor extrac	tion well vEs	11/22/2006	ND < 0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	0.027	ND<0.025
Вð	5	11/22/2006	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	0.037	ND<0.025
	10	11/22/2006	0.86	ND<0.0050	0.014	ND<0.0050	0.015	0.56	ND<0.025
	15	11/22/2006	2.1	0.016	0.029	0.0059	0.04	1.5	ND<0.025
	20	11/22/2006	5.1	0.080	0.16	0.0053	0.12	3.2	ND<0.025
	25	11/22/2006	2.7	0.013	0.036	ND<0.0050	0.068	1.6	ND<0.025
	30	11/22/2006	8.8	0.14	0.38	0.013	0.42	6.4	ND<0.025
	35	11/22/2006	8.6	0.68	0.92	0.12	0.72	3.4	ND<0.025
	40	11/22/2006	0.69	ND<0.0050	0.016	ND<0.0050	0.015	0.65	ND<0.025
	45	11/22/2006	0.86	ND<0.0050	0.027	ND<0.0050	0.034	0.46	ND<0.025
	50	11/22/2006	1.8	0.019	0.018	ND<0.0050	0.0097	1.4	ND<0.025
	55	11/22/2006	ND<0.50	ND<0.0050	0.0057	ND<0.0050	0.0063	0.33	ND<0.025
	60	11/22/2006	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	0.082	ND<0.025
	65	11/22/2006	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.025
	70	11/22/2006	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.025
	75	11/22/2006	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.025
	80	11/22/2006	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.025
B9	15	11/22/2006	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	0.010	ND<0.025
	20	11/22/2006	1.7	0.013	0.067	0.0097	0.078	1.2	ND<0.025
	25	11/22/2006	230	1.1	5.7	3.3	9.7	0.85	ND<0.025
	30	11/22/2006	6.1	0.026	0.060	0.0052	0.0052	4.8	ND<0.025
	35	11/22/2006	3.5	0.13	0.059	0.0098	0.12	2.6	ND<0.025
	40	11/22/2006	ND<0.50	ND<0.0050	0.018	ND<0.0050	0.015	0.083	ND<0.025
	45	11/22/2006	0.51	ND<0.0050	0.025	ND<0.0050	0.023	0.092	ND<0.025
	50	11/22/2006	2.0	0.0068	0.029	0.0056	0.051	1.3	ND<0.025
	55	11/22/2006	1.3	ND<0.0050	ND<0.0050	ND<0.0050	0.0064	0.15	ND<0.025
	60	11/22/2006	ND<0.50	ND<0.0050	0.022	ND<0.0050	0.022	0.047	ND<0.025
	65	11/22/2006	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	0.014	0.012	ND<0.025
	70	11/22/2006	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.025
B10	15	11/21/2006	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.025
	20	11/21/2006	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.025
	25	11/21/2006	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.025
	30	11/21/2006	0.62	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	0.44	ND<0.025
	35	11/21/2006	22	0.078	0.32	0.072	0.58	2.0	ND<0.025
	40	11/21/2006	ND<0.50	ND<0.0050	0.0069	ND<0.0050	0.012	0.025	ND<0.025
	45	11/21/2006	0.72	0.019	0.021	ND<0.0050	0.022	0.41	ND<0.025
	50	11/21/2006	130	0.69	4.7	2.6	14	4.9	ND<0.025
	55	11/21/2006	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	0.013	0.24	ND<0.025
	60	11/21/2006	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	0.11	ND<0.025
	65	11/21/2006	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	0.012	ND<0.025
	70	11/21/2006	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	0.010	ND<0.025
	75	11/21/2006	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.025
	, .	1.21.2000	1.2 0.00						

(Laboratory results in mg/kg- soil)

(Laboratory results in mg/kg- soil)

SAMPLE	DEPTH	DATE				ETHYL	TOTAL		
NUMBER	(feet-bgs)	SAMPLED	TPHG [1]	BENZENE [2]	TOLUENE [2]	BENZENE [2]	XYLENES [2]	MTBE [2,3]	TBA [3]
(Vapor extract	tion well VE6	was installed in	boring B11)						
B11	5	11/20/2006	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	0.032	ND<0.025
	10	11/20/2006	ND<0.50	ND<0.0050	0.021	ND<0.0050	0.023	0.054	ND<0.025
	15	11/20/2006	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.025
	20	11/20/2006	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.025
	25	11/20/2006	ND<0.50	ND<0.0050	0.0052	ND<0.0050	ND<0.0050	0.083	ND<0.025
	30	11/20/2006	1.6	ND<0.0050	0.052	0.0076	0.05	0.84	ND<0.025
	35	11/20/2006	4.0	0.070	0.15	0.029	0.58	1.2	ND<0.025
	40	11/20/2006	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	0.050	ND<0.025
	45	11/20/2006	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	0.087	ND<0.025
	50	11/20/2006	0.57	ND<0.0050	0.021	ND<0.0050	0.032	0.30	ND<0.025
	55	11/20/2006	11	0.84	1.2	0.12	0.68	2.6	ND<0.025
	60	11/20/2006	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	0.0063	0.013	ND<0.025
	65	11/20/2006	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	0.031	ND<0.025
	70	11/20/2006	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	0.027	ND<0.025
	75	11/20/2006	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	0.022	ND<0.025
	80	11/20/2006	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	0.035	ND<0.025
CB1	5	12/10/2015	ND<0.51	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.051
	10	12/10/2015	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050
	15	12/10/2015	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050
	20	12/10/2015	ND<0.48	ND<0.0048	ND<0.0048	ND<0.0048	ND<0.0048	ND<0.0048	ND<0.048
	25	12/10/2015	ND<0.49	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.049
	30	12/10/2015	ND<0.49	ND<0.0049	0.0051	ND<0.0049	0.0049	ND<0.0049	ND<0.049
	35	12/10/2015	3,200	ND<9.7	16	11	340	ND<9.7	ND<97
	40	12/10/2015	ND<0.49	ND<0.0049	ND<0.0049	ND<0.0049	0.0062	ND<0.0049	ND<0.049
	45	12/10/2015	3,800	ND<9.9	ND<9.9	ND<9.9	218	ND<9.9	ND<99
	50	12/10/2015	2,000	ND<4.8	58	19	228	ND<4.8	ND<48
	55	12/10/2015	2.2	0.018	0.062	0.0088	0.10	0.56	0.26
	60	12/10/2015	1.1	ND<0.0049	0.022	0.0079	0.115	0.0054	ND<0.049
	65	12/10/2015	ND<0.49	ND<0.0049	0.025	ND<0.0049	0.035	0.0096	ND<0.049
	70	12/10/2015	ND<0.49	0.0093	0.031	ND<0.0049	0.0274	0.010	ND<0.049
	75	12/10/2015	1.4	0.0063	0.055	0.011	0.121	0.018	ND<0.049
	80	12/10/2015	0.62	ND<0.0049	0.029	0.0061	0.066	ND<0.0049	ND<0.049
	85	12/10/2015	ND<0.49	ND<0.0049	ND<0.0049	ND<0.0049	0.0144	ND<0.0049	ND<0.049
	90	12/10/2015	ND<0.49	ND<0.0049	ND<0.0049	ND<0.0049	0.0131	ND<0.0049	ND<0.049
	95	12/10/2015	ND<0.48	ND<0.0048	ND<0.0048	ND<0.0048	0.0165	ND<0.0048	ND<0.048
	100	12/10/2015	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050

CAMPLE	DEDTH	DATE				PTIN	TOTAL		
SAMPLE	DEPTH	DATE				EIHYL	IOTAL		
NUMBER	(feet-bgs)	SAMPLED	TPHG [1]	BENZENE [2]	TOLUENE [2]	BENZENE [2]	XYLENES [2]	MTBE [2,3]	TBA [3]
CB2	5	12/10/2015	2.5	ND<0.0048	ND<0.0048	ND<0.0048	0.025	ND<0.0048	ND<0.048
	10	12/10/2015	ND<50	ND<0.0051	ND<0.0051	0.073	ND<0.50	ND<0.0051	ND<0.051
	15	12/10/2015	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050
	20	12/10/2015	ND<0.49	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.049
	25	12/10/2015	3.9	ND<0.0049	0.046	0.014	0.217	0.016	0.070
	30	12/10/2015	ND<48	ND<0.48	ND<0.48	ND<0.48	ND<0.48	2.5	ND<4.8
	35	12/10/2015	6,200	ND<10	100	40	860	ND<10	ND<100
	40	12/10/2015	12,000	ND<24	200	70	1,680	ND<24	ND<240
	45	12/10/2015	ND<0.48	ND<0.0048	ND<0.0048	ND<0.0048	ND<0.0048	ND<0.0048	ND<0.048
	50	12/10/2015	8,300	25	430	150	1,020	ND<20	ND<200
	55	12/10/2015	36,000	290	3,100	590	3,900	67	ND<510
	60	12/10/2015	1.3	0.015	0.078	0.017	0.151	0.076	ND<0.050
	65	12/10/2015	ND<0.49	ND<0.0049	ND<0.0049	ND<0.0049	0.0084	ND<0.0049	ND<0.049
	70	12/10/2015	ND<0.51	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.051
	75	12/10/2015	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050
	80	12/10/2015	ND<0.50	ND<0.0050	0.0060	ND<0.0050	0.0077	ND<0.0050	ND<0.050
	85	12/11/2015	ND<0.50	ND<0.0050	0.0052	ND<0.0050	0.033	ND<0.0050	ND<0.050
	90	12/11/2015	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050
	95	12/11/2015	ND<0.51	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.051
	100	12/11/2015	ND<0.51	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.051
	100	12/11/2010	112 0101	112 010001	112 010001	112 010001	112 010001	112 010001	112 01001
CB3	5	12/14/2015	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050
020	10	12/14/2015	ND<0.51	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.051
	15	12/14/2015	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050
	20	12/14/2015	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050
	25	12/14/2015	11	ND<0.0048	0.0075	ND<0.0048	0.049	ND<0.0048	ND<0.048
	30	12/14/2015	2 500	ND<4 9	11	19	194	ND<4 9	ND<49
	35	12/14/2015	1,200	5.8	56	18	125	63	ND<25
	40	12/14/2015	ND<0.50	ND<0.50	0.0064	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050
	45	12/14/2015	12 000	ND<19	540	240	1 560	ND<19	ND<190
	50	12/14/2015	ND<50	0.062	1 2	0.043	0.50	17	0.76
	55	12/14/2015	0.93	0.002	0.0082	ND<0.045	0.50 ND<0.0050	0.73	0.064
	60	12/14/2015	ND<0.55	ND<0.047	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.051
	65	12/14/2015	ND<0.51	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.051
	70	12/14/2015	ND<0.51	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.051
	75	12/14/2015	ND<0.51	ND<0.0051	ND<0.0051	ND<0.0050	ND<0.0051	ND<0.0051	ND<0.051
	7 <i>5</i> 80	12/14/2013	MD < 0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND < 0.0050	ND<0.050
	8U 85	12/14/2015	ND<0.30	ND<0.0030	ND<0.0030	ND<0.0030	ND<0.0030	ND<0.0030	ND<0.030
	85	12/14/2015	ND<0.49	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.049
	90	12/14/2015	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050
	93 100	12/14/2015	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050
	100	12/14/2015	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050

(Laboratory results in mg/kg- soil)

SAMPLE	DEPTH	DATE				ETHYL	TOTAL		
NUMBER	(feet-bgs)	SAMPLED	TPHG [1]	BENZENE [2]	TOLUENE [2]	BENZENE [2]	XYLENES [2]	MTBE [2,3]	TBA [3]
CB4	5	12/11/2015	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050
	10	12/11/2015	ND<0.49	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.049
	15	12/11/2015	ND<0.48	ND<0.0048	ND<0.0048	ND<0.0048	ND<0.0048	ND<0.0048	ND<0.048
	20	12/11/2015	ND<0.48	ND<0.0048	ND<0.0048	ND<0.0048	ND<0.0048	ND<0.0048	ND<0.048
	25	12/11/2015	ND<0.49	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.049
	30	12/11/2015	ND<50	ND<0.0048	ND<0.0048	ND<0.0048	0.144	0.16	ND<5.0
	35	12/11/2015	3.1	ND<0.0048	ND<0.0048	ND<0.0048	ND<0.0048	0.72	ND<5.0
	40	12/11/2015	ND<0.51	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.051
	45	12/11/2015	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050
	50	12/11/2015	ND<50	0.022	0.098	0.025	0.30	ND<0.50	0.46
	55	12/11/2015	ND<48	2.1	1.8	ND<0.48	1.2	9.9	ND<4.8
	60	12/11/2015	ND<0.49	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.049
	65	12/11/2015	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050
	70	12/14/2015	ND<0.49	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.049
	75	12/14/2015	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050
	80	12/14/2015	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050
	85	12/14/2015	ND<0.49	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.049
	90	12/14/2015	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.50
	95	12/14/2015	ND<0.49	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.049
	100	12/14/2015	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.50
	100	12/1/2010	112 0100	112 010000	112 010000	112 010000	112 010000	112 010000	112 0100
CB5	5	12/11/2015	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050
020	10	12/11/2015	ND<0.52	ND<0.0052	ND<0.0052	ND<0.0052	ND<0.0052	ND<0.0052	ND<0.052
	15	12/11/2015	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050
	20	12/11/2015	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050
	25	12/11/2015	ND<0.52	ND<0.0052	ND<0.0052	ND<0.0052	ND<0.0052	ND<0.0052	ND<0.052
	30	12/11/2015	ND<0.49	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049	0.035	ND<0.049
	35	12/11/2015	3.000	ND<5.0	34	5.7	270	ND<5.0	ND<50
	40	12/11/2015	ND<0.50	ND<0.0050	0.0053	ND<0.0050	0.0059	ND<0.0050	ND<0.050
	45	12/11/2015	17.000	ND<25	620	320	2,340	ND<25	ND<250
	50	12/11/2015	8,800	44	550	140	1.110	ND<25	ND<250
	55	12/11/2015	ND<0.52	ND<0.0052	ND<0.0052	ND<0.0052	ND<0.0052	0.046	ND<0.052
	60	12/11/2015	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050
	65	12/11/2015	ND<48	ND<0.0049	ND<0.0049	0.0051	0.079	ND<0.0049	ND<0.049
	70	12/11/2015	ND<0.48	ND<0.0048	ND<0.0048	ND<0.0048	ND<0.0048	ND<0.0048	ND<0.048
	75	12/11/2015	ND<0.51	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.051
	80	12/11/2015	ND<0.50	ND<0.0050	0.0072	0.0051	0.0097	ND<0.0050	ND<0.050
	85	12/11/2015	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050
	90	12/11/2015	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050
	95	12/11/2015	ND<0.49	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.049
	100	12/11/2015	ND<0.51	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.051
	100								

SAMPLE	DEPTH	DATE				ETHYL	TOTAL		
NUMBER	(feet-bgs)	SAMPLED	TPHG [1]	BENZENE [2]	TOLUENE [2]	BENZENE [2]	XYLENES [2]	MTBE [2,3]	TBA [3]
VE10	5	08/05/2016	ND<0.51	ND<0.0052	ND<0.0052	ND<0.0052	ND<0.0052	ND<0.0052	ND<0.052
	10	08/05/2016	ND<0.51	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.049
	15	08/05/2016	ND<0.50	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.049
	20	08/05/2016	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050
	25	08/05/2016	ND<0.51	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050
	30	08/05/2016	ND<0.50	ND<0.0052	0.041	0.010	0.069	ND<0.0052	ND<0.052
	35	08/05/2016	2,700	ND<11	67	14	420	ND<11	ND<110
	40	08/05/2016	ND<0.51	ND<0.0050	ND<0.0050	ND<0.0050	0.0063	ND<0.0050	ND<0.050
	45	08/05/2016	3,400	ND<9.7	45	17	510	ND<9.7	ND<97
	50	08/05/2016	1,300	ND<4.9	72	26	255	5.9	ND<49
	55	08/05/2016	0.60	0.035	0.029	ND<0.0050	0.063	0.870	0.150
	60	08/05/2016	ND<0.50	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050

(Laboratory results in mg/kg- soil)

NOTES:

Soil sampled by Ocean Blue Engineers, Inc. analyzed for Total Petroleum Hydrocarbons as Gasoline (TPHg) by EPA Method No. 8015M.

and BTEX and MTBE by EPA Method No. 8020.

[1] TPHg analyzed by EPA Method No. 8015M.

[2] BTEX and MTBE analyzed by EPA Method No. 8021B before 11/20/06, thereafter by EPA Method No. 8260B.

[3] Bold numbers before 11/20/06 indicate fuel oxygenates analyzed by EPA Method No. 8260B.

feet-bgs = Feet below the ground surface

ND<0.50 = Not detected at or above the given laboratory detection limits.

NM = Not measured

-- = Not analyzed

TABLE 2 ADDITIONAL DETECTED VOC'S FORMER ANAHEIM CAR WASH 900 W. LINCOLN AVENUE ANAHEIM, CALIFORNIA

(Laboratory results in mg/kg- soil)

SAMPLE	DEPTH	DATE	n-butyl	sec-butyl	isopropyl	p-isopropyl	Naphthalene	n-propyl	1,2,4-trimethyl	1,3,5-trimethyl
NUMBER	(feet-bgs)	SAMPLED	benzene [1]	benzene [1]	benzene [1]	toluene [1]	.[1]	benzene [1]	benzene [1]	benzene [1]
CB1	5	12/10/2015	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.051	ND<0.0051	ND<0.0051	ND<0.0051
-	10	12/10/2015	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050	ND<0.0050	ND<0.0050	ND<0.0050
	15	12/10/2015	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050	ND<0.0050	ND<0.0050	ND<0.0050
	20	12/10/2015	ND<0.0048	ND<0.0048	ND<0.0048	ND<0.0048	ND<0.048	ND<0.0048	ND<0.0048	ND<0.0048
	25	12/10/2015	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.049	ND<0.0049	ND<0.0049	ND<0.0049
	30	12/10/2015	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.049	ND<0.0049	ND<0.0049	ND<0.0049
	35	12/10/2015	12	ND<9.7	ND<9.7	ND<9.7	ND<97	14	200	55
	40	12/10/2015	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.049	ND<0.0049	ND<0.0049	ND<0.0049
	45	12/10/2015	18	ND<9.9	ND<9.9	ND<9.9	ND<99	ND<9.9	260	76
	50	12/10/2015	7.6	ND<4.8	ND<4.8	ND<4.8	ND<48	11	120	29
	55	12/10/2015	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050	ND<0.0050	0.046	0.022
	60	12/10/2015	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.049	ND<0.0049	0.080	0.020
	65	12/10/2015	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.049	ND<0.0049	0.015	ND<0.0049
	70	12/10/2015	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.049	ND<0.0049	0.012	ND<0.0049
	75	12/10/2015	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.049	ND<0.0049	0.068	0.015
	80	12/10/2015	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.049	ND<0.0049	0.036	0.0085
	85	12/10/2015	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.049	ND<0.0049	0.0093	ND<0.0049
	90	12/10/2015	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.049	ND<0.0049	0.0055	ND<0.0049
	95	12/10/2015	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.049	ND<0.0049	0.0000	ND<0.0049
	100	12/10/2015	ND<0.0048	ND<0.0048	ND<0.0048	ND<0.0048	ND<0.048	ND<0.0048	0.012 ND<0.0050	ND<0.0048
	100	12/10/2013	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.030	ND<0.0050	ND<0.0050	ND<0.0050
CB2	5	12/10/2015	ND-0.0048	ND-0.0048	ND~0.0048	ND-0.0048	ND-0.048	ND-0.0048	0.018	0.010
CD2	10	12/10/2015	0.084	0.021	0.036	0.010	ND<0.051	0.14	ND<0.50	ND<0.50
	15	12/10/2015	ND<0.004	ND<0.021	ND<0.050	ND<0.010	ND<0.050	ND<0.050	ND<0.0050	ND<0.0050
	20	12/10/2015	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.049	ND<0.0049	ND<0.0049	ND<0.0049
	20	12/10/2015	0.012	ND<0.0049	ND<0.0049	ND<0.0049	0.13	0.0062	0.18	0.056
	20	12/10/2015	0.012 ND<0.48	ND<0.49	ND<0.0049	ND<0.0049	0.13 ND<4.8	ND <0.48	0.18 ND <0.48	0.030 ND<0.48
	30	12/10/2015	10	ND<0.40	ND<0.46	ND<0.40	ND<4.0	24	340	ND<0.40
	40	12/10/2015	25	ND<10	ND<10	ND<10	ND<100	24	540 620	80 160
	40	12/10/2015	55 ND <0.0048	ND<0.0048	ND<0.0048	ND<24	ND<240	41 ND<0.0048	ND <0.0048	ND <0.0048
	4J 50	12/10/2015	ND<0.0048	ND<0.0046	ND<0.0046	ND <20	ND<0.046	1000048	270	ND<0.0048
	55	12/10/2015	72	ND<20	ND<20	ND<20	ND<200	40	1 200	95 210
	55	12/10/2015	72 ND <0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050	0.0052	1,200	0.017
	65	12/10/2015	ND<0.0030	ND<0.0030	ND<0.0030	ND<0.0030	ND<0.030	0.0033	0.071 ND <0.0040	0.017 ND <0.0040
	03	12/10/2015	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.049	ND<0.0049	ND<0.0049	ND<0.0049
	70	12/10/2015	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.051	ND<0.0051	ND<0.0051	ND<0.0051
	13	12/10/2015	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050	ND<0.0050	ND<0.0050	ND<0.0050
	80	12/10/2015	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050	ND<0.0050	ND<0.0050	ND<0.0050
	85	12/11/2015	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050	ND<0.0050	U.U18	ND<0.0050
	90	12/11/2015	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050	ND<0.0050	ND<0.0050	ND<0.0050
	95	12/11/2015	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.051	ND<0.0051	ND<0.0051	ND<0.0051
	100	12/11/2015	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.051	ND<0.0051	ND<0.0051	ND<0.0051

TABLE 2 ADDITIONAL DETECTED VOC'S FORMER ANAHEIM CAR WASH 900 W. LINCOLN AVENUE ANAHEIM, CALIFORNIA

(Laboratory results in mg/kg- soil)

SAMPLE	DEPTH	DATE	n-butyl	sec-butyl	isopropyl	p-isopropyl	Naphthalene	n-propyl	1,2,4-trimethyl	1,3,5-trimethyl
NUMBER	(feet-bgs)	SAMPLED	benzene [1]	benzene [1]	benzene [1]	toluene [1]	. [1]	benzene [1]	benzene [1]	benzene [1]
	(2)									
CB3	5	12/14/2015	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050	ND<0.0050	ND<0.0050	ND<0.0050
020	10	12/14/2015	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.051	ND<0.0051	ND<0.0051	ND<0.0051
	15	12/14/2015	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050	ND<0.0050	ND<0.0050	ND<0.0050
	20	12/14/2015	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050	ND<0.0050	ND<0.0050	ND<0.0050
	25	12/14/2015	0.0083	ND<0.0048	ND<0.0048	ND<0.0048	ND<0.048	ND<0.0048	0.068	0.022
	30	12/14/2015	13	ND<4.9	ND<4.9	ND<4.9	ND<49	17	170	43
	35	12/14/2015	35	ND<2.5	ND<2.5	ND<2.5	ND<25	7.5	63	16
	40	12/14/2015	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050	ND<0.050	ND<0.0050	ND<0.0050
	40	12/14/2015	30	ND<10	26	ND<19	ND<190	03	580	170
	40 50	12/14/2015	0.010	ND<0.0051	20 ND <0.0051	ND<0.0051	0.12	0.016	0.60	0.083
	55	12/14/2015	0.019 ND <0.0050	ND<0.0051	ND<0.0051	ND<0.0051	0.12 ND <0.050	0.010 ND <0.0050	0.09 ND <0.0050	0.085 ND <0.0050
	55	12/14/2015	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0051	ND<0.050	ND<0.0051	ND<0.0051	ND<0.0050
	60	12/14/2015	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.051	ND<0.0051	ND<0.0051	ND<0.0051
	65	12/14/2015	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.051	ND<0.0051	ND<0.0051	ND<0.0051
	70	12/14/2015	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.051	ND<0.0051	ND<0.0051	ND<0.0051
	/5	12/14/2015	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050	ND<0.0050	ND<0.0050	ND<0.0050
	80	12/14/2015	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050	ND<0.0050	ND<0.0050	ND<0.0050
	85	12/14/2015	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.049	ND<0.0049	ND<0.0049	ND<0.0049
	90	12/14/2015	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050	ND<0.0050	ND<0.0050	ND<0.0050
	95	12/14/2015	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050	ND<0.0050	ND<0.0050	ND<0.0050
	100	12/14/2015	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050	ND<0.0050	ND<0.0050	ND<0.0050
	-	10/11/2017								
CB4	5	12/11/2015	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050	ND<0.0050	ND<0.0050	ND<0.0050
	10	12/11/2015	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.049	ND<0.0049	ND<0.0049	ND<0.0049
	15	12/11/2015	ND<0.0048	ND<0.0048	ND<0.0048	ND<0.0048	ND<0.048	ND<0.0048	ND<0.0048	ND<0.0048
	20	12/11/2015	ND<0.0048	ND<0.0048	ND<0.0048	ND<0.0048	ND<0.048	ND<0.0048	ND<0.0048	ND<0.0048
	25	12/11/2015	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.049	ND<0.0049	ND<0.0049	ND<0.0049
	30	12/11/2015	0.0064	ND<0.0048	ND<0.0048	ND<0.0048	ND<5.0	ND<0.0048	0.088	0.032
	35	12/11/2015	0.0080	ND<0.0048	ND<0.0048	ND<0.0048	ND<0.048	ND<0.0048	ND<0.0048	0.021
	40	12/11/2015	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.051	ND<0.0051	ND<0.0051	ND<0.0051
	45	12/11/2015	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050	ND<0.0050	ND<0.0050	ND<0.0050
	50	12/11/2015	0.015	ND<0.0049	ND<0.0049	ND<0.0049	0.12	0.010	ND<0.50	0.065
	55	12/11/2015	ND<0.480	ND<0.480	ND<0.480	ND>0.480	ND<4.8	ND<0.480	ND<0.480	ND<0.480
	60	12/11/2015	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.049	ND<0.0049	ND<0.0049	ND<0.0049
	65	12/11/2015	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050	ND<0.0050	ND<0.0050	ND<0.0050
	70	12/14/2015	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.049	ND<0.0049	ND<0.0049	ND<0.0049
	75	12/14/2015	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050	ND<0.0050	ND<0.0050	ND<0.0050
	80	12/14/2015	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050	ND<0.0050	ND<0.0050	ND<0.0050
	85	12/14/2015	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.049	ND<0.0049	ND<0.0049	ND<0.0049
	90	12/14/2015	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050	ND<0.0050	ND<0.0050	ND<0.0050
	95	12/14/2015	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.049	ND<0.0049	ND<0.0049	ND<0.0049
	100	12/14/2015	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050	ND<0.0050	ND<0.0050	ND<0.0050

TABLE 2 ADDITIONAL DETECTED VOC'S FORMER ANAHEIM CAR WASH 900 W. LINCOLN AVENUE ANAHEIM, CALIFORNIA

(Laboratory results in mg/kg- soil)

SAMPLE	DEPTH	DATE	n-butyl	sec-butyl	isopropyl	p-isopropyl	Naphthalene	n-propyl	1,2,4-trimethyl	1,3,5-trimethyl
NUMBER	(feet-bgs)	SAMPLED	benzene [1]	benzene [1]	benzene [1]	toluene [1]	[1]	benzene [1]	benzene [1]	benzene [1]
	<u> </u>		-	-	-	-		-	-	
CB5	5	12/11/2015	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050	ND<0.0050	ND<0.0050	ND<0.0050
	10	12/11/2015	ND<0.0052	ND<0.0052	ND<0.0052	ND<0.0052	ND<0.052	ND<0.0052	ND<0.0052	ND<0.0052
	15	12/11/2015	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050	ND<0.0050	ND<0.0050	ND<0.0050
	20	12/11/2015	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050	ND<0.0050	ND<0.0050	ND<0.0050
	25	12/11/2015	ND<0.0052	ND<0.0052	ND<0.0052	ND<0.0052	ND<0.052	ND<0.0052	ND<0.0052	ND<0.0052
	30	12/11/2015	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.049	ND<0.0049	ND<0.0049	ND<0.0049
	35	12/11/2015	12	ND<5.0	ND<5.0	ND<5.0	ND<50	ND<5.0	160	45
	40	12/11/2015	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050	ND<0.0050	ND<0.0050	ND<0.0050
	45	12/11/2015	63	ND<25	36	ND<25	ND<250	140	980	290
	50	12/11/2015	ND<25	ND<25	ND<25	ND<25	ND<250	41	380	93
	55	12/11/2015	ND<0.0052	ND<0.0052	ND<0.0052	ND<0.0052	ND<0.052	ND<0.0052	ND<0.0052	ND<0.0052
	60	12/11/2015	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050	ND<0.0050	ND<0.0050	ND<0.0050
	65	12/11/2015	0.017	ND<0.0049	ND<0.0049	ND<0.0049	0.077	0.015	ND<0.48	0.065
	70	12/11/2015	ND<0.0048	ND<0.0048	ND<0.048	ND<0.0048	ND<0.048	ND<0.0048	ND<0.0048	ND<0.0048
	75	12/11/2015	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.051	ND<0.0051	ND<0.0051	ND<0.0051
	80	12/11/2015	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050	ND<0.0050	ND<0.0050	ND<0.0050
	85	12/11/2015	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050	ND<0.0050	ND<0.0050	ND<0.0050
	90	12/11/2015	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050	ND<0.0050	ND<0.0050	ND<0.0050
	95	12/11/2015	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.049	ND<0.0049	ND<0.0049	ND<0.0049
	100	12/11/2015	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.051	ND<0.0051	ND<0.0051	ND<0.0051
	_									
VE10	5	08/05/2016	ND<0.0052	ND<0.0052	ND<0.0052	ND<0.0052	ND<0.052	ND<0.0052	ND<0.0052	ND<0.0052
	10	08/05/2016	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.049	ND<0.0049	ND<0.0049	ND<0.0049
	15	08/05/2016	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.049	ND<0.0049	ND<0.0049	ND<0.0049
	20	08/05/2016	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050	ND<0.0050	ND<0.0050	ND<0.0050
	25	08/05/2016	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050	ND<0.0050	ND<0.0050	ND<0.0050
	30	08/05/2016	ND<0.0052	ND<0.0052	ND<0.0052	ND<0.0052	ND<0.052	ND<0.0052	0.024	0.0063
	35	08/05/2016	16	ND<11	ND<11	ND<11	ND<110	ND<11	260	79
	40	08/05/2016	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050	ND<0.0050	0.0076	0.0063
	45	08/05/2016	22	ND<9.7	ND<9.7	ND<9.7	ND<97	15	310	96
	50	08/05/2016	8.2	ND<4.9	ND<4.9	ND<4.9	ND<49	14	120	33
	55	08/05/2016	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050	ND<0.0050	0.043	0.037
	60	08/05/2016	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050	ND<0.0050	ND<0.0050	ND<0.0050

NOTES:

[1] VOCs analyzed by EPA Method No. 8260B.

feet-bgs = Feet below the ground surface

ND < 0.50 = Not detected at or above the given laboratory detection limits.

NM = Not measured

-- = Not analyzed

Table 3 Summary of Vapor Extraction Data 900 West Lincoln Avenue Anaheim, California

		Ex	traction V	Vell Inform		Obse	ervation We	ell Information	and Measurements			
Extraction Well	Test No., Step No.	Seet No., Step No.WellScreenedMax. AppliedMaximumUVODateDiameter (inches)Interval (feet)VacuumFlow (scfm)Start(ppm)		OCs End mv)	Well Name	Screened Interval (feet)	Distance from Extraction Well (feet)	Max. Observed Vacuum Response (in. H2O)				
VE10	Test 1, Step 1	08/23/2016	2	30-60	50	144	244	341	VE8 MW2 VE7 VE9 MW3 VE1s VE1d VE6s VE6d VE2s VE2d MW1	$\begin{array}{c} 10\text{-}20\\ 79.5\text{-}109.5\\ 30\text{-}60\\ 10\text{-}20\\ 80.5\text{-}110.5\\ 20\text{-}50\\ 60\text{-}90\\ 38\text{-}58\\ 65\text{-}75\\ 20\text{-}50\\ 65\text{-}95\\ 80\text{-}110\\ \end{array}$	$\begin{array}{c} 4.9\\ 5.0\\ 18.8\\ 22.3\\ 22.6\\ 24.2\\ 24.2\\ 29.1\\ 29.1\\ 31.2\\ 31.2\\ 45.2\end{array}$	$\begin{array}{c} 0.52 \\ 1.00 \\ 3.40 \\ 0.50 \\ 0.96 \\ 2.20 \\ 2.00 \\ 3.70 \\ 0.70 \\ 2.70 \\ 1.70 \\ 1.00 \end{array}$
	Test 1, Step 2	08/24/2016	2	30-60	80	188	272	249	VE8 MW2 VE7 VE9 MW3 VE1s VE1d VE6s VE6d VE2s VE2d MW1	$\begin{array}{c} 10\text{-}20\\ 79.5\text{-}109.5\\ 30\text{-}60\\ 10\text{-}20\\ 80.5\text{-}110.5\\ 20\text{-}50\\ 60\text{-}90\\ 38\text{-}58\\ 65\text{-}75\\ 20\text{-}50\\ 65\text{-}95\\ 80\text{-}110\\ \end{array}$	4.9 5.0 18.8 22.3 22.6 24.2 24.2 29.1 29.1 31.2 31.2 45.2	$\begin{array}{c} 0.32\\ 0.62\\ 3.80\\ 0.40\\ 0.60\\ 2.50\\ 1.40\\ 4.40\\ 0.41\\ 2.60\\ 1.20\\ 0.62\end{array}$

scfm ppmv inches H2O -- standard cubic feet per minute parts per million (volume) inches of water information not available

TABLE 4 ESTIMATE OF HYDROCARBON MASS REMOVAL RATES 900 WEST LINCOLN AVENUE ANAHEIM, CALIFORNIA

		T , 0,	Difference	та		X7 [2]	0	T C A	Removal	Cumu	lative
	Clock	Time Since	From Previous	Concor	ient tration	vacuum [3]	Oxygen	Influent	Kate	Hydroc	arbons
Data	Time	Start (Minutes)	(Minutes)	(nnmy)[1]	$(m\sigma/I)[1]$	(11. 1120)	(70)	riow Kate [5]	Average [2]	(Pounds)	(gallons)
Date	Time	(windles)	(windles)	(ppmv)[1]	(mg/L)[1]			(setili)	(IDS/IIOUI)	(I builds)	(ganons)
					STEP 1 -	VE10					
08/23/2016	06:55	0	0								
"	07:00	5	5	170	0.59	50	14.32	144	0.3	0.03	0.00
"	07:05	10	5	260	1.06	50	12.20	143	0.6	0.07	0.01
"	07:10	15	5	288	1.18	50	11.04	142	0.6	0.13	0.02
"	07:15	20	5	331	1.35	50	9.86	141	0.7	0.19	0.03
"	07:20	25	5	335	1.37	50	9.66	140	0.7	0.25	0.04
"	07:25	30	5	346	1.41	50	9.28	138	0.7	0.31	0.05
"	07:40	45	15	348	1.42	50	10.58	139	0.7	0.49	0.08
"	07:55	60	15	351	1.43	50	11.10	139	0.7	0.68	0.11
"	08:10	75	15	318	1.30	50	9.80	138	0.7	0.84	0.14
"	08:25	90	15	343	1.40	50	10.60	138	0.7	1.03	0.17
"	08:40	105	15	347	1.42	50	10.00	138	0.7	1.21	0.20
"	08:55	120	15	356	1.46	50	9.64	138	0.8	1.40	0.23
"	09:25	150	30	368	1.50	50	9.26	135	0.8	1.78	0.29
"	09:55	180	30	364	1.49	50	9.00	136	0.8	2.15	0.36
"	10:25	210	30	368	1.50	50	7.94	136	0.8	2.54	0.42
"	10:55	240	30	369	1.51	50	7.84	136	0.8	2.92	0.48
"	11:25	270	30	358	1.46	50	7.58	136	0.7	3.29	0.54
"	11:55	300	30	310	1.10	50	7.28	136	0.6	3.57	0.59
"	12:25	330	30	345	1.41	50	7.04	136	0.7	3.93	0.65
"	12:55	360	30	305	1.25	50	15.70	136	0.6	4.25	0.70
"	01:25	390	30	312	1.28	50	15.41	136	0.6	4.57	0.76
"	01:55	420	30	310	1.27	50	15.08	136	0.6	4.89	0.81
"	02:25	450	30	306	1.25	50	14.66	136	0.6	5.21	0.86
"	02:55	480	30	311	1.27	50	14.92	135	0.6	5.53	0.91
"	03:25	510	30	322	1.32	50	14.74	136	0.7	5.87	0.97
"	03:55	540	30	317	1.30	50	14.84	135	0.7	6.19	1.02
"	04:25	570	30	358	1.46	50	15.00	136	0.7	6.57	1.09
"	04:55	600	30	370	1.30	50	15.06	136	0.7	6.90	1.14

TABLE 4 ESTIMATE OF HYDROCARBON MASS REMOVAL RATES 900 WEST LINCOLN AVENUE ANAHEIM, CALIFORNIA

		Time Since	Difference From Previous	is Influent Vacuum [3]		Oxygen	Influent	Removal Rate	Cumu	lative	
	Clock	Start	Reading	Concen	tration	(in H2O)	(%)	Flow Rate [3]	Average [2]	Remov	ar 50115 zed [2]
Date	Time	(Minutes)	(Minutes)	(nnmy)[1]	(mg/L)[1]	(111.1120)	(70)	(scfm)	(lbs/hour)	(Pounds)	(gallons)
2400		(112111111111)	(1111111111)	(PP)[-]	((50111)	(100/11041)	(1 0 0 0 0 0)	(guiloiis)
					STEP 2 -	VE10					
08/24/2016	06:00	0	0								
"	06:05	5	5	250	0.87	80	16.16	182	0.6	0.05	0.01
"	06:10	10	5	316	1.29	80	15.20	183	0.9	0.12	0.02
"	06:15	15	5	309	1.26	80	15.40	184	0.9	0.20	0.03
"	06:30	30	15	326	1.33	80	15.56	187	0.9	0.43	0.07
"	06:45	45	15	324	1.32	80	15.60	187	0.9	0.66	0.11
"	07:00	60	15	320	1.31	80	15.66	187	0.9	0.89	0.15
"	07:15	75	15	316	1.29	80	15.38	187	0.9	1.11	0.18
"	07:30	90	15	311	1.27	80	16.14	187	0.9	1.34	0.22
"	07:45	105	15	308	1.26	80	16.16	187	0.9	1.56	0.26
"	08:00	120	15	301	1.23	80	16.20	187	0.9	1.77	0.29
"	08:30	150	30	284	1.16	80	16.48	187	0.8	2.18	0.36
"	09:00	180	30	288	1.18	80	16.66	187	0.8	2.59	0.43
"	09:30	210	30	282	1.15	80	16.72	186	0.8	2.99	0.49
"	10:00	240	30	260	1.06	80	17.38	185	0.7	3.36	0.55
"	10:30	270	30	258	1.05	80	17.06	185	0.7	3.72	0.62
"	11:00	300	30	430	1.50	80	17.30	184	1.0	4.24	0.70
"	11:30	330	30	261	1.07	80	17.26	189	0.8	4.62	0.76
"	12:00	360	30	254	1.04	80	17.34	187	0.7	4.98	0.82
"	12:30	390	30	255	1.04	80	17.68	187	0.7	5.34	0.88
"	01:00	420	30	234	0.96	80	17.80	188	0.7	5.68	0.94
"	01:30	450	30	215	0.88	80	18.26	187	0.6	5.99	0.99
"	02:00	480	30	224	0.92	80	18.54	184	0.6	6.30	1.04
"	02:30	510	30	272	1.11	80	17.60	186	0.8	6.69	1.11
"	03:00	540	30	227	0.93	80	18.38	186	0.6	7.01	1.16
"	03:30	570	30	248	1.01	80	18.16	186	0.7	7.36	1.22
"	04:00	600	30	570	2.00	80	18.04	186	1.4	8.06	1.33
	TOTAL HY	YDROCAR	BONS REMO	VED (STEP	S 1 & 2)	2.47	~~l				
			Steps 1 and 2:	14.96	IDS	2.47	gai				
	AVERAGI	E HYDROG	CARBON REM	IOVAL RA'	TES [4]						
			Step 1:	0.69	lbs/hr	0.11	gal/hr				
			Step 2.	0.81	lbs/br	0.13	gal/hr				
			5tep 2:	0.01	105/111	0.13	5 ^{ai/111}				

Notes:

1.) Horiba field readings and laboratory results (shown in boldface type) are used for calculation of hydrocarbon removal.

2.) Example calculation for removal rate average and hydrocarbon mass removal estimate is included in Appendix J.

3.) Total vacuum and flow were measured at wellhead for Tests 1 and 2.

4.) Average hydrocarbon removal rate for each test calculated by dividing total pounds of hydrocarbons removed during test by total time of test in hours.

					TEST 1	ſ				
SAMPLE	TEST No.	DATE SAMPLED	TIME SAMPLED	TPHg [1]	BENZENE [2]	TOLUENE [2]	ETHYL BENZENE [2]	TOTAL XYLENES [2]	MTBE [2]	TBA [2]
VE10-Start	1	8/23/2016	6:56 AM	170	3.4	6.6	0.20	1.2	3.9	ND<0.50
VE10-Middle	1	8/23/2016	11:56 AM	310	5.3	11	0.83	10	8.8	ND<0.50
VE10-End	1	8/23/2016	4:55 PM	370	7.2	16	1.1	15	10	ND<0.50
					TEST 2	2				
SAMPLE	TEST No.	DATE SAMPLED	TIME SAMPLED	TPHg [1]	BENZENE [2]	TOLUENE [2]	ETHYL BENZENE [2]	TOTAL XYLENES [2]	MTBE [2]	TBA [2]
VE10-Start	2	8/24/2016	6:01 AM	250	5.3	8.2	0.22	1.5	11	ND<0.50
VE10-Middle	2	8/24/2016	11:00 AM	430	3.4	5.3	0.25	3.2	7.4	ND<0.50
VE10-End	2	8/24/2016	4:00 AM	570	4.1	5.6	0.94	2.1	7.2	ND<0.50

(measurements in parts per million per volume)

NOTES:

Total Petroleum Hydrocarbons as gasoline (TPHg) analyzed in accordance with EPA Method No.

8015M.

[1]

[2] Benzene, Toluene, Ethylbenzene, Xylenes (BTEX) and fuel oxygenates analyzed in accordance with EPA Method No. 8260B.

Table 6Well Construction SummaryFormer Anaheim Car Wash900 West Lincoln AvenueAnaheim, California

Well	Installation	Well	Bottom of	Top of	Screen
No.	Date	Diameter	Boring	Sand Pack	Interval
		(inches)	(feet)	(feet)	(feet)
Existing Wells					
MW1	04/22/2003	4	110	77.5	80-110
MW2	04/23/2003	4	110	77	79.5-109.5
MW3	04/23/2003	4	110	78	80.5-110.5
VE1	04/21/2003	2	98	18 and 58	20-50, 60-90
VE2	04/22/2003	2	95	18 and 63	20-50, 65-95
VE3	04/24/2003	2	96.5	8 and 38	10-30, 40-70
VE4	04/24/2003	2	96.5	13 and 43	15-35, 45-75
VE5	11/22/2006	2	81.5	16 and 38	18-28, 40-60
VE6	11/20/2006	2	81.5	36 and 63	38-58, 65-75
VE7	01/04/2013	2	61.5	28	30-60
VE8	01/04/2013	2	21.5	8	10-20
VE9	01/04/2013	2	21.5	8	10-20
VE10	08/05/2016	2	60	28	30-60

FIGURES

+ A14 City of Anaheim Municipal Well

APPROXIMATE SCALE IN MILES

FORMER ANAHEIM CARWASH 900 WEST LINCOLN AVENUE ANAHEIM, CALIFORNIA

Client: AMIR LANKARANI

Project No. 469-01

FREY ENVIRONMENTAL, INC.

1) All locations and dimensions are approximate.

 Base map from USGS 7.5 minute Anaheim (dated 1965, photorevised 1981) California topographic quadrangle.

3) City of Anaheim well locations are approximate.

SITE LOCATION MAP

NOTES:

LINCOLN AVENUE

EXPLANATION

- + T1 FORMER SOIL SAMPLE LOCATION
- B9 SOIL BORING LOCATION
- VE1 VAPOR EXTRACTION WELL LOCATION
- 🕀 MW1 GROUNDWATER MONITORING WELL LOCATION
- CB1 CONFIRMATION SOIL BORING LOCATION

NOTES:

- All locations and dimensions are approximate.
 Base map from drawing by Ocean Blue Engineers, Inc. titled "Property Plot Plan", drawing no. 1, job no. 1272.2000.02-02, not dated.
- 3) Well locations were surveyed by RdM Surveying Inc. on 12/20/2006, job no. 2-66.

FORMER ANAHEIM CARWASH 900 WEST LINCOLN AVENUE ANAHEIM, CALIFORNIA

Client: AMIR LANKARANI

Project No.: 469-01

FREY ENVIRONMENTAL, INC.

SITE SKETCH SHOWING SOIL BORING, VAPOR EXTRACTION WELL, AND GROUNDWATER MONITORING WELL LOCATIONS

Date: SEPTEMBER 2016

LINCOLN AVENUE

EXPLANATION

- + T1 FORMER SOIL SAMPLE LOCATION
- B9 SOIL BORING LOCATION
- VE1 VAPOR EXTRACTION WELL LOCATION
- 🕀 MW1 GROUNDWATER MONITORING WELL LOCATION
- CB1 CONFIRMATION SOIL BORING LOCATION
- $A \land A$ Geologic cross section location

NOTES:

- All locations and dimensions are approximate.
 Base map from drawing by Ocean Blue Engineers, Inc. titled "Property Plot Plan", drawing no. 1, job no. 1272.2000.02-02, not dated.
- 3) Well locations were surveyed by RdM Surveying Inc. on 12/20/2006, job no. 2-66.

FORMER ANAHEIM CARWASH 900 WEST LINCOLN AVENUE ANAHEIM, CALIFORNIA

Client: AMIR LANKARANI

Project No.: 469-01

FREY ENVIRONMENTAL, INC.

SITE SKETCH SHOWING GEOLOGIC CROSS SECTION LOCATIONS A-A' AND B-B'

NOTES:

2) 3)

Project No.: 469-01

SUBSURFACE GEOLOGIC SECTION

NOTES:

2) 3)

Project No.: 469-01

SUBSURFACE GEOLOGIC SECTION

APPENDIX A

RWQCB APPROVAL LETTER

Edmund G. Brown Jr. governor

MATTHEW RODRIQUEZ SECRETARY FOR ENVIRONMENTAL PROTECTION

Santa Ana Regional Water Quality Control Board

June 20, 2016

Mr. Amir Lankarani Former Anaheim Car Wash 900 W. Lincoln Avenue Anaheim, CA 92806

SUBJECT: WORKPLAN FOR POST REMEDIATION SOIL VAPOR EXTRACTION TEST FORMER ANAHEIM CAR WASH 900 WEST LINCOLN AVENUE, ANAHEIM

Dear Mr. Lankarani,

The June 13, 2016 report titled *Workplan Post Remediation Soil Vapor Extraction Test* was submitted and reviewed for the subject Site. Your environmental consultant, Frey Environmental, Inc. (Frey), prepared the workplan in accordance to our June 8, 2016 meeting.

One (1) vapor extraction well (VE10) is proposed to evaluate post-remediation petroleum mass that remains in the fine-grained soil located at approximately 30 to 60 feet below the ground surface (bgs). Proposed boring/well VE10 will be constructed with 2-inch diameter 40 PVC casing and drilled to approximately 60 feet bgs. This boring will be advanced in proximity to existing shallow well VP8 and located approximately eight (8) feet to the southwest of boring CB2. Well VE10 will be screened from approximately 30 to 60 feet bgs.

Soil samples will be collected at five (5) foot intervals from 5 feet to the bottom of the boring. Soil samples will be analyzed by USEPA Methods 8015M and full-scan 8260B for total petroleum hydrocarbons-gasoline (TPH-g) and volatile organic compounds (VOCs), respectively.

Once installed, two (2) 10-hour soil vapor extraction tests (VET) will be conducted on well VE10 using a mobile SVE unit permitted under the South Coast Air Quality Management District's (SCAQMD) various locations general permit. Wells VE1-shallow, VE1-deep, VE2-shallow, VE2-deep, VE6-shallow, VE6-deep, VE7, VE8, VE9, MW1, MW2, and MW3 will be used as observation wells during the SVE events.

According to page 4 of the work plan, soil vapor samples will also be collected in tedlar bags at the beginning, middle, and end of each 10-hour VET event. Vapor samples will also be analyzed for purgeable petroleum hydrocarbons and VOCs by USEPA Method 8260B.

This letter constitutes Regional Board approval of the work plan. Please submit the well installation and SVE tests results report to this office by <u>September 12, 2016</u>.

WILLIAM RUH, CHAIR | KURT V. BERCHTOLD, EXECUTIVE OFFICER

If you should have any questions, please contact me at (951) 782-4497 or via email at Nancy.Olson-Martin@waterboards.ca.gov.

Sincerely,

Manux Olson-Martin

Nancy Olson-Martin Sanitary Engineering Associate Underground Storage Tanks Section

cc: Frey Environmental, Inc. – Joe Frey (joefrey@freyinc.com) Frey Environmental, Inc. – Kent Tucker (kenttucker@freyinc.com)

NOM/Anaheim Car Wash_900 West Lincoln_Anaheim_Letter.062016

APPENDIX B

WELL INSTALLATION PERMIT

ANAHEIM PUBLIC UTILITIES WELL/BORING PERMIT

THIS PERMIT IS NOT VALID FOR DRILLING IN CITY RIGHT-OF-WAY UNLESS ACCOMPANIED BY A RIGHT-OF-WAY CONSTRUCTION PERMIT

PERMIT TYPE: BORINGS WELL INSTALLATION	U WELL DESTRUCTION PERMIT NO: 1540
ADDRESS OR CROSS STREET OF WELL LOCATION: (ATTACH SITE PLAN) 900 W. Lincoln Avenue	Well Owner Name (INDIVIDUAL NAME) Amir Lankerani
SITE/PROJECT NAME:	COMPANY: (IF APPLICABLE)
Anaheim Car Wash	Anaheim Car Wash
APPLICANT NAME:	ADDRESS:
Mollie Banh	900 W. Lincoln Avenue
FREY Environmental, Inc.	Anaheim CA / 92805
Address: 2817A Lafayette Avenue	
CITY: STATE/ZIP Newport Beach CA / 92663	Рноме: EMAIL: (714) 533-2202 lilalank@yahoo.com
(949) 723-1645 EMAIL: molliebanh@freyinc.com	NOTIFY WATER INSPECTOR AT LEAST 48 HOURS PRIOR TO START AT (714) 765-4591
I HEREBY AGREE TO COMPLY WITH ALL ORDINANCES, RULES AND	ARDI ICANT MUST SUBMIT A CORV OF THE WELL COMPLETION REPORT TO
CALIFORNIA PERTAINING TO WELL CONSTRUCTION AND	THE ANAHEIM PUBLIC UTILITIES AT THE ADDRESS LISTED ABOVE WITHIN 60
DESTRUCTION. I ATTEST THAT I AM AUTHORIZED TO SIGN ON	DAYS OF COMPLETION OF WORK OR EMAIL TO MNEWLAND@ANAHEIM.NET
BEHALF OF THE PROPERTY OWNER AND/OR WELL OWNER.	INJECTION WELLS ARE REQUIRED TO BE REGISTERED WITH
	USEPAAT HTTP://www.epa.gov/region9/water/groundwater/injection-wells-
XICIA	FAX OR FMAIL & COPY OF COMPLETED REGISTRATION FORM TO ANAHEIM PUBLIC 11TH ITIES AT
SIGNATURE	(714) 765-4135 OR EMAIL TO MNEWLAND@ANAHEIM.NET
PLEASE DESCRIBE WELLS/BORINGS BELOW: (ATTACH ADDITIONAL SHE	ETS, IF NECESSARY) (USE THE FOLLOWING ACRONYM FOR WELL TYPE: B =
BORING; PW = PRODUCTION WELL; MW = MONITORING WELL; DW = DEWATER	ING WELL IJ = INJECTION WELL; VE = VAPOR EXTRACTION; VP = VAPOR PROBE)
WELL ID TYPE DIAM (IN.) DEF	TH (FT.) SCREEN INTERVALS EST. DATE OF DESTRUCTION
VE10 Vapor Extraction 2	61.5 30-60 ft. Unknown
ADMINISTRATIVE USE ONLY: WELL FEE = \$131 APPLICATION FEE + \$80 x / (NO. OF	ADMINISTRATIVE USE ONLY: WELL INSPECTED BY:
WELLS)	
	INSPECTOR NAME DATE
PAYMENT RECEIVED AND PERMIT AUTHORIZED BY:	WELL COMPLETION REPORT RECEIVED
Marin Juden Compagn	ESTIMATED START OF WORK
201 S. Anaheim Blvc	L, Suite 1101, Anaheim, CA

01 S. Anaheim Blvd., Suite 1101, Anaheim, 92805 714.765.4166, Fax: 714.765.4135

APPENDIX C

FIELD PROCEDURES

APPENDIX C FIELD PROCEDURES

C.1 DRILLING PROCEDURES

- 1. The soil boring was drilled with a truck-mounted drilling rig using nominal 8-inch outside diameter hollow stem augers.
- 2. The augers were steam-cleaned prior to use at the Site.
- 3. Soil descriptions, sample type and depth, and related drilling information were recorded on a boring log and reviewed by a State-Registered Engineering Geologist from FREY.
- 4. Soil samples were collected using a split-barrel modified California sampler.
- 5. The sampler was cleaned between sample intervals using a brush and tap water rinse, followed by a brush and TSP solution rinse, a tap water rinse, and a deionized water rinse. The sampler was dried by air or with a towel prior to sampling.
- 6. Soil samples were collected in 2-inch inside diameter and 6-inch long stainless steel or brass tubes. Three six inch tubes are generally enclosed in the sampler. Prior to initial use, the sample tubes were cleaned, rinsed, and dried using the procedures described above
- 7. The sampler was driven into the soil using a 140-pound hammer dropped approximately 30 inches. The number of blows (blow count) required to advance the sampler 18 inches was recorded on the boring log for each 6-inch increment.
- 8. Following retrieval of the sampler, one of the two lower 6-inch tubes within the sampler will be removed from the sampler, and given sample recovery, the ends covered with aluminum foil and capped with PVC end caps. Each sample will be labeled with the sample number, sample depth, date, and project number.
- 9. The soil in the remaining sample tubes were used to describe the soil and for field head space analysis.
- 10. The samples will be placed in bags, and chilled in an ice chest with ice.
- 11. The samples were delivered to the laboratory following collection. Sample handling, transport, and delivery to the laboratory were documented using Chain-of-Custody procedures, including the use of Chain-of-Custody forms.

C.2 HEAD SPACE ANALYSIS

- 1. Soils were extruded directly into a mason jar which was then immediately sealed.
- 2. The sample was allowed to equilibrate, then it was connected to a photo ionization detector/organic vapor analyzer (PID/OVA), and the concentration was read as parts per million by volume (ppmv).

C.3 VAPOR EXTRACTION WELL INSTALLATION PROCEDURES

- 1. The vapor extraction well was constructed of 2-inch diameter, threaded, flush-jointed, Schedule 40 PVC pipe. Slot openings are 0.02 inch in width.
- 2. The well screen extends from approximately 30 feet to 60 feet bgs. Blank casing was placed from the top of the screen to just below the ground surface.
- 3. The annulus around the screened interval of the wells was backfilled with a screenedwashed sand (6x16 mesh). Sand backfill material was placed to a depth of approximately 3 feet above the screened interval of the well.
- 4. A hydrated bentonite seal, approximately two-feet thick, was placed immediately above the sandpack. The annulus above the bentonite seal was backfilled with a bentonite grout.
- 5. A traffic-bearing well box was placed above the well casing and set in concrete. The well box is raised slightly above the ground surface to minimize surface water infiltration.

C.4 VAPOR EXTRACTION TEST FIELD PROCEDURES

- 1. During the VET, soil gas was extracted from the extraction well at a steady vacuum and flow. The extraction well was monitored for applied vacuum (with a Magnahelic pressure gage), and for flow rate (with a pitot tube and Magnahelic pressure gage). Various observation wells were monitored for any field observed vacuum response that occurred in these wells during the test with the use of Magnahelic pressure gages. The vacuum was increased during each step of the VET.
- 2. The test was conducted for approximately ten (10) hours. Vacuum measurements were recorded on surrounding vapor extraction and groundwater monitoring wells during the conduct of the VET.
- 3. Soil vapor samples were collected from the extraction well at the beginning, middle, and end of each Step of the VET. The soil vapor samples were collected from the influent vapor stream in Tedlar bags with the use of a sample pump and quarter-inch Teflon tubing. Samples will be screened in the field using a Horiba model MEXA-554JU infrared gas analyze

APPENDIX D

SOIL SAMPLING LABORATORY REPORT

WORK ORDER NUMBER: 16-08-0515

Calscience

The difference is service

🔅 eurofins

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For Client: Frey Environmental, Inc. Client Project Name: Anaheim Car Wash / 469-01 Attention: Kent Tucker 2817-A Lafayette Avenue Newport Beach, CA 92663-3715

Monde

Approved for release on 08/17/2016 by: Stephen Nowak Project Manager

ResultLink >

Email your PM >

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

7440 Lincoln Way, Garden Grove, CA 92841-1432 * TEL: (714) 895-5494 * FAX: (714) 894-7501 * www.calscience.com

CA ELAP ID: 2944 | ACLASS DoD-ELAP ID: ADE-1864 (ISO/IEC 17025:2005) | CSDLAC ID: 10109

🛟 eurofins

Client Project Name:

Calscience

Anaheim Car Wash / 469-01

Contents

Work Orde	er Number: 16-08-0515	
1	Work Order Narrative	3
2	Sample Summary	4
3	Detections Summary.	5
4	Client Sample Data	7 7 10
5	Quality Control Sample Data. 5.1 MS/MSD. 5.1 MS/MSD. 5.2 LCS/LCSD.	58 58 63
6	Sample Analysis Summary	70
7	Glossary of Terms and Qualifiers.	71
8	Chain-of-Custody/Sample Receipt Form	72

Work Order: 16-08-0515

Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 08/08/16. They were assigned to Work Order 16-08-0515.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

🛟 eurofins Calscience

Client:	Frey Environmental, Inc.	Work Order:	16-08-0515
	2817-A Lafayette Avenue	Project Name:	Anaheim Car Wash / 469-01
	Newport Beach, CA 92663-3715	PO Number:	
		Date/Time Received:	08/08/16 12:38
		Number of Containers:	12
Attn:	Kent Tucker		

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
VE10-5	16-08-0515-1	08/05/16 09:10	1	Solid
VE10-10	16-08-0515-2	08/05/16 09:16	1	Solid
VE10-15	16-08-0515-3	08/05/16 09:22	1	Solid
VE10-20	16-08-0515-4	08/05/16 09:26	1	Solid
VE10-25	16-08-0515-5	08/05/16 09:30	1	Solid
VE10-30	16-08-0515-6	08/05/16 09:35	1	Solid
VE10-35	16-08-0515-7	08/05/16 09:43	1	Solid
VE10-40	16-08-0515-8	08/05/16 09:50	1	Solid
VE10-45	16-08-0515-9	08/05/16 09:55	1	Solid
VE10-50	16-08-0515-10	08/05/16 10:10	1	Solid
VE10-55	16-08-0515-11	08/05/16 10:22	1	Solid
VE10-60	16-08-0515-12	08/05/16 10:25	1	Solid

Return to Contents

Client:	Frey Environmental, Inc.			Work Ord	ler:	16-08-0515	
	2817-A Lafayette Avenue			Project N	ame:	Anaheim Car Wash /	469-01
	Newport Beach, CA 92663	8-3715		Received	:	08/08/16	
Attn:	Kent Tucker						Page 1 of 2
Client Sa	ampleID						
Anal	<u>yte</u>	<u>Result</u>	Qualifiers	<u>RL</u>	<u>Units</u>	Method	Extraction
VE10-30	(16-08-0515-6)						
Ethyl	benzene	10		5.2	ug/kg	EPA 8260B	EPA 5030C
Tolue	ene	41		5.2	ug/kg	EPA 8260B	EPA 5030C
1,2,4	-Trimethylbenzene	24		5.2	ug/kg	EPA 8260B	EPA 5030C
1,3,5	-Trimethylbenzene	6.3		5.2	ug/kg	EPA 8260B	EPA 5030C
p/m->	Kylene	48		5.2	ug/kg	EPA 8260B	EPA 5030C
o-Xyl	ene	21		5.2	ug/kg	EPA 8260B	EPA 5030C
VE10-35	(16-08-0515-7)						
TPH	as Gasoline	2700	HD	53	mg/kg	EPA 8015B (M)	EPA 5030C
n-But	ylbenzene	16000		11000	ug/kg	EPA 8260B	EPA 5030C
Ethyl	benzene	14000		11000	ug/kg	EPA 8260B	EPA 5030C
Tolue	ene	67000		11000	ug/kg	EPA 8260B	EPA 5030C
1,2,4	-Trimethylbenzene	260000		11000	ug/kg	EPA 8260B	EPA 5030C
1,3,5	-Trimethylbenzene	79000		11000	ug/kg	EPA 8260B	EPA 5030C
p/m->	Kylene	290000		11000	ug/kg	EPA 8260B	EPA 5030C
o-Xyl	ene	130000		11000	ug/kg	EPA 8260B	EPA 5030C
VE10-40	(16-08-0515-8)						
1,2,4	-Trimethylbenzene	7.6		5.0	ug/kg	EPA 8260B	EPA 5030C
p/m->	Kylene	6.3		5.0	ug/kg	EPA 8260B	EPA 5030C
VE10-45	(16-08-0515-9)						
TPH	as Gasoline	3400	HD	49	mg/kg	EPA 8015B (M)	EPA 5030C
n-But	ylbenzene	22000		9700	ug/kg	EPA 8260B	EPA 5030C
Ethyl	benzene	17000		9700	ug/kg	EPA 8260B	EPA 5030C
n-Pro	pylbenzene	15000		9700	ug/kg	EPA 8260B	EPA 5030C
Tolue	ene	45000		9700	ug/kg	EPA 8260B	EPA 5030C
1,2,4	-Trimethylbenzene	310000		9700	ug/kg	EPA 8260B	EPA 5030C
1,3,5	-Trimethylbenzene	96000		9700	ug/kg	EPA 8260B	EPA 5030C
p/m->	Kylene	340000		9700	ug/kg	EPA 8260B	EPA 5030C
o-Xyl	ene	170000		9700	ug/kg	EPA 8260B	EPA 5030C

* MDL is shown

Client:	Frey Environmental, Inc.			Work Ore	der:	16-08-0515	
	2817-A Lafayette Avenue)		Project N	lame:	Anaheim Car Wash / 4	469-01
	Newport Beach, CA 9266	3-3715		Received	d:	08/08/16	
Attn:	Kent Tucker						Page 2 of 2
Client Sa	ampleID						
Anal	<u>yte</u>	<u>Result</u>	<u>Qualifiers</u>	<u>RL</u>	<u>Units</u>	Method	Extraction
VE10-50	(16-08-0515-10)						
TPH	as Gasoline	1300	HD	19	mg/kg	EPA 8015B (M)	EPA 5030C
n-But	ylbenzene	8200		4900	ug/kg	EPA 8260B	EPA 5030C
Ethyl	benzene	26000		4900	ug/kg	EPA 8260B	EPA 5030C
n-Pro	pylbenzene	14000		4900	ug/kg	EPA 8260B	EPA 5030C
Tolue	ene	72000		4900	ug/kg	EPA 8260B	EPA 5030C
1,2,4	-Trimethylbenzene	120000		4900	ug/kg	EPA 8260B	EPA 5030C
1,3,5	-Trimethylbenzene	33000		4900	ug/kg	EPA 8260B	EPA 5030C
p/m->	Kylene	180000		4900	ug/kg	EPA 8260B	EPA 5030C
o-Xyl	ene	75000		4900	ug/kg	EPA 8260B	EPA 5030C
Meth	yl-t-Butyl Ether (MTBE)	5900		4900	ug/kg	EPA 8260B	EPA 5030C
VE10-55	(16-08-0515-11)						
TPH	as Gasoline	0.60	HD	0.50	mg/kg	EPA 8015B (M)	EPA 5030C
Benz	ene	35		5.0	ug/kg	EPA 8260B	EPA 5030C
Tolue	ene	29		5.0	ug/kg	EPA 8260B	EPA 5030C
1,2,4	-Trimethylbenzene	43		5.0	ug/kg	EPA 8260B	EPA 5030C
1,3,5	-Trimethylbenzene	37		5.0	ug/kg	EPA 8260B	EPA 5030C
p/m->	Kylene	27		5.0	ug/kg	EPA 8260B	EPA 5030C
o-Xyl	ene	36		5.0	ug/kg	EPA 8260B	EPA 5030C
Meth	yl-t-Butyl Ether (MTBE)	870		520	ug/kg	EPA 8260B	EPA 5030C
Tert-l	Butyl Alcohol (TBA)	150		50	ug/kg	EPA 8260B	EPA 5030C

Subcontracted analyses, if any, are not included in this summary.

* MDL is shown

-			
1.2	CCI	on	00
U a	361	CII	LC

Frey Environmental, Inc.			Date Re	ceived:			08/08/16
2817-A Lafayette Avenue			Work O	rder:			16-08-0515
Newport Beach, CA 92663-3715			Prepara	tion:			EPA 5030C
			Method:			E	PA 8015B (M)
			Units:				mg/kg
Project: Anaheim Car Wash / 469-0	1					Pa	ige 1 of 3
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VE10-5	16-08-0515-1-A	08/05/16 09:10	Solid	GC 24	08/10/16	08/10/16 15:29	160810L014
Parameter		Result		RL	DF	Qua	alifiers
TPH as Gasoline		ND		0.51	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene - FID		74		42-126			
VE10-10	16-08-0515-2-A	08/05/16 09:16	Solid	GC 24	08/10/16	08/10/16 16:02	160810L014
Parameter		Result		RL	DF	Qua	alifiers
TPH as Gasoline		ND		0.51	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene - FID		73		42-126			
VE10-15	16-08-0515-3-A	08/05/16 09:22	Solid	GC 24	08/10/16	08/10/16 16:35	160810L014
VE10-15 Parameter	16-08-0515-3-A	08/05/16 09:22 <u>Result</u>	Solid	GC 24	08/10/16 DF	08/10/16 16:35 Qua	160810L014
VE10-15 Parameter TPH as Gasoline	16-08-0515-3-A	08/05/16 09:22 <u>Result</u> ND	Solid	GC 24 <u>RL</u> 0.50	08/10/16 DF 1.00	08/10/16 16:35 Qua	160810L014 alifiers
VE10-15 Parameter TPH as Gasoline Surrogate	16-08-0515-3-A	08/05/16 09:22 Result ND Rec. (%)	Solid	GC 24 RL 0.50 Control Limits	08/10/16 DE 1.00 Qualifiers	08/10/16 16:35 Qua	160810L014 alifiers
VE10-15 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID	16-08-0515-3-A	08/05/16 09:22 Result ND Rec. (%) 73	Solid	GC 24 RL 0.50 Control Limits 42-126	08/10/16 DF 1.00 Qualifiers	08/10/16 16:35 Qua	160810L014 alifiers
VE10-15 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID VE10-20	16-08-0515-3-A 16-08-0515-4-A	08/05/16 09:22 Result ND <u>Rec. (%)</u> 73 08/05/16 09:26	Solid	GC 24 RL 0.50 Control Limits 42-126 GC 24	08/10/16 DF 1.00 Qualifiers 08/10/16	08/10/16 16:35 Qua 08/10/16 17:08	160810L014 alifiers 160810L014
VE10-15 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID VE10-20 Parameter	16-08-0515-3-A 16-08-0515-4-A	08/05/16 09:22 Result ND <u>Rec. (%)</u> 73 08/05/16 09:26 <u>Result</u>	Solid	GC 24 RL 0.50 Control Limits 42-126 GC 24 RL	08/10/16 DF 1.00 Qualifiers 08/10/16 DF	08/10/16 16:35 Qua 08/10/16 17:08	160810L014 alifiers 160810L014 alifiers
VE10-15 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID VE10-20 Parameter TPH as Gasoline	16-08-0515-3-A 16-08-0515-4-A	08/05/16 09:22 Result ND <u>Rec. (%)</u> 73 08/05/16 09:26 <u>Result</u> ND	Solid	GC 24 RL 0.50 Control Limits 42-126 GC 24 RL 0.50	08/10/16 DF 1.00 Qualifiers 08/10/16 DF 1.00	08/10/16 16:35 Qua 08/10/16 17:08 Qua	160810L014 alifiers 160810L014 alifiers
VE10-15 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID VE10-20 Parameter TPH as Gasoline Surrogate	16-08-0515-3-A 16-08-0515-4-A	08/05/16 09:22 Result ND <u>Rec. (%)</u> 73 08/05/16 09:26 <u>Result</u> ND <u>Rec. (%)</u>	Solid	GC 24 RL 0.50 Control Limits 42-126 GC 24 RL 0.50 Control Limits	08/10/16 DF 1.00 Qualifiers 08/10/16 DF 1.00 Qualifiers	08/10/16 16:35 Qua 08/10/16 17:08 Qua	160810L014 Alifiers 160810L014 Alifiers
VE10-15 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID VE10-20 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID	16-08-0515-3-A	08/05/16 09:22 Result ND <u>Rec. (%)</u> 73 08/05/16 09:26 Result ND <u>Rec. (%)</u> 72	Solid	GC 24RL 0.50Control Limits 42-126GC 24RL 0.50Control Limits 42-126	08/10/16 DF 1.00 Qualifiers 08/10/16 DF 1.00 Qualifiers	08/10/16 16:35 Qua 08/10/16 17:08 Qua	160810L014 Alifiers 160810L014 Alifiers
VE10-15 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID VE10-20 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID VE10-25	16-08-0515-3-A 16-08-0515-4-A 16-08-0515-5-A	08/05/16 09:22 Result ND Rec. (%) 73 08/05/16 09:26 Result ND Rec. (%) 72 08/05/16 09:30	Solid	GC 24RL 0.50Control Limits 42-126GC 24RL 0.50Control Limits 42-126Control Limits 42-126	08/10/16 DF 1.00 Qualifiers 08/10/16 DE 1.00 Qualifiers 08/10/16	08/10/16 16:35 Qua 08/10/16 17:08 Qua 08/10/16 17:42	160810L014 alifiers 160810L014 alifiers 160810L014 160810L014
VE10-15 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID VE10-20 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID VE10-25 Parameter	16-08-0515-3-A	08/05/16 09:22 Result ND Rec. (%) 73 08/05/16 09:26 Result ND Rec. (%) 72 08/05/16 09:30 Result	Solid	GC 24 RL 0.50 Control Limits 42-126 GC 24 BL 0.50 Control Limits 42-126 GC 24 BL GC 24	08/10/16 DF 1.00 Qualifiers 08/10/16 DF 1.00 Qualifiers 08/10/16 DE	08/10/16 16:35 Qua 08/10/16 17:08 Qua 08/10/16 17:42	160810L014 alifiers 160810L014 alifiers 160810L014 alifiers 160810L014
VE10-15 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID VE10-20 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID VE10-20 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID VE10-25 Parameter TPH as Gasoline	16-08-0515-3-A	08/05/16 09:22 Result ND Rec. (%) 73 08/05/16 09:26 Result ND <u>Rec. (%)</u> 72 08/05/16 09:30 <u>Result</u> ND	Solid	GC 24RL 0.50Control Limits 42-126GC 24RL 0.50Control Limits 42-126GC 24GC 24RL 0.51	08/10/16 DF 1.00 Qualifiers 08/10/16 DF 1.00 Qualifiers 08/10/16	08/10/16 16:35 Qua 08/10/16 17:08 Qua 08/10/16 17:42	160810L014 alifiers 160810L014 alifiers 160810L014 alifiers
VE10-15 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID VE10-20 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID VE10-25 Parameter TPH as Gasoline Surrogate Surrogate	16-08-0515-3-A 16-08-0515-4-A 16-08-0515-5-A	08/05/16 09:22 Result ND Rec. (%) 73 08/05/16 09:26 Result ND Rec. (%) 72 08/05/16 09:30 Result ND Result ND	Solid	GC 24RL 0.50Control Limits 42-126GC 24RL 0.50Control Limits 42-126GC 24RL 0.51Control Limits 0.51	08/10/16 DF 1.00 Qualifiers 08/10/16 DF 1.00 Qualifiers 08/10/16 DF 1.00	08/10/16 16:35 Qua 08/10/16 17:08 Qua 08/10/16 17:42	160810L014 alifiers 160810L014 alifiers 160810L014 alifiers 160810L014

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

(2)	COL	on	00
Cali	361	CII	LC

Frey Environmental, Inc.		ļ	Date Re	ceived:			08/08/16
2817-A Lafayette Avenue	te Avenue Work Order:						16-08-0515
Newport Beach, CA 92663-3715		ļ	Prepara	tion:			EPA 5030C
		l	Method:			EI	PA 8015B (M)
		I	Units:				mg/kg
Project: Anaheim Car Wash / 469-0	1					Pa	ge 2 of 3
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VE10-30	16-08-0515-6-A	08/05/16 09:35	Solid	GC 24	08/10/16	08/10/16 18:14	160810L014
Parameter		Result		RL	DF	Qua	lifiers
TPH as Gasoline		ND		0.50	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene - FID		73		42-126			
VE10-35	16-08-0515-7-A	08/05/16 09:43	Solid	GC 24	08/08/16	08/12/16 00:51	160812L012
Parameter		Result		RL	DF	Qua	lifiers
TPH as Gasoline		2700		53	105	HD	
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene - FID		122		42-126			
VE10-40	16-08-0515-8-A	08/05/16 09:50	Solid	GC 24	08/10/16	08/10/16 18:47	160810L014
Parameter		Result		RL	DF	Qua	lifiers
TPH as Gasoline		ND		0.51	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene - FID		73		42-126			
VE10-45	16-08-0515-9-A	08/05/16 09:55	Solid	GC 24	08/08/16	08/12/16 01:57	160812L012
VE10-45 Parameter	16-08-0515-9-A	08/05/16 09:55 <u>Result</u>	Solid	GC 24	08/08/16 DF	08/12/16 01:57 Qua	160812L012
VE10-45 Parameter TPH as Gasoline	16-08-0515-9-A	08/05/16 09:55 <u>Result</u> 3400	Solid	GC 24 <u>RL</u> 49	08/08/16 DE 97.3	08/12/16 01:57 Qua HD	160812L012
VE10-45 Parameter TPH as Gasoline Surrogate	16-08-0515-9-A	08/05/16 09:55 Result 3400 Rec. (%)	Solid	GC 24 RL 49 Control Limits	08/08/16 DF 97.3 Qualifiers	08/12/16 01:57 Qua HD	160812L012
VE10-45 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID	16-08-0515-9-A	08/05/16 09:55 Result 3400 Rec. (%) 145	Solid	GC 24 RL 49 Control Limits 42-126	08/08/16 <u>DF</u> 97.3 <u>Qualifiers</u> 2,7	08/12/16 01:57 Qua HD	160812L012
VE10-45 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID VE10-50	16-08-0515-9-A 16-08-0515-10-A	08/05/16 09:55 Result 3400 <u>Rec. (%)</u> 145 08/05/16 10:10	Solid	GC 24 RL 49 Control Limits 42-126 GC 24	08/08/16 <u>DF</u> 97.3 <u>Qualifiers</u> 2,7 08/08/16	08/12/16 01:57 HD 08/12/16 03:03	160812L012
VE10-45 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID VE10-50 Parameter	16-08-0515-9-A 16-08-0515-10-A	08/05/16 09:55 Result 3400 Rec. (%) 145 08/05/16 10:10 Result	Solid	GC 24 RL 49 Control Limits 42-126 GC 24 RL	08/08/16 DF 97.3 Qualifiers 2,7 08/08/16 DF	08/12/16 01:57 Qua HD 08/12/16 03:03 Qua	160812L012 lifiers 160812L012 lifiers
VE10-45 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID VE10-50 Parameter TPH as Gasoline	16-08-0515-9-A 16-08-0515-10-A	08/05/16 09:55 Result 3400 Rec. (%) 145 08/05/16 10:10 Result 1300	Solid	GC 24 RL 49 Control Limits 42-126 GC 24 RL 19	08/08/16 DF 97.3 Qualifiers 2,7 08/08/16 DF 39.0	08/12/16 01:57 Qua HD 08/12/16 03:03 Qua HD	160812L012 lifiers 160812L012 lifiers
VE10-45 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID VE10-50 Parameter TPH as Gasoline Surrogate	16-08-0515-9-A 16-08-0515-10-A	08/05/16 09:55 Result 3400 <u>Rec. (%)</u> 145 08/05/16 10:10 <u>Result</u> 1300 <u>Rec. (%)</u>	Solid	GC 24 RL 49 <u>Control Limits</u> 42-126 GC 24 RL 19 <u>Control Limits</u>	08/08/16 <u>DF</u> 97.3 <u>Qualifiers</u> 2,7 08/08/16 <u>DF</u> 39.0 <u>Qualifiers</u>	08/12/16 01:57 HD HD 08/12/16 03:03 Qua HD	160812L012 lifiers 160812L012 lifiers

0			
1.0	COL	on	00
Cal	SUL	CII	LE
Ca	301	CII	CC

Frey Environmental, Inc.			Date Re	ceived:			08/08/16
2817-A Lafayette Avenue			Work O	rder:			16-08-0515
Newport Beach, CA 92663-3715			Prepara	tion:			EPA 5030C
			Method:	:		E	PA 8015B (M)
			Units:				mg/kg
Project: Anaheim Car Wash / 469-0	1					Pa	ge 3 of 3
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VE10-55	16-08-0515-11-A	08/05/16 10:22	Solid	GC 24	08/10/16	08/12/16 00:18	160812L011
Parameter		Result		RL	DF	Qua	lifiers
TPH as Gasoline		0.60		0.50	1.00	HD	
<u>Surrogate</u> 1,4-Bromofluorobenzene - FID		<u>Rec. (%)</u> 73		<u>Control Limits</u> 42-126	<u>Qualifiers</u>		
VE10-60	16-08-0515-12-A	08/05/16 10:25	Solid	GC 24	08/10/16	08/11/16 23:45	160812L011
Parameter		Result		RL	DF	Qua	lifiers
TPH as Gasoline		ND		0.50	1.00		
Surrogate		Rec. (%)		Control Limits	Qualifiers		
1,4-Bromofluorobenzene - FID		73		42-126			
Mothed Plank	000 44 574 3484	NI/A	Calid	GC 24	08/10/16	08/10/16	160810L014
	099-14-571-5161	N/A	50110	0024	00/10/10	11:25	
Parameter	099-14-371-3181	Result	50110	RL	<u></u>	11:25	lifiers
Parameter TPH as Gasoline		Result ND	Solid	RL 0.50	<u>DF</u> 1.00	11:25	lifiers
Parameter TPH as Gasoline Surrogate	099-14-37 1-3 161	Result ND Rec. (%)		RL 0.50 Control Limits	DE 1.00 Qualifiers	<u>11:25</u> Qua	lifiers
Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID		<u>Result</u> ND <u>Rec. (%)</u> 72		RL 0.50 Control Limits 42-126	DF 1.00 Qualifiers	<u>11:25</u> Qua	lifiers
Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID Method Blank	099-14-571-3181	Result ND Rec. (%) 72	Solid	RL 0.50 Control Limits 42-126 GC 24 6	<u>DF</u> 1.00 <u>Qualifiers</u> 08/11/16	08/11/16	<u>lifiers</u> 1608121 011
Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID Method Blank	099-14-571-3181	Result ND <u>Rec. (%)</u> 72	Solid	RL 0.50 Control Limits 42-126 GC 24 GC 24	DF 1.00 Qualifiers 08/11/16	08/11/16 22:39	lifiers 160812L011
Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID Method Blank Parameter	099-14-571-3181	N/A Result ND Rec. (%) 72 N/A Result	Solid	RL 0.50 Control Limits 42-126 GC 24 RL RL 50	DF 1.00 Qualifiers 08/11/16 DE	08/11/16 22:39 Qua	lifiers 160812L011 lifiers
Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID Method Blank Parameter TPH as Gasoline	099-14-571-3181	N/A Result ND Rec. (%) 72 N/A Result ND	Solid	RL 0.50 Control Limits 42-126 GC 24 RL 0.50 50	DE 1.00 Qualifiers 08/11/16 DE 1.00	08/11/16 22:39 Qua	lifiers 160812L011 lifiers
Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID Method Blank Parameter TPH as Gasoline Surrogate Surrogate Surrogate	099-14-571-3181	Result ND Rec. (%) 72 N/A Result ND Result ND	Solid	RL 0.50 Control Limits 42-126 GC 24 RL 0.50 Control Limits	DE 1.00 Qualifiers 08/11/16 DE 1.00 Qualifiers	08/11/16 22:39 Qua	lifiers 160812L011 lifiers
Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID Method Blank Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID	099-14-571-3181	Result ND Rec. (%) 72 N/A Result ND Rec. (%) 73	Solid	RL 0.50 Control Limits 42-126 GC 24 RL 0.50 Control Limits 42-126	DE 1.00 Qualifiers 08/11/16 DE 1.00 Qualifiers	08/11/16 22:39 Qua	lifiers 160812L011 lifiers
Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID Method Blank Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID Method Blank Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID Method Blank	099-14-571-3184	N/A Result ND Rec. (%) 72 N/A Result ND Result ND Result ND Result ND Result ND Rec. (%) 73	Solid	RL 0.50 Control Limits 42-126 GC 24 RL 0.50 Control Limits 42-126	DE 1.00 Qualifiers 08/11/16 DE 1.00 Qualifiers 08/11/16	08/11/16 22:39 08/11/16 23:12	lifiers 160812L011 lifiers 160812L012
Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID Method Blank Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID Method Blank Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID Method Blank Parameter Parameter	099-14-571-3184	N/A Result ND Rec. (%) 72 N/A Result ND Rec. (%) 73 N/A Result N/A	Solid	RL 0.50 Control Limits 42-126 GC 24 RL 0.50 Control Limits 42-126 GC 24 RL	DE 1.00 Qualifiers 08/11/16 DE 1.00 Qualifiers 08/11/16 DE	11:25 Qua 08/11/16 22:39 Qua 08/11/16 23:12 Qua	lifiers 160812L011 lifiers 160812L012 lifiers
Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID Method Blank Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID Method Blank Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID Method Blank Parameter TPH as Gasoline	099-14-571-3181	N/A Result ND Rec. (%) 72 N/A Result ND Rec. (%) 73 N/A Result ND Result NJA	Solid	RL 0.50 Control Limits 42-126 GC 24 RL 0.50 Control Limits 42-126 GC 24 RL 0.50 Control Limits 42-126 GC 24 RL 0.50 Control Limits 42-126	DF 1.00 Qualifiers 08/11/16 DF 1.00 Qualifiers 08/11/16 DF 8.00	08/11/16 22:39 08/11/16 23:12 Qua	lifiers 160812L011 lifiers 160812L012 lifiers
Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID Method Blank Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID Method Blank Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID Method Blank Parameter TPH as Gasoline Surrogate Surrogate Surrogate	099-14-571-3184	N/A Result ND Rec. (%) 72 N/A Result ND Rec. (%) 73 N/A Result ND Result ND Result ND Result ND Result ND Result ND Result	Solid	RL 0.50 Control Limits 42-126 GC 24 RL 0.50 Control Limits 42-126 GC 24 RL 0.50 Control Limits 42-126 GC 24 RL 0.50 Control Limits 42.0 Control Limits	DE 1.00 Qualifiers 08/11/16 DE 1.00 Qualifiers 08/11/16 DE 8.00 Qualifiers	11:25 Qua 08/11/16 22:39 Qua 08/11/16 23:12 Qua	lifiers 160812L011 lifiers 160812L012 lifiers
Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID Method Blank Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID Method Blank Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID Method Blank Parameter TPH as Gasoline Surrogate TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID	099-14-571-3184	N/A Result ND Rec. (%) 72 N/A Result ND Rec. (%) 73 N/A Result ND Result ND Result 73 Rec. (%) 73	Solid	RL 0.50 Control Limits 42-126 GC 24 RL 0.50 Control Limits 42-126 GC 24 RL 0.50 Control Limits 42-126 GC 24 QC 24 GC 24 A2-126	DF 1.00 Qualifiers 08/11/16 DF 1.00 Qualifiers 08/11/16 DF 8.00 Qualifiers	11:25 Qua 08/11/16 22:39 Qua 08/11/16 23:12 Qua	lifiers 160812L011 lifiers 160812L012 lifiers

Frey Environmental, Inc.	Date Received:	08/08/16
2817-A Lafayette Avenue	Work Order:	16-08-0515
Newport Beach, CA 92663-3715	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/kg
Project: Anaheim Car Wash / 469-01		Page 1 of 48

Project: Ananeim Car Wash / 469-01

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VE10-5	16-08-0515-1-A	08/05/16 09:10	Solid	GC/MS OO	08/08/16	08/08/16 18:00	160808L017
Parameter		Result	RI		DF	Qua	lifiers
Acetone		ND	13	30	1.00		
Benzene		ND	5.	2	1.00		
Bromobenzene		ND	5.	2	1.00		
Bromochloromethane		ND	5.	2	1.00		
Bromodichloromethane		ND	5.	2	1.00		
Bromoform		ND	5.	2	1.00		
Bromomethane		ND	26	3	1.00		
2-Butanone		ND	52	2	1.00		
n-Butylbenzene		ND	5.	2	1.00		
sec-Butylbenzene		ND	5.	2	1.00		
tert-Butylbenzene		ND	5.	2	1.00		
Carbon Disulfide		ND	52	2	1.00		
Carbon Tetrachloride		ND	5.	2	1.00		
Chlorobenzene		ND	5.	2	1.00		
Chloroethane		ND	5.	2	1.00		
Chloroform		ND	5.	2	1.00		
Chloromethane		ND	26	3	1.00		
2-Chlorotoluene		ND	5.	2	1.00		
4-Chlorotoluene		ND	5.	2	1.00		
Dibromochloromethane		ND	5.	2	1.00		
1,2-Dibromo-3-Chloropropane		ND	10)	1.00		
1,2-Dibromoethane		ND	5.	2	1.00		
Dibromomethane		ND	5.	2	1.00		
1,2-Dichlorobenzene		ND	5.	2	1.00		
1,3-Dichlorobenzene		ND	5.	2	1.00		
1,4-Dichlorobenzene		ND	5.	2	1.00		
Dichlorodifluoromethane		ND	5.	2	1.00		
1,1-Dichloroethane		ND	5.	2	1.00		
1,2-Dichloroethane		ND	5.	2	1.00		
1,1-Dichloroethene		ND	5.	2	1.00		
c-1,2-Dichloroethene		ND	5.	2	1.00		
t-1,2-Dichloroethene		ND	5.	2	1.00		
1,2-Dichloropropane		ND	5.	2	1.00		
1,3-Dichloropropane		ND	5.	2	1.00		
2,2-Dichloropropane		ND	5.	2	1.00		

Frey Environmental, Inc.	Date Received:	08/08/16		
2817-A Lafayette Avenue		Work Order:		16-08-0515
Newport Beach, CA 92663-3715		Preparation:		EPA 5030C
• •		Method:		EPA 8260B
		Units [.]		ua/ka
Project: Anaheim Car Wash / 469-01				Page 2 of 48
Parameter_	<u>Result</u>	RL	DF	<u>Qualifiers</u>
1,1-Dichloropropene	ND	5.2	1.00	
c-1,3-Dichloropropene	ND	5.2	1.00	
t-1,3-Dichloropropene	ND	5.2	1.00	
Ethylbenzene	ND	5.2	1.00	
2-Hexanone	ND	52	1.00	
Isopropylbenzene	ND	5.2	1.00	
p-Isopropyltoluene	ND	5.2	1.00	
Methylene Chloride	ND	52	1.00	
4-Methyl-2-Pentanone	ND	52	1.00	
Naphthalene	ND	52	1.00	
n-Propylbenzene	ND	5.2	1.00	
Styrene	ND	5.2	1.00	
1,1,1,2-Tetrachloroethane	ND	5.2	1.00	
1,1,2,2-Tetrachloroethane	ND	5.2	1.00	
Tetrachloroethene	ND	5.2	1.00	
Toluene	ND	5.2	1.00	
1,2,3-Trichlorobenzene	ND	10	1.00	
1,2,4-Trichlorobenzene	ND	5.2	1.00	
1,1,1-Trichloroethane	ND	5.2	1.00	
1,1,2-Trichloroethane	ND	5.2	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	52	1.00	
Trichloroethene	ND	5.2	1.00	
1,2,3-Trichloropropane	ND	5.2	1.00	
1,2,4-Trimethylbenzene	ND	5.2	1.00	
Trichlorofluoromethane	ND	52	1.00	
1,3,5-Trimethylbenzene	ND	5.2	1.00	
Vinyl Acetate	ND	52	1.00	
Vinyl Chloride	ND	5.2	1.00	
p/m-Xylene	ND	5.2	1.00	
o-Xylene	ND	5.2	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	5.2	1.00	
Tert-Butyl Alcohol (TBA)	ND	52	1.00	
Diisopropyl Ether (DIPE)	ND	10	1.00	
Ethyl-t-Butyl Ether (ETBE)	ND	10	1.00	
Tert-Amyl-Methyl Ether (TAME)	ND	10	1.00	
Ethanol	ND	260	1.00	
Surrogate	<u>Rec. (%)</u>	Control Limits	Qualifiers	
1,4-Bromofluorobenzene	98	60-132		

Frey Environmental, Inc.		08/08/16				
2817-A Lafayette Avenue	Wo	Work Order:				
Newport Beach, CA 92663-3715	Pre	paration:		EPA 5030C		
	Me		EPA 8260B			
	Units:			ug/kç		
Project: Anaheim Car Wash / 469-01				Page 3 of 48		
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>			
Dibromofluoromethane	98	63-141				
1,2-Dichloroethane-d4	96	62-146				
Toluene-d8	100	80-120				

Frey Environmental, Inc.	Date Received:	08/08/16
2817-A Lafayette Avenue	Work Order:	16-08-0515
Newport Beach, CA 92663-3715	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/kg
Project: Anaheim Car Wash / 469-01		Page 4 of 48

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VE10-10	16-08-0515-2-A	08/05/16 09:16	Solid	GC/MS OO	08/08/16	08/09/16 00:03	160808L017
Parameter		Result	R	<u>:L</u>	DF	Qua	lifiers
Acetone		ND	1	20	1.00		
Benzene		ND	4	.9	1.00		
Bromobenzene		ND	4	.9	1.00		
Bromochloromethane		ND	4	.9	1.00		
Bromodichloromethane		ND	4	.9	1.00		
Bromoform		ND	4	.9	1.00		
Bromomethane		ND	2	4	1.00		
2-Butanone		ND	4	9	1.00		
n-Butylbenzene		ND	4	.9	1.00		
sec-Butylbenzene		ND	4	.9	1.00		
tert-Butylbenzene		ND	4	.9	1.00		
Carbon Disulfide		ND	4	9	1.00		
Carbon Tetrachloride		ND	4	.9	1.00		
Chlorobenzene		ND	4	.9	1.00		
Chloroethane		ND	4	.9	1.00		
Chloroform		ND	4	.9	1.00		
Chloromethane		ND	2	4	1.00		
2-Chlorotoluene		ND	4	.9	1.00		
4-Chlorotoluene		ND	4	.9	1.00		
Dibromochloromethane		ND	4	.9	1.00		
1,2-Dibromo-3-Chloropropane		ND	9	.8	1.00		
1,2-Dibromoethane		ND	4	.9	1.00		
Dibromomethane		ND	4	.9	1.00		
1,2-Dichlorobenzene		ND	4	.9	1.00		
1,3-Dichlorobenzene		ND	4	.9	1.00		
1,4-Dichlorobenzene		ND	4	.9	1.00		
Dichlorodifluoromethane		ND	4	.9	1.00		
1,1-Dichloroethane		ND	4	.9	1.00		
1,2-Dichloroethane		ND	4	.9	1.00		
1,1-Dichloroethene		ND	4	.9	1.00		
c-1,2-Dichloroethene		ND	4	.9	1.00		
t-1,2-Dichloroethene		ND	4	.9	1.00		
1,2-Dichloropropane		ND	4	.9	1.00		
1,3-Dichloropropane		ND	4	.9	1.00		
2,2-Dichloropropane		ND	4	.9	1.00		

Frey Environmental, Inc.	Date Received:	08/08/16		
2817-A Lafayette Avenue		Work Order:		16-08-0515
Newport Beach, CA 92663-3715		Preparation:		EPA 5030C
		Method:		EPA 8260B
	Units:			ua/ka
Project: Anaheim Car Wash / 469-01				Page 5 of 48
Parameter	Result	RL	DF	Qualifiers
1,1-Dichloropropene	ND	4.9	1.00	
c-1,3-Dichloropropene	ND	4.9	1.00	
t-1,3-Dichloropropene	ND	4.9	1.00	
Ethylbenzene	ND	4.9	1.00	
2-Hexanone	ND	49	1.00	
Isopropylbenzene	ND	4.9	1.00	
p-Isopropyltoluene	ND	4.9	1.00	
Methylene Chloride	ND	49	1.00	
4-Methyl-2-Pentanone	ND	49	1.00	
Naphthalene	ND	49	1.00	
n-Propylbenzene	ND	4.9	1.00	
Styrene	ND	4.9	1.00	
1,1,1,2-Tetrachloroethane	ND	4.9	1.00	
1,1,2,2-Tetrachloroethane	ND	4.9	1.00	
Tetrachloroethene	ND	4.9	1.00	
Toluene	ND	4.9	1.00	
1,2,3-Trichlorobenzene	ND	9.8	1.00	
1,2,4-Trichlorobenzene	ND	4.9	1.00	
1,1,1-Trichloroethane	ND	4.9	1.00	
1,1,2-Trichloroethane	ND	4.9	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	49	1.00	
Trichloroethene	ND	4.9	1.00	
1,2,3-Trichloropropane	ND	4.9	1.00	
1,2,4-Trimethylbenzene	ND	4.9	1.00	
Trichlorofluoromethane	ND	49	1.00	
1,3,5-Trimethylbenzene	ND	4.9	1.00	
Vinyl Acetate	ND	49	1.00	
Vinyl Chloride	ND	4.9	1.00	
p/m-Xylene	ND	4.9	1.00	
o-Xylene	ND	4.9	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	4.9	1.00	
Tert-Butyl Alcohol (TBA)	ND	49	1.00	
Diisopropyl Ether (DIPE)	ND	9.8	1.00	
Ethyl-t-Butyl Ether (ETBE)	ND	9.8	1.00	
Tert-Amyl-Methyl Ether (TAME)	ND	9.8	1.00	
Ethanol	ND	240	1.00	
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene	97	60-132		

Frey Environmental, Inc.	Dat	Date Received: Work Order:			
2817-A Lafayette Avenue	Wo				
Newport Beach, CA 92663-3715	Pre	paration:		EPA 5030C	
	Me		EPA 8260B		
	Units:			ug/kç	
Project: Anaheim Car Wash / 469-01				Page 6 of 48	
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>		
Dibromofluoromethane	96	63-141			
1,2-Dichloroethane-d4	90	62-146			
Toluene-d8	100	80-120			

	00	100	00
-			

Frey Environmental, Inc.	Date Received:	08/08/16
2817-A Lafayette Avenue	Work Order:	16-08-0515
Newport Beach, CA 92663-3715	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/kg
Project: Anaheim Car Wash / 469-01		Page 7 of 48

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VE10-15	16-08-0515-3-A	08/05/16 09:22	Solid	GC/MS OO	08/08/16	08/09/16 00:31	160808L017
Parameter		Result	R	<u>{L</u>	DF	Qua	lifiers
Acetone		ND	1	20	1.00		
Benzene		ND	4	.9	1.00		
Bromobenzene		ND	4	.9	1.00		
Bromochloromethane		ND	4	.9	1.00		
Bromodichloromethane		ND	4	.9	1.00		
Bromoform		ND	4	.9	1.00		
Bromomethane		ND	2	5	1.00		
2-Butanone		ND	4	9	1.00		
n-Butylbenzene		ND	4	.9	1.00		
sec-Butylbenzene		ND	4	.9	1.00		
tert-Butylbenzene		ND	4	.9	1.00		
Carbon Disulfide		ND	4	9	1.00		
Carbon Tetrachloride		ND	4	.9	1.00		
Chlorobenzene		ND	4	.9	1.00		
Chloroethane		ND	4	.9	1.00		
Chloroform		ND	4	.9	1.00		
Chloromethane		ND	2	5	1.00		
2-Chlorotoluene		ND	4	.9	1.00		
4-Chlorotoluene		ND	4	.9	1.00		
Dibromochloromethane		ND	4	.9	1.00		
1,2-Dibromo-3-Chloropropane		ND	9	.8	1.00		
1,2-Dibromoethane		ND	4	.9	1.00		
Dibromomethane		ND	4	.9	1.00		
1,2-Dichlorobenzene		ND	4	.9	1.00		
1,3-Dichlorobenzene		ND	4	.9	1.00		
1,4-Dichlorobenzene		ND	4	.9	1.00		
Dichlorodifluoromethane		ND	4	.9	1.00		
1,1-Dichloroethane		ND	4	.9	1.00		
1,2-Dichloroethane		ND	4	.9	1.00		
1,1-Dichloroethene		ND	4	.9	1.00		
c-1,2-Dichloroethene		ND	4	.9	1.00		
t-1,2-Dichloroethene		ND	4	.9	1.00		
1,2-Dichloropropane		ND	4	.9	1.00		
1,3-Dichloropropane		ND	4	.9	1.00		
2,2-Dichloropropane		ND	4	.9	1.00		

Frey Environmental, Inc.		Date Received:		08/08/16	
2817-A Lafayette Avenue		Work Order:		16-08-051	
Newport Beach, CA 92663-3715		Preparation:		EPA 5030C	
		Method:		EPA 8260B	
		Units:		ua/ka	
Project: Anaheim Car Wash / 469-01				Page 8 of 48	
Parameter	Result	RL	DF	Qualifiers	
1,1-Dichloropropene	ND	4.9	1.00		
c-1,3-Dichloropropene	ND	4.9	1.00		
t-1,3-Dichloropropene	ND	4.9	1.00		
Ethylbenzene	ND	4.9	1.00		
2-Hexanone	ND	49	1.00		
Isopropylbenzene	ND	4.9	1.00		
p-Isopropyltoluene	ND	4.9	1.00		
Methylene Chloride	ND	49	1.00		
4-Methyl-2-Pentanone	ND	49	1.00		
Naphthalene	ND	49	1.00		
n-Propylbenzene	ND	4.9	1.00		
Styrene	ND	4.9	1.00		
1,1,1,2-Tetrachloroethane	ND	4.9	1.00		
1,1,2,2-Tetrachloroethane	ND	4.9	1.00		
Tetrachloroethene	ND	4.9	1.00		
Toluene	ND	4.9	1.00		
1,2,3-Trichlorobenzene	ND	9.8	1.00		
1,2,4-Trichlorobenzene	ND	4.9	1.00		
1,1,1-Trichloroethane	ND	4.9	1.00		
1,1,2-Trichloroethane	ND	4.9	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	49	1.00		
Trichloroethene	ND	4.9	1.00		
1,2,3-Trichloropropane	ND	4.9	1.00		
1,2,4-Trimethylbenzene	ND	4.9	1.00		
Trichlorofluoromethane	ND	49	1.00		
1,3,5-Trimethylbenzene	ND	4.9	1.00		
Vinyl Acetate	ND	49	1.00		
Vinyl Chloride	ND	4.9	1.00		
p/m-Xylene	ND	4.9	1.00		
o-Xylene	ND	4.9	1.00		
Methyl-t-Butyl Ether (MTBE)	ND	4.9	1.00		
Tert-Butyl Alcohol (TBA)	ND	49	1.00		
Diisopropyl Ether (DIPE)	ND	9.8	1.00		
Ethyl-t-Butyl Ether (ETBE)	ND	9.8	1.00		
Tert-Amyl-Methyl Ether (TAME)	ND	9.8	1.00		
Ethanol	ND	250	1.00		
Surrogate	<u>Rec. (%)</u>	Control Limits	Qualifiers		
1,4-Bromofluorobenzene	96	60-132			

Frey Environmental, Inc.	Dat	Date Received:				
2817-A Lafayette Avenue	Wo	Work Order:				
Newport Beach, CA 92663-3715	Pre	paration:		EPA 5030C		
	Me		EPA 8260B			
	Units:			ug/kç		
Project: Anaheim Car Wash / 469-01				Page 9 of 48		
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>			
Dibromofluoromethane	97	63-141				
1,2-Dichloroethane-d4	91	62-146				
Toluene-d8	100	80-120				

0				
1.0	COL	on	00	
La	ISUI	CII	LE	
		~		

Frey Environmental, Inc.	Date Received:	08/08/16
2817-A Lafayette Avenue	Work Order:	16-08-0515
Newport Beach, CA 92663-3715	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/kg
Project: Anaheim Car Wash / 469-01		Page 10 of 48

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VE10-20	16-08-0515-4-A	08/05/16 09:26	Solid	GC/MS OO	08/08/16	08/09/16 00:58	160808L017
Parameter		Result	R	<u>L</u>	DF	Qua	lifiers
Acetone		ND	12	20	1.00		
Benzene		ND	5.	0	1.00		
Bromobenzene		ND	5.	0	1.00		
Bromochloromethane		ND	5.	0	1.00		
Bromodichloromethane		ND	5.	0	1.00		
Bromoform		ND	5.	0	1.00		
Bromomethane		ND	25	5	1.00		
2-Butanone		ND	50)	1.00		
n-Butylbenzene		ND	5.	0	1.00		
sec-Butylbenzene		ND	5.	0	1.00		
tert-Butylbenzene		ND	5.	0	1.00		
Carbon Disulfide		ND	50)	1.00		
Carbon Tetrachloride		ND	5.	0	1.00		
Chlorobenzene		ND	5.	0	1.00		
Chloroethane		ND	5.	0	1.00		
Chloroform		ND	5.	0	1.00		
Chloromethane		ND	25	5	1.00		
2-Chlorotoluene		ND	5.	0	1.00		
4-Chlorotoluene		ND	5.	0	1.00		
Dibromochloromethane		ND	5.	0	1.00		
1,2-Dibromo-3-Chloropropane		ND	9.	9	1.00		
1,2-Dibromoethane		ND	5.	0	1.00		
Dibromomethane		ND	5.	0	1.00		
1,2-Dichlorobenzene		ND	5.	0	1.00		
1,3-Dichlorobenzene		ND	5.	0	1.00		
1,4-Dichlorobenzene		ND	5.	0	1.00		
Dichlorodifluoromethane		ND	5.	0	1.00		
1,1-Dichloroethane		ND	5.	0	1.00		
1,2-Dichloroethane		ND	5.	0	1.00		
1,1-Dichloroethene		ND	5.	0	1.00		
c-1,2-Dichloroethene		ND	5.	0	1.00		
t-1,2-Dichloroethene		ND	5.	0	1.00		
1,2-Dichloropropane		ND	5.	0	1.00		
1,3-Dichloropropane		ND	5.	0	1.00		
2,2-Dichloropropane		ND	5.	0	1.00		

Frey Environmental, Inc.		Date Received:		08/08/16	
2817-A Lafayette Avenue		Work Order:		16-08-051	
Newport Beach, CA 92663-3715		Preparation:		EPA 5030C	
		Method:		EPA 8260B	
		Units:		ua/ka	
Project: Anaheim Car Wash / 469-01				Page 11 of 48	
Parameter	Result	RL	DF	Qualifiers	
1,1-Dichloropropene	ND	5.0	1.00		
c-1,3-Dichloropropene	ND	5.0	1.00		
t-1,3-Dichloropropene	ND	5.0	1.00		
Ethylbenzene	ND	5.0	1.00		
2-Hexanone	ND	50	1.00		
Isopropylbenzene	ND	5.0	1.00		
p-Isopropyltoluene	ND	5.0	1.00		
Methylene Chloride	ND	50	1.00		
4-Methyl-2-Pentanone	ND	50	1.00		
Naphthalene	ND	50	1.00		
n-Propylbenzene	ND	5.0	1.00		
Styrene	ND	5.0	1.00		
1,1,1,2-Tetrachloroethane	ND	5.0	1.00		
1,1,2,2-Tetrachloroethane	ND	5.0	1.00		
Tetrachloroethene	ND	5.0	1.00		
Toluene	ND	5.0	1.00		
1,2,3-Trichlorobenzene	ND	9.9	1.00		
1,2,4-Trichlorobenzene	ND	5.0	1.00		
1,1,1-Trichloroethane	ND	5.0	1.00		
1,1,2-Trichloroethane	ND	5.0	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	50	1.00		
Trichloroethene	ND	5.0	1.00		
1,2,3-Trichloropropane	ND	5.0	1.00		
1,2,4-Trimethylbenzene	ND	5.0	1.00		
Trichlorofluoromethane	ND	50	1.00		
1,3,5-Trimethylbenzene	ND	5.0	1.00		
Vinyl Acetate	ND	50	1.00		
Vinyl Chloride	ND	5.0	1.00		
p/m-Xylene	ND	5.0	1.00		
o-Xylene	ND	5.0	1.00		
Methyl-t-Butyl Ether (MTBE)	ND	5.0	1.00		
Tert-Butyl Alcohol (TBA)	ND	50	1.00		
Diisopropyl Ether (DIPE)	ND	9.9	1.00		
Ethyl-t-Butyl Ether (ETBE)	ND	9.9	1.00		
Tert-Amyl-Methyl Ether (TAME)	ND	9.9	1.00		
Ethanol	ND	250	1.00		
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	97	60-132			

Frey Environmental, Inc.	Date Received: Work Order:			08/08/16	
2817-A Lafayette Avenue				16-08-0515	
Newport Beach, CA 92663-3715	Pre	eparation:		EPA 5030C	
	Me		EPA 8260B		
	Units:			ug/kg	
Project: Anaheim Car Wash / 469-01				Page 12 of 48	
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>		
Dibromofluoromethane	98	63-141			
1,2-Dichloroethane-d4	92	62-146			
Toluene-d8	100	80-120			

Frey Environmental, Inc.	Date Received:	08/08/16
2817-A Lafayette Avenue	Work Order:	16-08-0515
Newport Beach, CA 92663-3715	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/kg
Project: Anaheim Car Wash / 469-01		Page 13 of 48

Project: Anaheim Car Wash / 469-01

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VE10-25	16-08-0515-5-A	08/05/16 09:30	Solid	GC/MS OO	08/08/16	08/09/16 01:25	160808L017
Parameter		Result	<u>R</u>	<u>L</u>	DF	Qua	lifiers
Acetone		ND	1:	20	1.00		
Benzene		ND	5	.0	1.00		
Bromobenzene		ND	5	.0	1.00		
Bromochloromethane		ND	5	.0	1.00		
Bromodichloromethane		ND	5	.0	1.00		
Bromoform		ND	5	.0	1.00		
Bromomethane		ND	2	5	1.00		
2-Butanone		ND	5	0	1.00		
n-Butylbenzene		ND	5	.0	1.00		
sec-Butylbenzene		ND	5	.0	1.00		
tert-Butylbenzene		ND	5	.0	1.00		
Carbon Disulfide		ND	5	0	1.00		
Carbon Tetrachloride		ND	5	.0	1.00		
Chlorobenzene		ND	5	.0	1.00		
Chloroethane		ND	5	.0	1.00		
Chloroform		ND	5	.0	1.00		
Chloromethane		ND	2	5	1.00		
2-Chlorotoluene		ND	5	.0	1.00		
4-Chlorotoluene		ND	5	.0	1.00		
Dibromochloromethane		ND	5	.0	1.00		
1,2-Dibromo-3-Chloropropane		ND	9	.9	1.00		
1,2-Dibromoethane		ND	5	.0	1.00		
Dibromomethane		ND	5	.0	1.00		
1,2-Dichlorobenzene		ND	5	.0	1.00		
1,3-Dichlorobenzene		ND	5	.0	1.00		
1,4-Dichlorobenzene		ND	5	.0	1.00		
Dichlorodifluoromethane		ND	5	.0	1.00		
1,1-Dichloroethane		ND	5	.0	1.00		
1,2-Dichloroethane		ND	5	.0	1.00		
1,1-Dichloroethene		ND	5	.0	1.00		
c-1,2-Dichloroethene		ND	5	.0	1.00		
t-1,2-Dichloroethene		ND	5	.0	1.00		
1,2-Dichloropropane		ND	5	.0	1.00		
1,3-Dichloropropane		ND	5	.0	1.00		
2,2-Dichloropropane		ND	5	.0	1.00		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit. Return to Contents

Frey Environmental, Inc.		Date Received:			
2817-A Lafayette Avenue		Work Order:	16-08-0515		
Newport Beach, CA 92663-3715		Preparation:		EPA 5030C	
		Method:		EPA 8260B	
		Units:		ua/ka	
Project: Anaheim Car Wash / 469-01				Page 14 of 48	
Parameter	Result	RL	DF	Qualifiers	
1,1-Dichloropropene	ND	5.0	1.00		
c-1,3-Dichloropropene	ND	5.0	1.00		
t-1,3-Dichloropropene	ND	5.0	1.00		
Ethylbenzene	ND	5.0	1.00		
2-Hexanone	ND	50	1.00		
Isopropylbenzene	ND	5.0	1.00		
p-Isopropyltoluene	ND	5.0	1.00		
Methylene Chloride	ND	50	1.00		
4-Methyl-2-Pentanone	ND	50	1.00		
Naphthalene	ND	50	1.00		
n-Propylbenzene	ND	5.0	1.00		
Styrene	ND	5.0	1.00		
1,1,1,2-Tetrachloroethane	ND	5.0	1.00		
1,1,2,2-Tetrachloroethane	ND	5.0	1.00		
Tetrachloroethene	ND	5.0	1.00		
Toluene	ND	5.0	1.00		
1,2,3-Trichlorobenzene	ND	9.9	1.00		
1,2,4-Trichlorobenzene	ND	5.0	1.00		
1,1,1-Trichloroethane	ND	5.0	1.00		
1,1,2-Trichloroethane	ND	5.0	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	50	1.00		
Trichloroethene	ND	5.0	1.00		
1,2,3-Trichloropropane	ND	5.0	1.00		
1,2,4-Trimethylbenzene	ND	5.0	1.00		
Trichlorofluoromethane	ND	50	1.00		
1,3,5-Trimethylbenzene	ND	5.0	1.00		
Vinyl Acetate	ND	50	1.00		
Vinyl Chloride	ND	5.0	1.00		
p/m-Xylene	ND	5.0	1.00		
o-Xylene	ND	5.0	1.00		
Methyl-t-Butyl Ether (MTBE)	ND	5.0	1.00		
Tert-Butyl Alcohol (TBA)	ND	50	1.00		
Diisopropyl Ether (DIPE)	ND	9.9	1.00		
Ethyl-t-Butyl Ether (ETBE)	ND	9.9	1.00		
Tert-Amyl-Methyl Ether (TAME)	ND	9.9	1.00		
Ethanol	ND	250	1.00		
Surrogate	<u>Rec. (%)</u>	Control Limits	Qualifiers		
1,4-Bromofluorobenzene	99	60-132			

Frey Environmental, Inc.	Dat	e Received:		08/08/16		
2817-A Lafayette Avenue	Wo	Work Order:				
Newport Beach, CA 92663-3715	Pre	paration:		EPA 5030C		
	Me		EPA 8260B			
	Units:			ug/kg		
Project: Anaheim Car Wash / 469-01				Page 15 of 48		
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>			
Dibromofluoromethane	98	63-141				
1,2-Dichloroethane-d4	90	62-146				
Toluene-d8	100	80-120				

Calscience

Frey Environmental, Inc.	Date Received:	08/08/16
2817-A Lafayette Avenue	Work Order:	16-08-0515
Newport Beach, CA 92663-3715	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/kg
Project: Anaheim Car Wash / 469-01		Page 16 of 48

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VE10-30	16-08-0515-6-A	08/05/16 09:35	Solid	GC/MS OO	08/08/16	08/09/16 01:52	160808L017
Parameter		Result	<u>R</u>	L	DF	Qua	lifiers
Acetone		ND	13	30	1.00		
Benzene		ND	5.	2	1.00		
Bromobenzene		ND	5.	2	1.00		
Bromochloromethane		ND	5.	2	1.00		
Bromodichloromethane		ND	5.	2	1.00		
Bromoform		ND	5.	2	1.00		
Bromomethane		ND	26	6	1.00		
2-Butanone		ND	52	2	1.00		
n-Butylbenzene		ND	5.	2	1.00		
sec-Butylbenzene		ND	5.	2	1.00		
tert-Butylbenzene		ND	5.	2	1.00		
Carbon Disulfide		ND	52	2	1.00		
Carbon Tetrachloride		ND	5.	2	1.00		
Chlorobenzene		ND	5.	2	1.00		
Chloroethane		ND	5.	2	1.00		
Chloroform		ND	5.	2	1.00		
Chloromethane		ND	26	6	1.00		
2-Chlorotoluene		ND	5.	2	1.00		
4-Chlorotoluene		ND	5.	2	1.00		
Dibromochloromethane		ND	5.	2	1.00		
1,2-Dibromo-3-Chloropropane		ND	1()	1.00		
1,2-Dibromoethane		ND	5.	2	1.00		
Dibromomethane		ND	5.	2	1.00		
1,2-Dichlorobenzene		ND	5.	2	1.00		
1,3-Dichlorobenzene		ND	5.	2	1.00		
1,4-Dichlorobenzene		ND	5.	2	1.00		
Dichlorodifluoromethane		ND	5.	2	1.00		
1,1-Dichloroethane		ND	5.	2	1.00		
1,2-Dichloroethane		ND	5.	2	1.00		
1,1-Dichloroethene		ND	5.	2	1.00		
c-1,2-Dichloroethene		ND	5.	2	1.00		
t-1,2-Dichloroethene		ND	5.	2	1.00		
1,2-Dichloropropane		ND	5.	2	1.00		
1,3-Dichloropropane		ND	5.	2	1.00		
2,2-Dichloropropane		ND	5.	2	1.00		

Frey Environmental, Inc.		Date Received: 08/08/			
2817-A Lafayette Avenue		Work Order:	16-08-0515		
Newport Beach, CA 92663-3715		Preparation:		EPA 5030C	
			EPA 8260B		
		Units:		ua/ka	
Project: Anaheim Car Wash / 469-01				Page 17 of 48	
Parameter	Result	RL	DF	Qualifiers	
1,1-Dichloropropene	ND	5.2	1.00		
c-1,3-Dichloropropene	ND	5.2	1.00		
t-1,3-Dichloropropene	ND	5.2	1.00		
Ethylbenzene	10	5.2	1.00		
2-Hexanone	ND	52	1.00		
Isopropylbenzene	ND	5.2	1.00		
p-Isopropyltoluene	ND	5.2	1.00		
Methylene Chloride	ND	52	1.00		
4-Methyl-2-Pentanone	ND	52	1.00		
Naphthalene	ND	52	1.00		
n-Propylbenzene	ND	5.2	1.00		
Styrene	ND	5.2	1.00		
1,1,1,2-Tetrachloroethane	ND	5.2	1.00		
1,1,2,2-Tetrachloroethane	ND	5.2	1.00		
Tetrachloroethene	ND	5.2	1.00		
Toluene	41	5.2	1.00		
1,2,3-Trichlorobenzene	ND	10	1.00		
1,2,4-Trichlorobenzene	ND	5.2	1.00		
1,1,1-Trichloroethane	ND	5.2	1.00		
1,1,2-Trichloroethane	ND	5.2	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	52	1.00		
Trichloroethene	ND	5.2	1.00		
1,2,3-Trichloropropane	ND	5.2	1.00		
1,2,4-Trimethylbenzene	24	5.2	1.00		
Trichlorofluoromethane	ND	52	1.00		
1,3,5-Trimethylbenzene	6.3	5.2	1.00		
Vinyl Acetate	ND	52	1.00		
Vinyl Chloride	ND	5.2	1.00		
p/m-Xylene	48	5.2	1.00		
o-Xylene	21	5.2	1.00		
Methyl-t-Butyl Ether (MTBE)	ND	5.2	1.00		
Tert-Butyl Alcohol (TBA)	ND	52	1.00		
Diisopropyl Ether (DIPE)	ND	10	1.00		
Ethyl-t-Butyl Ether (ETBE)	ND	10	1.00		
Tert-Amyl-Methyl Ether (TAME)	ND	10	1.00		
Ethanol	ND	260	1.00		
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	97	60-132			

Toluene-d8

Frey Environmental, Inc. Date Received:			08/08/		
2817-A Lafayette Avenue	W	ork Order:		16-08-0515	
Newport Beach, CA 92663-3715	Pr	Preparation:			
	Method: Units:			EPA 8260B	
				ug/kg	
Project: Anaheim Car Wash / 469-01				Page 18 of 48	
Surrogate	<u>Rec. (%)</u>	Control Limits	Qualifiers		
Dibromofluoromethane	100	63-141			
1,2-Dichloroethane-d4	94 62-146				

80-120

102

Frey Environmental, Inc.	Date Received:	08/08/16
2817-A Lafayette Avenue	Work Order:	16-08-0515
Newport Beach, CA 92663-3715	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/kg
Project: Anaheim Car Wash / 469-01		Page 19 of 48

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VE10-35	16-08-0515-7-A	08/05/16 09:43	Solid	GC/MS OO	08/08/16	08/09/16 08:12	160808L037
Parameter		Result		RL	DF	Qua	lifiers
Acetone		ND		260000	1000		
Benzene		ND		11000	1000		
Bromobenzene		ND		11000	1000		
Bromochloromethane		ND		11000	1000		
Bromodichloromethane		ND		11000	1000		
Bromoform		ND		11000	1000		
Bromomethane		ND		53000	1000		
2-Butanone		ND		110000	1000		
n-Butylbenzene		16000		11000	1000		
sec-Butylbenzene		ND		11000	1000		
tert-Butylbenzene		ND		11000	1000		
Carbon Disulfide		ND		110000	1000		
Carbon Tetrachloride		ND		11000	1000		
Chlorobenzene		ND		11000	1000		
Chloroethane		ND		11000	1000		
Chloroform		ND		11000	1000		
Chloromethane		ND		53000	1000		
2-Chlorotoluene		ND		11000	1000		
4-Chlorotoluene		ND		11000	1000		
Dibromochloromethane		ND		11000	1000		
1,2-Dibromo-3-Chloropropane		ND		21000	1000		
1,2-Dibromoethane		ND		11000	1000		
Dibromomethane		ND		11000	1000		
1,2-Dichlorobenzene		ND		11000	1000		
1,3-Dichlorobenzene		ND		11000	1000		
1,4-Dichlorobenzene		ND		11000	1000		
Dichlorodifluoromethane		ND		11000	1000		
1,1-Dichloroethane		ND		11000	1000		
1,2-Dichloroethane		ND		11000	1000		
1,1-Dichloroethene		ND		11000	1000		
c-1,2-Dichloroethene		ND		11000	1000		
t-1,2-Dichloroethene		ND		11000	1000		
1,2-Dichloropropane		ND		11000	1000		
1,3-Dichloropropane		ND		11000	1000		
2,2-Dichloropropane		ND		11000	1000		

Frey Environmental, Inc.	Frey Environmental. Inc. Date Received:			08/08/16		
2817-A Lafayette Avenue	W	ork Order:		16-08-0515 EPA 5030C		
Newport Beach, CA 92663-3715	Pr	eparation:				
	Me		EPA 8260B			
	l Ir	nite:				
Project: Anaheim Car Wash / 469-01	01			Page 20 of 48		
Parameter	Result	RL	DF	Qualifiers		
1,1-Dichloropropene	ND	11000	1000			
c-1,3-Dichloropropene	ND	11000	1000			
t-1,3-Dichloropropene	ND	11000	1000			
Ethylbenzene	14000	11000	1000			
2-Hexanone	ND	110000	1000			
Isopropylbenzene	ND	11000	1000			
p-Isopropyltoluene	ND	11000	1000			
Methylene Chloride	ND	110000	1000			
4-Methyl-2-Pentanone	ND	110000	1000			
Naphthalene	ND	110000	1000			
n-Propylbenzene	ND	11000	1000			
Styrene	ND	11000	1000			
1,1,1,2-Tetrachloroethane	ND	11000	1000			
1,1,2,2-Tetrachloroethane	ND	11000	1000			
Tetrachloroethene	ND	11000	1000			
Toluene	67000	11000	1000			
1,2,3-Trichlorobenzene	ND	21000	1000			
1,2,4-Trichlorobenzene	ND	11000	1000			
1,1,1-Trichloroethane	ND	11000	1000			
1,1,2-Trichloroethane	ND	11000	1000			
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	110000	1000			
Trichloroethene	ND	11000	1000			
1,2,3-Trichloropropane	ND	11000	1000			
1,2,4-Trimethylbenzene	260000	11000	1000			
Trichlorofluoromethane	ND	110000	1000			
1,3,5-Trimethylbenzene	79000	11000	1000			
Vinyl Acetate	ND	110000	1000			
Vinyl Chloride	ND	11000	1000			
p/m-Xylene	290000	11000	1000			
o-Xylene	130000	11000	1000			
Methyl-t-Butyl Ether (MTBE)	ND	11000	1000			
Tert-Butyl Alcohol (TBA)	ND	110000	1000			
Diisopropyl Ether (DIPE)	ND	21000	1000			
Ethyl-t-Butyl Ether (ETBE)	ND	21000	1000			
Tert-Amyl-Methyl Ether (TAME)	ND	21000	1000			
Ethanol	ND	530000	1000			
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>			
1,4-Bromofluorobenzene	98	60-132				

Frey Environmental, Inc.	Dat	te Received:		08/08/16		
2817-A Lafayette Avenue	Wo	Work Order:				
Newport Beach, CA 92663-3715	Pre	paration:		EPA 5030C		
	Me		EPA 8260B			
	Units:			ug/kg		
Project: Anaheim Car Wash / 469-01				Page 21 of 48		
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>			
Dibromofluoromethane	96	63-141				
1,2-Dichloroethane-d4	90	62-146				
Toluene-d8	101	80-120				

-			
1.0	COL	00	00
- u		~	

Frey Environmental, Inc.	Date Received:	08/08/16
2817-A Lafayette Avenue	Work Order:	16-08-0515
Newport Beach, CA 92663-3715	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/kg
Project: Anaheim Car Wash / 469-01		Page 22 of 48

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VE10-40	16-08-0515-8-A	08/05/16 09:50	Solid	GC/MS OO	08/08/16	08/09/16 02:19	160808L017
Parameter		Result	<u></u> <u>R</u>	<u>L</u>	DF	Qua	lifiers
Acetone		ND	1:	30	1.00		
Benzene		ND	5.	0	1.00		
Bromobenzene		ND	5.	0	1.00		
Bromochloromethane		ND	5.	0	1.00		
Bromodichloromethane		ND	5.	0	1.00		
Bromoform		ND	5.	0	1.00		
Bromomethane		ND	2	5	1.00		
2-Butanone		ND	50	D	1.00		
n-Butylbenzene		ND	5.	0	1.00		
sec-Butylbenzene		ND	5.	0	1.00		
tert-Butylbenzene		ND	5.	0	1.00		
Carbon Disulfide		ND	50	D	1.00		
Carbon Tetrachloride		ND	5.	0	1.00		
Chlorobenzene		ND	5.	0	1.00		
Chloroethane		ND	5.	0	1.00		
Chloroform		ND	5.	0	1.00		
Chloromethane		ND	2	5	1.00		
2-Chlorotoluene		ND	5.	0	1.00		
4-Chlorotoluene		ND	5.	0	1.00		
Dibromochloromethane		ND	5.	0	1.00		
1,2-Dibromo-3-Chloropropane		ND	1(0	1.00		
1,2-Dibromoethane		ND	5.	0	1.00		
Dibromomethane		ND	5.	0	1.00		
1,2-Dichlorobenzene		ND	5.	0	1.00		
1,3-Dichlorobenzene		ND	5.	0	1.00		
1,4-Dichlorobenzene		ND	5.	0	1.00		
Dichlorodifluoromethane		ND	5.	0	1.00		
1,1-Dichloroethane		ND	5.	0	1.00		
1,2-Dichloroethane		ND	5.	0	1.00		
1,1-Dichloroethene		ND	5.	0	1.00		
c-1,2-Dichloroethene		ND	5.	0	1.00		
t-1,2-Dichloroethene		ND	5.	0	1.00		
1,2-Dichloropropane		ND	5.	0	1.00		
1,3-Dichloropropane		ND	5.	0	1.00		
2,2-Dichloropropane		ND	5.	0	1.00		

Frey Environmental, Inc.	[Date Received:		08/08/16	
2817-A Lafayette Avenue	١	Work Order: 16-08-05			
Newport Beach. CA 92663-3715	F		EPA 50300		
	ſ		EPA 8260B		
	ı	Jnits:		ua/ka	
Project: Anaheim Car Wash / 469-01				Page 23 of 48	
Parameter	<u>Result</u>	RL	DF	<u>Qualifiers</u>	
1,1-Dichloropropene	ND	5.0	1.00		
c-1,3-Dichloropropene	ND	5.0	1.00		
t-1,3-Dichloropropene	ND	5.0	1.00		
Ethylbenzene	ND	5.0	1.00		
2-Hexanone	ND	50	1.00		
Isopropylbenzene	ND	5.0	1.00		
p-Isopropyltoluene	ND	5.0	1.00		
Methylene Chloride	ND	50	1.00		
4-Methyl-2-Pentanone	ND	50	1.00		
Naphthalene	ND	50	1.00		
n-Propylbenzene	ND	5.0	1.00		
Styrene	ND	5.0	1.00		
1,1,1,2-Tetrachloroethane	ND	5.0	1.00		
1,1,2,2-Tetrachloroethane	ND	5.0	1.00		
Tetrachloroethene	ND	5.0	1.00		
Toluene	ND	5.0	1.00		
1,2,3-Trichlorobenzene	ND	10	1.00		
1,2,4-Trichlorobenzene	ND	5.0	1.00		
1,1,1-Trichloroethane	ND	5.0	1.00		
1,1,2-Trichloroethane	ND	5.0	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	50	1.00		
Trichloroethene	ND	5.0	1.00		
1,2,3-Trichloropropane	ND	5.0	1.00		
1,2,4-Trimethylbenzene	7.6	5.0	1.00		
Trichlorofluoromethane	ND	50	1.00		
1,3,5-Trimethylbenzene	ND	5.0	1.00		
Vinyl Acetate	ND	50	1.00		
Vinyl Chloride	ND	5.0	1.00		
p/m-Xylene	6.3	5.0	1.00		
o-Xylene	ND	5.0	1.00		
Methyl-t-Butyl Ether (MTBE)	ND	5.0	1.00		
Tert-Butyl Alcohol (TBA)	ND	50	1.00		
Diisopropyl Ether (DIPE)	ND	10	1.00		
Ethyl-t-Butyl Ether (ETBE)	ND	10	1.00		
Tert-Amyl-Methyl Ether (TAME)	ND	10	1.00		
Ethanol	ND	250	1.00		
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	98	60-132			

eurofins Calscience

Toluene-d8

Frey Environmental, Inc.	Date Received: Work Order:			08/08/16			
2817-A Lafayette Avenue				Work Order:			Work Order:
Newport Beach, CA 92663-3715	Preparation:			each, CA 92663-3715 Preparation:		EPA 5030C	
	Method:			EPA 8260B			
	Units:			ug/kç			
Project: Anaheim Car Wash / 469-01				Page 24 of 48			
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>				
Dibromofluoromethane	98	63-141					
1,2-Dichloroethane-d4	92	62-146					

80-120

101

Frey Environmental, Inc.	Date Received:	08/08/16
2817-A Lafayette Avenue	Work Order:	16-08-0515
Newport Beach, CA 92663-3715	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/kg
Project: Anaheim Car Wash / 469-01		Page 25 of 48

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VE10-45	16-08-0515-9-A	08/05/16 09:55	Solid	GC/MS OO	08/08/16	08/09/16 08:39	160808L037
Parameter		Result		RL	DF	Qua	lifiers
Acetone		ND		240000	1000		
Benzene		ND		9700	1000		
Bromobenzene		ND		9700	1000		
Bromochloromethane		ND		9700	1000		
Bromodichloromethane		ND		9700	1000		
Bromoform		ND		9700	1000		
Bromomethane		ND		49000	1000		
2-Butanone		ND		97000	1000		
n-Butylbenzene		22000		9700	1000		
sec-Butylbenzene		ND		9700	1000		
tert-Butylbenzene		ND		9700	1000		
Carbon Disulfide		ND		97000	1000		
Carbon Tetrachloride		ND		9700	1000		
Chlorobenzene		ND		9700	1000		
Chloroethane		ND		9700	1000		
Chloroform		ND		9700	1000		
Chloromethane		ND		49000	1000		
2-Chlorotoluene		ND		9700	1000		
4-Chlorotoluene		ND		9700	1000		
Dibromochloromethane		ND		9700	1000		
1,2-Dibromo-3-Chloropropane		ND		19000	1000		
1,2-Dibromoethane		ND		9700	1000		
Dibromomethane		ND		9700	1000		
1,2-Dichlorobenzene		ND		9700	1000		
1,3-Dichlorobenzene		ND		9700	1000		
1,4-Dichlorobenzene		ND		9700	1000		
Dichlorodifluoromethane		ND		9700	1000		
1,1-Dichloroethane		ND		9700	1000		
1,2-Dichloroethane		ND		9700	1000		
1,1-Dichloroethene		ND		9700	1000		
c-1,2-Dichloroethene		ND		9700	1000		
t-1,2-Dichloroethene		ND		9700	1000		
1,2-Dichloropropane		ND		9700	1000		
1,3-Dichloropropane		ND		9700	1000		
2,2-Dichloropropane		ND		9700	1000		

Frey Environmental, Inc.	D	ate Received:		08/08/16	
2817-A Lafayette Avenue	W	/ork Order:		16-08-0515	
Newport Beach. CA 92663-3715	P	reparation:		EPA 50300	
	М		EPA 8260B		
		nits:			
Project: Anaheim Car Wash / 469-01	0	into.		Page 26 of 48	
Parameter	Result	RL	DF	Qualifiers	
1.1-Dichloropropene	ND	9700	1000		
c-1,3-Dichloropropene	ND	9700	1000		
t-1,3-Dichloropropene	ND	9700	1000		
Ethylbenzene	17000	9700	1000		
2-Hexanone	ND	97000	1000		
Isopropylbenzene	ND	9700	1000		
p-Isopropyltoluene	ND	9700	1000		
Methylene Chloride	ND	97000	1000		
4-Methyl-2-Pentanone	ND	97000	1000		
Naphthalene	ND	97000	1000		
n-Propylbenzene	15000	9700	1000		
Styrene	ND	9700	1000		
1,1,1,2-Tetrachloroethane	ND	9700	1000		
1,1,2,2-Tetrachloroethane	ND	9700	1000		
Tetrachloroethene	ND	9700	1000		
Toluene	45000	9700	1000		
1,2,3-Trichlorobenzene	ND	19000	1000		
1,2,4-Trichlorobenzene	ND	9700	1000		
1,1,1-Trichloroethane	ND	9700	1000		
1,1,2-Trichloroethane	ND	9700	1000		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	97000	1000		
Trichloroethene	ND	9700	1000		
1,2,3-Trichloropropane	ND	9700	1000		
1,2,4-Trimethylbenzene	310000	9700	1000		
Trichlorofluoromethane	ND	97000	1000		
1,3,5-Trimethylbenzene	96000	9700	1000		
Vinyl Acetate	ND	97000	1000		
Vinyl Chloride	ND	9700	1000		
p/m-Xylene	340000	9700	1000		
o-Xylene	170000	9700	1000		
Methyl-t-Butyl Ether (MTBE)	ND	9700	1000		
Tert-Butyl Alcohol (TBA)	ND	97000	1000		
Diisopropyl Ether (DIPE)	ND	19000	1000		
Ethyl-t-Butyl Ether (ETBE)	ND	19000	1000		
Tert-Amyl-Methyl Ether (TAME)	ND	19000	1000		
Ethanol	ND	490000	1000		
Surrogate	<u>Rec. (%)</u>	Control Limits	Qualifiers		
1,4-Bromofluorobenzene	96	60-132			

Calscience

Toluene-d8

Frey Environmental, Inc.	Da	te Received:		08/08/16					
2817-A Lafayette Avenue	tte Avenue Work Order:			Work Order:			Work Order:		16-08-0515
Newport Beach, CA 92663-3715	Pre	Preparation:							
	Me		EPA 8260B						
	Un	its:		ug/kç					
Project: Anaheim Car Wash / 469-01				Page 27 of 48					
<u>Surrogate</u>	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>						
Dibromofluoromethane	95	63-141							
1,2-Dichloroethane-d4	89	62-146							

80-120

101

Frey Environmental, Inc.	Date Received:	08/08/16
2817-A Lafayette Avenue	Work Order:	16-08-0515
Newport Beach, CA 92663-3715	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/kg
Project: Anaheim Car Wash / 469-01		Page 28 of 48

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VE10-50	16-08-0515-10-A	08/05/16 10:10	Solid	GC/MS OO	08/08/16	08/09/16 21:35	160809L023
Parameter		Result		RL	DF	Qua	lifiers
Acetone		ND		120000	500		
Benzene		ND		4900	500		
Bromobenzene		ND		4900	500		
Bromochloromethane		ND		4900	500		
Bromodichloromethane		ND		4900	500		
Bromoform		ND		4900	500		
Bromomethane		ND		24000	500		
2-Butanone		ND		49000	500		
n-Butylbenzene		8200		4900	500		
sec-Butylbenzene		ND		4900	500		
tert-Butylbenzene		ND		4900	500		
Carbon Disulfide		ND		49000	500		
Carbon Tetrachloride		ND		4900	500		
Chlorobenzene		ND		4900	500		
Chloroethane		ND		4900	500		
Chloroform		ND		4900	500		
Chloromethane		ND		24000	500		
2-Chlorotoluene		ND		4900	500		
4-Chlorotoluene		ND		4900	500		
Dibromochloromethane		ND		4900	500		
1,2-Dibromo-3-Chloropropane		ND		9700	500		
1,2-Dibromoethane		ND		4900	500		
Dibromomethane		ND		4900	500		
1,2-Dichlorobenzene		ND		4900	500		
1,3-Dichlorobenzene		ND		4900	500		
1,4-Dichlorobenzene		ND		4900	500		
Dichlorodifluoromethane		ND		4900	500		
1,1-Dichloroethane		ND		4900	500		
1,2-Dichloroethane		ND		4900	500		
1,1-Dichloroethene		ND		4900	500		
c-1,2-Dichloroethene		ND		4900	500		
t-1,2-Dichloroethene		ND		4900	500		
1,2-Dichloropropane		ND		4900	500		
1,3-Dichloropropane		ND		4900	500		
2,2-Dichloropropane		ND		4900	500		

Frey Environmental, Inc. Date Received:			eived: 08/08		
2817-A Lafayette Avenue	Wo	ork Order:		16-08-0515 EPA 5030C	
Newport Beach, CA 92663-3715	Pre	eparation:			
•	Ме	thod:		EPA 8260B	
	Un	its:		ug/kg	
Project: Anaheim Car Wash / 469-01				Page 29 of 48	
Parameter	<u>Result</u>	RL	DF	Qualifiers	
1,1-Dichloropropene	ND	4900	500		
c-1,3-Dichloropropene	ND	4900	500		
t-1,3-Dichloropropene	ND	4900	500		
Ethylbenzene	26000	4900	500		
2-Hexanone	ND	49000	500		
Isopropylbenzene	ND	4900	500		
p-Isopropyltoluene	ND	4900	500		
Methylene Chloride	ND	49000	500		
4-Methyl-2-Pentanone	ND	49000	500		
Naphthalene	ND	49000	500		
n-Propylbenzene	14000	4900	500		
Styrene	ND	4900	500		
1,1,1,1,2-1 etrachioroethane	ND	4900	500		
		4900	500		
	72000	4900	500		
1 2 3-Trichlorobenzene	72000 ND	4900	500		
1,2,3- Tichlorobenzene	ND	4900	500		
1 1 1-Trichloroethane	ND	4900	500		
1 1 2-Trichloroethane	ND	4900	500		
1.1.2-Trichloro-1.2.2-Trifluoroethane	ND	49000	500		
	ND	4900	500		
1.2.3-Trichloropropane	ND	4900	500		
1.2.4-Trimethylbenzene	120000	4900	500		
Trichlorofluoromethane	ND	49000	500		
1,3,5-Trimethylbenzene	33000	4900	500		
Vinyl Acetate	ND	49000	500		
Vinyl Chloride	ND	4900	500		
p/m-Xylene	180000	4900	500		
o-Xylene	75000	4900	500		
Methyl-t-Butyl Ether (MTBE)	5900	4900	500		
Tert-Butyl Alcohol (TBA)	ND	49000	500		
Diisopropyl Ether (DIPE)	ND	9700	500		
Ethyl-t-Butyl Ether (ETBE)	ND	9700	500		
Tert-Amyl-Methyl Ether (TAME)	ND	9700	500		
Ethanol	ND	240000	500		
Surrogate	<u>Rec. (%)</u>	Control Limits	Qualifiers		
1,4-Bromofluorobenzene	95	60-132			

Frey Environmental, Inc.	Dat	te Received:	08/08/16		
2817-A Lafayette Avenue	Wo	Work Order:			
Newport Beach, CA 92663-3715	Pre	Preparation:			
	Me		EPA 8260B ug/kg		
	Uni				
Project: Anaheim Car Wash / 469-01				Page 30 of 48	
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>		
Dibromofluoromethane	95	63-141			
1,2-Dichloroethane-d4	91	62-146			
Toluene-d8	100	80-120			

Frey Environmental, Inc.
2817-A Lafayette Avenue
Newport Beach, CA 92663-3715

Date Received:	08/08/16
Work Order:	16-08-0515
Preparation:	EPA 5030C
Method:	EPA 8260B
Units:	ug/kg
	Page 31 of 48

Project: Anaheim Car Wash / 469-01

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VE10-55	16-08-0515-11-A	08/05/16 10:22	Solid	GC/MS OO	08/08/16	08/09/16 02:46	160808L017
Parameter		Result	<u>R</u>	<u>L</u>	DF	Qua	alifiers
Acetone		ND	13	30	1.00		
Benzene		35	5.	0	1.00		
Bromobenzene		ND	5.	0	1.00		
Bromochloromethane		ND	5.	0	1.00		
Bromodichloromethane		ND	5.	0	1.00		
Bromoform		ND	5.	0	1.00		
Bromomethane		ND	25	5	1.00		
2-Butanone		ND	50)	1.00		
n-Butylbenzene		ND	5.	0	1.00		
sec-Butylbenzene		ND	5.	0	1.00		
tert-Butylbenzene		ND	5.	0	1.00		
Carbon Disulfide		ND	50)	1.00		
Carbon Tetrachloride		ND	5.	0	1.00		
Chlorobenzene		ND	5.	0	1.00		
Chloroethane		ND	5.	0	1.00		
Chloroform		ND	5.	0	1.00		
Chloromethane		ND	25	5	1.00		
2-Chlorotoluene		ND	5.	0	1.00		
4-Chlorotoluene		ND	5.	0	1.00		
Dibromochloromethane		ND	5.	0	1.00		
1,2-Dibromo-3-Chloropropane		ND	10)	1.00		
1,2-Dibromoethane		ND	5.	0	1.00		
Dibromomethane		ND	5.	0	1.00		
1,2-Dichlorobenzene		ND	5.	0	1.00		
1,3-Dichlorobenzene		ND	5.	0	1.00		
1,4-Dichlorobenzene		ND	5.	0	1.00		
Dichlorodifluoromethane		ND	5.	0	1.00		
1,1-Dichloroethane		ND	5.	0	1.00		
1,2-Dichloroethane		ND	5.	0	1.00		
1,1-Dichloroethene		ND	5.	0	1.00		
c-1,2-Dichloroethene		ND	5.	0	1.00		
t-1,2-Dichloroethene		ND	5.	0	1.00		
1,2-Dichloropropane		ND	5.	0	1.00		
1,3-Dichloropropane		ND	5.	0	1.00		
2,2-Dichloropropane		ND	5.	0	1.00		

Frey Environmental, Inc. Date Received:			08/08/16		
2817-A Lafayette Avenue	Work Order:	16-08-0515			
Newport Beach, CA 92663-3715		Preparation:	EPA 5030C		
		Method:		EPA 8260B	
		Units:		ug/kg	
Project: Anaheim Car Wash / 469-01				Page 32 of 48	
Parameter	<u>Result</u>	RL	<u>DF</u>	Qualifiers	
1,1-Dichloropropene	ND	5.0	1.00		
c-1,3-Dichloropropene	ND	5.0	1.00		
t-1,3-Dichloropropene	ND	5.0	1.00		
Ethylbenzene	ND	5.0	1.00		
2-Hexanone	ND	50	1.00		
Isopropylbenzene	ND	5.0	1.00		
p-Isopropyltoluene	ND	5.0	1.00		
Methylene Chloride	ND	50	1.00		
4-Methyl-2-Pentanone	ND	50	1.00		
	ND	50	1.00		
n-Propyidenzene	ND	5.0	1.00		
Styrene		5.0	1.00		
1, 1, 2, 2 Tetrachloroethane		5.0	1.00		
		5.0	1.00		
	20	5.0	1.00		
1 2 3-Trichlorobenzene	ND	10	1.00		
1.2.4-Trichlorobenzene	ND	5.0	1.00		
1.1.1-Trichloroethane	ND	5.0	1.00		
1,1,2-Trichloroethane	ND	5.0	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	50	1.00		
Trichloroethene	ND	5.0	1.00		
1,2,3-Trichloropropane	ND	5.0	1.00		
1,2,4-Trimethylbenzene	43	5.0	1.00		
Trichlorofluoromethane	ND	50	1.00		
1,3,5-Trimethylbenzene	37	5.0	1.00		
Vinyl Acetate	ND	50	1.00		
Vinyl Chloride	ND	5.0	1.00		
p/m-Xylene	27	5.0	1.00		
o-Xylene	36	5.0	1.00		
Tert-Butyl Alcohol (TBA)	150	50	1.00		
Diisopropyl Ether (DIPE)	ND	10	1.00		
Ethyl-t-Butyl Ether (ETBE)	ND	10	1.00		
Tert-Amyl-Methyl Ether (TAME)	ND	10	1.00		
Ethanol	ND	250	1.00		
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	99	60-132			
Dibromofluoromethane	95	63-141			

Frey Environmental, Inc.			Date Re	eceived:			08/08/16
2817-A Lafayette Avenue			Work Or	rder:	16-08-0515		
Newport Beach, CA 92663-3715			Prepara	tion:			EPA 5030C
			Method:				EPA 8260B
			Units:				ug/kg
Project: Anaheim Car Wash / 469-0	1					Page	33 of 48
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,2-Dichloroethane-d4		90		62-146			
Toluene-d8		100		80-120			
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VE10-55	16-08-0515-11-A	08/05/16 10:22	Solid	GC/MS OO	08/08/16	08/09/16 20:22	160809L023
Parameter		Result		RL	DF	Qualifiers	
Methyl-t-Butyl Ether (MTBE)		870		520	50.0		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		97		60-132			
Dibromofluoromethane		98		63-141			
1,2-Dichloroethane-d4		92		62-146			
Toluene-d8		101		80-120			

Frey Environmental, Inc.	Date Received:	08/08/16	
2817-A Lafayette Avenue	Work Order:	16-08-0515	
Newport Beach, CA 92663-3715	Preparation:	EPA 5030C	
	Method:	EPA 8260B	
	Units:	ug/kg	
Project: Anaheim Car Wash / 469-01		Page 34 of 48	

Project: Anaheim Car Wash / 469-01

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VE10-60	16-08-0515-12-A	08/05/16 10:25	Solid	GC/MS OO	08/08/16	08/09/16 05:57	160808L036
Parameter		Result	<u>R</u>	<u>L</u>	DF	Qua	lifiers
Acetone		ND	13	30	1.00		
Benzene		ND	5.	0	1.00		
Bromobenzene		ND	5.	0	1.00		
Bromochloromethane		ND	5.	0	1.00		
Bromodichloromethane		ND	5.	0	1.00		
Bromoform		ND	5.	0	1.00		
Bromomethane		ND	25	5	1.00		
2-Butanone		ND	50)	1.00		
n-Butylbenzene		ND	5.	0	1.00		
sec-Butylbenzene		ND	5.	0	1.00		
tert-Butylbenzene		ND	5.	0	1.00		
Carbon Disulfide		ND	50)	1.00		
Carbon Tetrachloride		ND	5.	0	1.00		
Chlorobenzene		ND	5.	0	1.00		
Chloroethane		ND	5.	0	1.00		
Chloroform		ND	5.	0	1.00		
Chloromethane		ND	25	5	1.00		
2-Chlorotoluene		ND	5.	0	1.00		
4-Chlorotoluene		ND	5.	0	1.00		
Dibromochloromethane		ND	5.	0	1.00		
1,2-Dibromo-3-Chloropropane		ND	1()	1.00		
1,2-Dibromoethane		ND	5.	0	1.00		
Dibromomethane		ND	5.	0	1.00		
1,2-Dichlorobenzene		ND	5.	0	1.00		
1,3-Dichlorobenzene		ND	5.	0	1.00		
1,4-Dichlorobenzene		ND	5.	0	1.00		
Dichlorodifluoromethane		ND	5.	0	1.00		
1,1-Dichloroethane		ND	5.	0	1.00		
1,2-Dichloroethane		ND	5.	0	1.00		
1,1-Dichloroethene		ND	5.	0	1.00		
c-1,2-Dichloroethene		ND	5.	0	1.00		
t-1,2-Dichloroethene		ND	5.	0	1.00		
1,2-Dichloropropane		ND	5.	0	1.00		
1,3-Dichloropropane		ND	5.	0	1.00		
2,2-Dichloropropane		ND	5.	0	1.00		
Calscience

Frey Environmental, Inc.		Date Received:		08/08/16
2817-A Lafayette Avenue	A Lafayette Avenue Work Order:			16-08-0515
Newport Beach, CA 92663-3715	Preparation:			EPA 5030C
		Method:		EPA 8260B
		Units:		ua/ka
Project: Anaheim Car Wash / 469-01				Page 35 of 48
Parameter	Result	RL	DF	Qualifiers
1,1-Dichloropropene	ND	5.0	1.00	
c-1,3-Dichloropropene	ND	5.0	1.00	
t-1,3-Dichloropropene	ND	5.0	1.00	
Ethylbenzene	ND	5.0	1.00	
2-Hexanone	ND	50	1.00	
Isopropylbenzene	ND	5.0	1.00	
p-Isopropyltoluene	ND	5.0	1.00	
Methylene Chloride	ND	50	1.00	
4-Methyl-2-Pentanone	ND	50	1.00	
Naphthalene	ND	50	1.00	
n-Propylbenzene	ND	5.0	1.00	
Styrene	ND	5.0	1.00	
1,1,1,2-Tetrachloroethane	ND	5.0	1.00	
1,1,2,2-Tetrachloroethane	ND	5.0	1.00	
Tetrachloroethene	ND	5.0	1.00	
Toluene	ND	5.0	1.00	
1,2,3-Trichlorobenzene	ND	10	1.00	
1,2,4-Trichlorobenzene	ND	5.0	1.00	
1,1,1-Trichloroethane	ND	5.0	1.00	
1,1,2-Trichloroethane	ND	5.0	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	50	1.00	
Trichloroethene	ND	5.0	1.00	
1,2,3-Trichloropropane	ND	5.0	1.00	
1,2,4-Trimethylbenzene	ND	5.0	1.00	
Trichlorofluoromethane	ND	50	1.00	
1,3,5-Trimethylbenzene	ND	5.0	1.00	
Vinyl Acetate	ND	50	1.00	
Vinyl Chloride	ND	5.0	1.00	
p/m-Xylene	ND	5.0	1.00	
o-Xylene	ND	5.0	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	5.0	1.00	
Tert-Butyl Alcohol (TBA)	ND	50	1.00	
Diisopropyl Ether (DIPE)	ND	10	1.00	
Ethyl-t-Butyl Ether (ETBE)	ND	10	1.00	
Tert-Amyl-Methyl Ether (TAME)	ND	10	1.00	
Ethanol	ND	250	1.00	
Surrogate	<u>Rec. (%)</u>	Control Limits	Qualifiers	
1,4-Bromofluorobenzene	98	60-132		

Toluene-d8

Frey Environmental, Inc.	Date Received: Work Order:			08/08/16 16-08-0515		
2817-A Lafayette Avenue						
Newport Beach, CA 92663-3715	Preparation:			EPA 5030C		
	Me		EPA 8260B			
	Units:			ug/kg		
Project: Anaheim Car Wash / 469-01				Page 36 of 48		
Surrogate	<u>Rec. (%)</u>	Control Limits	Qualifiers			
Dibromofluoromethane	94	63-141				
1,2-Dichloroethane-d4	91	62-146				

80-120

99

Return to Contents

Frey Environmental, Inc.
2817-A Lafayette Avenue
Newport Beach, CA 92663-3715

Date Received:	08/08/16
Work Order:	16-08-0515
Preparation:	EPA 5030C
Method:	EPA 8260B
Units:	ug/kg
	Page 37 of 48

Project: Anaheim Car Wash / 469-01

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-12-796-11550	N/A	Solid	GC/MS OO	08/08/16	08/08/16 17:05	160808L017
Parameter		Result	<u>R</u>	<u>:L</u>	DF	Qua	lifiers
Acetone		ND	1	20	1.00		
Benzene		ND	5	.0	1.00		
Bromobenzene		ND	5	.0	1.00		
Bromochloromethane		ND	5	.0	1.00		
Bromodichloromethane		ND	5	.0	1.00		
Bromoform		ND	5	.0	1.00		
Bromomethane		ND	2	5	1.00		
2-Butanone		ND	5	0	1.00		
n-Butylbenzene		ND	5	.0	1.00		
sec-Butylbenzene		ND	5	.0	1.00		
tert-Butylbenzene		ND	5	.0	1.00		
Carbon Disulfide		ND	5	0	1.00		
Carbon Tetrachloride		ND	5	.0	1.00		
Chlorobenzene		ND	5	.0	1.00		
Chloroethane		ND	5	.0	1.00		
Chloroform		ND	5	.0	1.00		
Chloromethane		ND	2	5	1.00		
2-Chlorotoluene		ND	5	.0	1.00		
4-Chlorotoluene		ND	5	.0	1.00		
Dibromochloromethane		ND	5	.0	1.00		
1,2-Dibromo-3-Chloropropane		ND	1	0	1.00		
1,2-Dibromoethane		ND	5	.0	1.00		
Dibromomethane		ND	5	.0	1.00		
1,2-Dichlorobenzene		ND	5	.0	1.00		
1,3-Dichlorobenzene		ND	5	.0	1.00		
1,4-Dichlorobenzene		ND	5	.0	1.00		
Dichlorodifluoromethane		ND	5	.0	1.00		
1,1-Dichloroethane		ND	5	.0	1.00		
1,2-Dichloroethane		ND	5	.0	1.00		
1,1-Dichloroethene		ND	5	.0	1.00		
c-1,2-Dichloroethene		ND	5	.0	1.00		
t-1,2-Dichloroethene		ND	5	.0	1.00		
1,2-Dichloropropane		ND	5	.0	1.00		
1,3-Dichloropropane		ND	5	.0	1.00		
2,2-Dichloropropane		ND	5	.0	1.00		

Calscience

Frey Environmental, Inc.		Date Received:		08/08/16
2817-A Lafayette Avenue		Work Order:	16-08-0515	
Newport Beach, CA 92663-3715	Preparation:			EPA 5030C
		Method:		EPA 8260B
		Units:		ua/ka
Project: Anaheim Car Wash / 469-01				Page 38 of 48
Parameter	Result	RL	DF	Qualifiers
1,1-Dichloropropene	ND	5.0	1.00	
c-1,3-Dichloropropene	ND	5.0	1.00	
t-1,3-Dichloropropene	ND	5.0	1.00	
Ethylbenzene	ND	5.0	1.00	
2-Hexanone	ND	50	1.00	
Isopropylbenzene	ND	5.0	1.00	
p-Isopropyltoluene	ND	5.0	1.00	
Methylene Chloride	ND	50	1.00	
4-Methyl-2-Pentanone	ND	50	1.00	
Naphthalene	ND	50	1.00	
n-Propylbenzene	ND	5.0	1.00	
Styrene	ND	5.0	1.00	
1,1,1,2-Tetrachloroethane	ND	5.0	1.00	
1,1,2,2-Tetrachloroethane	ND	5.0	1.00	
Tetrachloroethene	ND	5.0	1.00	
Toluene	ND	5.0	1.00	
1,2,3-Trichlorobenzene	ND	10	1.00	
1,2,4-Trichlorobenzene	ND	5.0	1.00	
1,1,1-Trichloroethane	ND	5.0	1.00	
1,1,2-Trichloroethane	ND	5.0	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	50	1.00	
Trichloroethene	ND	5.0	1.00	
1,2,3-Trichloropropane	ND	5.0	1.00	
1,2,4-Trimethylbenzene	ND	5.0	1.00	
Trichlorofluoromethane	ND	50	1.00	
1,3,5-Trimethylbenzene	ND	5.0	1.00	
Vinyl Acetate	ND	50	1.00	
Vinyl Chloride	ND	5.0	1.00	
p/m-Xylene	ND	5.0	1.00	
o-Xylene	ND	5.0	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	5.0	1.00	
Tert-Butyl Alcohol (TBA)	ND	50	1.00	
Diisopropyl Ether (DIPE)	ND	10	1.00	
Ethyl-t-Butyl Ether (ETBE)	ND	10	1.00	
Tert-Amyl-Methyl Ether (TAME)	ND	10	1.00	
Ethanol	ND	250	1.00	
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene	99	60-132		

1,2-Dichloroethane-d4

Toluene-d8

Frey Environmental, Inc.	Da	Date Received:			
2817-A Lafayette Avenue	W	Work Order:			
Newport Beach, CA 92663-3715	Pi	reparation:		EPA 5030C	
	Μ	ethod:		EPA 8260B	
	U	nits:		ug/kg	
Project: Anaheim Car Wash / 469-01				Page 39 of 48	
Surrogate	<u>Rec. (%)</u>	Control Limits	Qualifiers		
Dibromofluoromethane	100	63-141			

62-146

80-120

97

101

Analytical Report

Return to Contents

Frey Environmental, Inc.	Date
2817-A Lafayette Avenue	Wor
Newport Beach, CA 92663-3715	Prep
	Meth

Date Received:	08/08/16
Work Order:	16-08-0515
Preparation:	EPA 5030C
Method:	EPA 8260B
Units:	ug/kg
	Page 40 of 48

Project: Anaheim Car Wash / 469-01

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-12-796-11559	N/A	Solid	GC/MS OO	08/08/16	08/09/16 05:02	160808L036
Parameter		Result	<u>F</u>	RL	DF	Qua	lifiers
Acetone		ND	1	120	1.00		
Benzene		ND	5	5.0	1.00		
Bromobenzene		ND	5	5.0	1.00		
Bromochloromethane		ND	5	5.0	1.00		
Bromodichloromethane		ND	5	5.0	1.00		
Bromoform		ND	5	5.0	1.00		
Bromomethane		ND	2	25	1.00		
2-Butanone		ND	5	50	1.00		
n-Butylbenzene		ND	5	5.0	1.00		
sec-Butylbenzene		ND	5	5.0	1.00		
tert-Butylbenzene		ND	5	5.0	1.00		
Carbon Disulfide		ND	5	50	1.00		
Carbon Tetrachloride		ND	5	5.0	1.00		
Chlorobenzene		ND	5	5.0	1.00		
Chloroethane		ND	5	5.0	1.00		
Chloroform		ND	5	5.0	1.00		
Chloromethane		ND	2	25	1.00		
2-Chlorotoluene		ND	5	5.0	1.00		
4-Chlorotoluene		ND	5	5.0	1.00		
Dibromochloromethane		ND	5	5.0	1.00		
1,2-Dibromo-3-Chloropropane		ND	1	10	1.00		
1,2-Dibromoethane		ND	5	5.0	1.00		
Dibromomethane		ND	5	5.0	1.00		
1,2-Dichlorobenzene		ND	5	5.0	1.00		
1,3-Dichlorobenzene		ND	5	5.0	1.00		
1,4-Dichlorobenzene		ND	5	5.0	1.00		
Dichlorodifluoromethane		ND	5	5.0	1.00		
1,1-Dichloroethane		ND	5	5.0	1.00		
1,2-Dichloroethane		ND	5	5.0	1.00		
1,1-Dichloroethene		ND	5	5.0	1.00		
c-1,2-Dichloroethene		ND	5	5.0	1.00		
t-1,2-Dichloroethene		ND	5	5.0	1.00		
1,2-Dichloropropane		ND	5	5.0	1.00		
1,3-Dichloropropane		ND	5	5.0	1.00		
2,2-Dichloropropane		ND	5	5.0	1.00		

Calscience

Frey Environmental, Inc.		Date Received:		08/08/16
2817-A Lafayette Avenue	Work Order:	der: 16-08-0515		
Newport Beach, CA 92663-3715	Preparation:			EPA 5030C
		Method:		EPA 8260B
		Units:		ua/ka
Project: Anaheim Car Wash / 469-01				Page 41 of 48
Parameter	Result	RL	DF	Qualifiers
1,1-Dichloropropene	ND	5.0	1.00	
c-1,3-Dichloropropene	ND	5.0	1.00	
t-1,3-Dichloropropene	ND	5.0	1.00	
Ethylbenzene	ND	5.0	1.00	
2-Hexanone	ND	50	1.00	
Isopropylbenzene	ND	5.0	1.00	
p-Isopropyltoluene	ND	5.0	1.00	
Methylene Chloride	ND	50	1.00	
4-Methyl-2-Pentanone	ND	50	1.00	
Naphthalene	ND	50	1.00	
n-Propylbenzene	ND	5.0	1.00	
Styrene	ND	5.0	1.00	
1,1,1,2-Tetrachloroethane	ND	5.0	1.00	
1,1,2,2-Tetrachloroethane	ND	5.0	1.00	
Tetrachloroethene	ND	5.0	1.00	
Toluene	ND	5.0	1.00	
1,2,3-Trichlorobenzene	ND	10	1.00	
1,2,4-Trichlorobenzene	ND	5.0	1.00	
1,1,1-Trichloroethane	ND	5.0	1.00	
1,1,2-Trichloroethane	ND	5.0	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	50	1.00	
Trichloroethene	ND	5.0	1.00	
1,2,3-Trichloropropane	ND	5.0	1.00	
1,2,4-Trimethylbenzene	ND	5.0	1.00	
Trichlorofluoromethane	ND	50	1.00	
1,3,5-Trimethylbenzene	ND	5.0	1.00	
Vinyl Acetate	ND	50	1.00	
Vinyl Chloride	ND	5.0	1.00	
p/m-Xylene	ND	5.0	1.00	
o-Xylene	ND	5.0	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	5.0	1.00	
Tert-Butyl Alcohol (TBA)	ND	50	1.00	
Diisopropyl Ether (DIPE)	ND	10	1.00	
Ethyl-t-Butyl Ether (ETBE)	ND	10	1.00	
Tert-Amyl-Methyl Ether (TAME)	ND	10	1.00	
Ethanol	ND	250	1.00	
Surrogate	<u>Rec. (%)</u>	Control Limits	Qualifiers	
1,4-Bromofluorobenzene	95	60-132		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Return to Contents

Return to Contents

Analytical F	Report
--------------	--------

Frey Environmental, Inc.	Γ	Date Received:		08/08/16		
2817-A Lafayette Avenue	١	Nork Order:		16-08-0515		
Newport Beach, CA 92663-3715	F	Preparation:		EPA 5030C		
	ľ	Method:		EPA 8260B		
	ι		ug/kç			
Project: Anaheim Car Wash / 469-01				Page 42 of 48		
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>			
Dibromofluoromethane	99	63-141				
1,2-Dichloroethane-d4	93	62-146				
Toluene-d8	99	80-120				

1000	10000	
	101100	
QUISC		

Frey Environmental, Inc.	Date Received:	08/08/16
2817-A Lafayette Avenue	Work Order:	16-08-0515
Newport Beach, CA 92663-3715	CA 92663-3715 Preparation:	
	Method:	EPA 8260B
	Units:	ug/kg
Project: Anaheim Car Wash / 469-01		Page 43 of 48

Project: Ananeim Car Wash / 469-01

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-12-796-11560	N/A	Solid	GC/MS OO	08/08/16	08/09/16 05:29	160808L037
Parameter		Result		RL	DF	Qua	lifiers
Acetone		ND		12000	50.0		
Benzene		ND		500	50.0		
Bromobenzene		ND		500	50.0		
Bromochloromethane		ND		500	50.0		
Bromodichloromethane		ND		500	50.0		
Bromoform		ND		500	50.0		
Bromomethane		ND		2500	50.0		
2-Butanone		ND		5000	50.0		
n-Butylbenzene		ND		500	50.0		
sec-Butylbenzene		ND		500	50.0		
tert-Butylbenzene		ND		500	50.0		
Carbon Disulfide		ND		5000	50.0		
Carbon Tetrachloride		ND		500	50.0		
Chlorobenzene		ND		500	50.0		
Chloroethane		ND		500	50.0		
Chloroform		ND		500	50.0		
Chloromethane		ND		2500	50.0		
2-Chlorotoluene		ND		500	50.0		
4-Chlorotoluene		ND		500	50.0		
Dibromochloromethane		ND		500	50.0		
1,2-Dibromo-3-Chloropropane		ND		1000	50.0		
1,2-Dibromoethane		ND		500	50.0		
Dibromomethane		ND		500	50.0		
1,2-Dichlorobenzene		ND		500	50.0		
1,3-Dichlorobenzene		ND		500	50.0		
1,4-Dichlorobenzene		ND		500	50.0		
Dichlorodifluoromethane		ND		500	50.0		
1,1-Dichloroethane		ND		500	50.0		
1,2-Dichloroethane		ND		500	50.0		
1,1-Dichloroethene		ND		500	50.0		
c-1,2-Dichloroethene		ND		500	50.0		
t-1,2-Dichloroethene		ND		500	50.0		
1,2-Dichloropropane		ND		500	50.0		
1,3-Dichloropropane		ND		500	50.0		
2,2-Dichloropropane		ND		500	50.0		

Calscience

Frey Environmental, Inc.		Date Received:		08/08/16		
2817-A Lafayette Avenue		Work Order:		16-08-0515 EPA 5030C		
Newport Beach, CA 92663-3715		Preparation:				
		Method:		EPA 8260B		
		Units:		ua/ka		
Project: Anaheim Car Wash / 469-01				Page 44 of 48		
Parameter	Result	RL	DF	Qualifiers		
1,1-Dichloropropene	ND	500	50.0			
c-1,3-Dichloropropene	ND	500	50.0			
t-1,3-Dichloropropene	ND	500	50.0			
Ethylbenzene	ND	500	50.0			
2-Hexanone	ND	5000	50.0			
Isopropylbenzene	ND	500	50.0			
p-Isopropyltoluene	ND	500	50.0			
Methylene Chloride	ND	5000	50.0			
4-Methyl-2-Pentanone	ND	5000	50.0			
Naphthalene	ND	5000	50.0			
n-Propylbenzene	ND	500	50.0			
Styrene	ND	500	50.0			
1,1,1,2-Tetrachloroethane	ND	500	50.0			
1,1,2,2-Tetrachloroethane	ND	500	50.0			
Tetrachloroethene	ND	500	50.0			
Toluene	ND	500	50.0			
1,2,3-Trichlorobenzene	ND	1000	50.0			
1,2,4-Trichlorobenzene	ND	500	50.0			
1,1,1-Trichloroethane	ND	500	50.0			
1,1,2-Trichloroethane	ND	500	50.0			
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	5000	50.0			
Trichloroethene	ND	500	50.0			
1,2,3-Trichloropropane	ND	500	50.0			
1,2,4-Trimethylbenzene	ND	500	50.0			
Trichlorofluoromethane	ND	5000	50.0			
1,3,5-Trimethylbenzene	ND	500	50.0			
Vinyl Acetate	ND	5000	50.0			
Vinyl Chloride	ND	500	50.0			
p/m-Xylene	ND	500	50.0			
o-Xylene	ND	500	50.0			
Methyl-t-Butyl Ether (MTBE)	ND	500	50.0			
Tert-Butyl Alcohol (TBA)	ND	5000	50.0			
Diisopropyl Ether (DIPE)	ND	1000	50.0			
Ethyl-t-Butyl Ether (ETBE)	ND	1000	50.0			
Tert-Amyl-Methyl Ether (TAME)	ND	1000	50.0			
Ethanol	ND	25000	50.0			
Surrogate	<u>Rec. (%)</u>	Control Limits	Qualifiers			
1,4-Bromofluorobenzene	98	60-132				

Return to Contents

Toluene-d8

Frey Environmental, Inc.	Da	te Received:		08/08/16		
2817-A Lafayette Avenue	Wo	ork Order:		16-08-0515		
Newport Beach, CA 92663-3715	Pre	eparation:		EPA 5030C		
	Me	Method:				
	Un	iits:		ug/kg		
Project: Anaheim Car Wash / 469-01				Page 45 of 48		
<u>Surrogate</u>	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>			
Dibromofluoromethane	97	63-141				
1,2-Dichloroethane-d4	90	62-146				

80-120

99

Frey Environmental, Inc.	Date Received:	08/08/16
2817-A Lafayette Avenue	Work Order:	16-08-0515
Newport Beach, CA 92663-3715	92663-3715 Preparation:	
	Method:	EPA 8260B
	Units:	ug/kg
Project: Anaheim Car Wash / 469-01		Page 46 of 48

Project: Anaheim Car Wash / 469-01

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-12-796-11561	N/A	Solid	GC/MS OO	08/09/16	08/09/16 16:55	160809L023
Parameter		<u>Result</u>		RL	DF	Qua	lifiers
Acetone		ND		12000	50.0		
Benzene		ND		500	50.0		
Bromobenzene		ND		500	50.0		
Bromochloromethane		ND		500	50.0		
Bromodichloromethane		ND		500	50.0		
Bromoform		ND		500	50.0		
Bromomethane		ND		2500	50.0		
2-Butanone		ND		5000	50.0		
n-Butylbenzene		ND		500	50.0		
sec-Butylbenzene		ND		500	50.0		
tert-Butylbenzene		ND		500	50.0		
Carbon Disulfide		ND		5000	50.0		
Carbon Tetrachloride		ND		500	50.0		
Chlorobenzene		ND		500	50.0		
Chloroethane		ND		500	50.0		
Chloroform		ND		500	50.0		
Chloromethane		ND		2500	50.0		
2-Chlorotoluene		ND		500	50.0		
4-Chlorotoluene		ND		500	50.0		
Dibromochloromethane		ND		500	50.0		
1,2-Dibromo-3-Chloropropane		ND		1000	50.0		
1,2-Dibromoethane		ND		500	50.0		
Dibromomethane		ND		500	50.0		
1,2-Dichlorobenzene		ND		500	50.0		
1,3-Dichlorobenzene		ND		500	50.0		
1,4-Dichlorobenzene		ND		500	50.0		
Dichlorodifluoromethane		ND		500	50.0		
1,1-Dichloroethane		ND		500	50.0		
1,2-Dichloroethane		ND		500	50.0		
1,1-Dichloroethene		ND		500	50.0		
c-1,2-Dichloroethene		ND		500	50.0		
t-1,2-Dichloroethene		ND		500	50.0		
1,2-Dichloropropane		ND		500	50.0		
1,3-Dichloropropane		ND		500	50.0		
2,2-Dichloropropane		ND		500	50.0		

Calscience

Frey Environmental, Inc.		Date Received:		08/08/16		
2817-A Lafayette Avenue		Work Order:		16-08-0515 EPA 5030C		
Newport Beach, CA 92663-3715		Preparation:				
		Method:		EPA 8260B		
		Units:		ua/ka		
Project: Anaheim Car Wash / 469-01				Page 47 of 48		
Parameter	Result	RL	DF	Qualifiers		
1,1-Dichloropropene	ND	500	50.0			
c-1,3-Dichloropropene	ND	500	50.0			
t-1,3-Dichloropropene	ND	500	50.0			
Ethylbenzene	ND	500	50.0			
2-Hexanone	ND	5000	50.0			
Isopropylbenzene	ND	500	50.0			
p-Isopropyltoluene	ND	500	50.0			
Methylene Chloride	ND	5000	50.0			
4-Methyl-2-Pentanone	ND	5000	50.0			
Naphthalene	ND	5000	50.0			
n-Propylbenzene	ND	500	50.0			
Styrene	ND	500	50.0			
1,1,1,2-Tetrachloroethane	ND	500	50.0			
1,1,2,2-Tetrachloroethane	ND	500	50.0			
Tetrachloroethene	ND	500	50.0			
Toluene	ND	500	50.0			
1,2,3-Trichlorobenzene	ND	1000	50.0			
1,2,4-Trichlorobenzene	ND	500	50.0			
1,1,1-Trichloroethane	ND	500	50.0			
1,1,2-Trichloroethane	ND	500	50.0			
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	5000	50.0			
Trichloroethene	ND	500	50.0			
1,2,3-Trichloropropane	ND	500	50.0			
1,2,4-Trimethylbenzene	ND	500	50.0			
Trichlorofluoromethane	ND	5000	50.0			
1,3,5-Trimethylbenzene	ND	500	50.0			
Vinyl Acetate	ND	5000	50.0			
Vinyl Chloride	ND	500	50.0			
p/m-Xylene	ND	500	50.0			
o-Xylene	ND	500	50.0			
Methyl-t-Butyl Ether (MTBE)	ND	500	50.0			
Tert-Butyl Alcohol (TBA)	ND	5000	50.0			
Diisopropyl Ether (DIPE)	ND	1000	50.0			
Ethyl-t-Butyl Ether (ETBE)	ND	1000	50.0			
Tert-Amyl-Methyl Ether (TAME)	ND	1000	50.0			
Ethanol	ND	25000	50.0			
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>			
1,4-Bromofluorobenzene	100	60-132				

Return to Contents

Toluene-d8

100

Frey Environmental, Inc.	Da	Date Received:				
2817-A Lafayette Avenue	Wo	ork Order:		16-08-0515		
Newport Beach, CA 92663-3715	Pre	eparation:		EPA 5030C		
	Me	Method:				
	Un		ug/kg			
Project: Anaheim Car Wash / 469-01				Page 48 of 48		
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>			
Dibromofluoromethane	97	63-141				
1,2-Dichloroethane-d4	93	62-146				

80-120

🔅 eurofins

Quality Control - Spike/Spike Duplicate

Frey Environmental, Inc.				Date I	Received					08/08/16
2817-A Lafayette Avenue				Work	Order:				16	6-08-0515
Newport Beach, CA 92663-37	715			Prepa	ration:		EPA 5030			
				Metho	od:		EPA 8015B (M)			
Project: Anaheim Car Wash /	469-01								Page 1	of 5
Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepared	Date Anal	yzed	MS/MSD Bat	ch Number
16-08-0634-2	Sample		Solid	GC	24	08/09/16	08/10/16 ⁻	12:31	160810S004	
16-08-0634-2	Matrix Spike		Solid	GC	24	08/09/16	08/10/16 ⁻	13:37	160810S004	
16-08-0634-2	Matrix Spike	Duplicate	Solid	GC	24	08/09/16	08/10/16	14:10	160810S004	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> %Rec.	<u>MSD</u> Conc.	<u>MSD</u> %Rec.	%Rec. CL	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>
TPH as Gasoline	ND	10.00	10.73	107	8.602	86	48-114	22	0-23	

RPD: Relative Percent Difference. CL: Control Limits

🔅 eurofins

Quality Control - Spike/Spike Duplicate

Frey Environmental, Inc.				Date F	Received					08/08/16
2817-A Lafayette Avenue				Work	Order:				16	6-08-0515
Newport Beach, CA 92663-37	715			Prepa	Preparation: EPA 50					PA 5030C
				Metho	d:		EPA 8015B (M)			
Project: Anaheim Car Wash /	469-01								Page 2	of 5
Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepared	Date Anal	yzed	MS/MSD Bat	ch Number
16-08-0904-2	Sample		Solid	GC	24	08/12/16	08/12/16 1	11:10	160812L012	
16-08-0904-2	Matrix Spike		Solid	GC	24	08/12/16	08/12/16 1	13:55	160812L012	
16-08-0904-2	Matrix Spike	Duplicate	Solid	GC	24	08/12/16	08/12/16 1	14:28	160812L012	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> %Rec.	<u>MSD</u> Conc.	<u>MSD</u> %Rec.	%Rec. CL	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>
TPH as Gasoline	ND	10.00	9.832	98	8.465	85	48-114	15	0-23	

Return to Contents

RPD: Relative Percent Difference. CL: Control Limits

🛟 eurofins

Calscience

Frey Environmental, Inc.	Date Received:	08/08/16
2817-A Lafayette Avenue	Work Order:	16-08-0515
Newport Beach, CA 92663-3715	Preparation:	EPA 5030C
	Method:	EPA 8260B
Project: Anaheim Car Wash / 469-01		Page 3 of 5

Quality Control Sample ID	Туре		Matrix	Instr	ument	Date Prepare	d Date Ana	lyzed I	MS/MSD Bat	ch Number
VE10-5	Sample		Solid	GC/I	NS OO	08/08/16	08/08/16	18:00 [·]	160808S010	
VE10-5	Matrix Spike		Solid	GC/I	NS OO	08/08/16	08/08/16	18:27 [·]	160808S010	
VE10-5	Matrix Spike	Duplicate	Solid	GC/I	NS OO	08/08/16	08/08/16	18:54 ·	160808S010	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> %Rec.	<u>MSD</u> Conc.	<u>MSD</u> %Rec.	<u>%Rec. CL</u>	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>
Benzene	ND	50.00	43.49	87	44.46	89	61-127	2	0-20	
Carbon Tetrachloride	ND	50.00	41.37	83	41.62	83	51-135	1	0-29	
Chlorobenzene	ND	50.00	41.33	83	43.05	86	57-123	4	0-20	
1,2-Dibromoethane	ND	50.00	42.72	85	46.68	93	64-124	9	0-20	
1,2-Dichlorobenzene	ND	50.00	41.23	82	43.46	87	35-131	5	0-25	
1,2-Dichloroethane	ND	50.00	39.44	79	41.07	82	80-120	4	0-20	3
1,1-Dichloroethene	ND	50.00	42.64	85	43.01	86	47-143	1	0-25	
Ethylbenzene	ND	50.00	42.32	85	42.52	85	57-129	0	0-22	
Toluene	ND	50.00	43.31	87	44.94	90	63-123	4	0-20	
Trichloroethene	ND	50.00	44.11	88	45.61	91	44-158	3	0-20	
Vinyl Chloride	ND	50.00	57.95	116	61.05	122	49-139	5	0-47	
p/m-Xylene	ND	100.0	83.30	83	85.03	85	70-130	2	0-30	
o-Xylene	ND	50.00	41.80	84	42.72	85	70-130	2	0-30	
Methyl-t-Butyl Ether (MTBE)	ND	50.00	47.49	95	50.38	101	57-123	6	0-21	
Tert-Butyl Alcohol (TBA)	ND	250.0	231.8	93	239.3	96	30-168	3	0-34	
Diisopropyl Ether (DIPE)	ND	50.00	46.64	93	48.63	97	57-129	4	0-20	
Ethyl-t-Butyl Ether (ETBE)	ND	50.00	46.43	93	48.82	98	55-127	5	0-20	
Tert-Amyl-Methyl Ether (TAME)	ND	50.00	44.93	90	47.50	95	58-124	6	0-20	
Ethanol	ND	500.0	469.5	94	460.7	92	17-167	2	0-47	

🛟 eurofins

Calscience

Frey Environmental, Inc.	Date Received:	08/08/16
2817-A Lafayette Avenue	Work Order:	16-08-0515
Newport Beach, CA 92663-3715	Preparation:	EPA 5030C
	Method:	EPA 8260B
Project: Anaheim Car Wash / 469-01		Page 4 of 5

Quality Control Sample ID	Туре		Matrix	Instru	ment	Date Prepared	d Date Ana	yzed I	MS/MSD Bat	ch Number
VE10-60	Sample		Solid	GC/N	IS OO	08/08/16	08/09/16	05:57 ´	160808S021	
VE10-60	Matrix Spike		Solid	GC/N	IS OO	08/08/16	08/09/16	06:24 ⁻	160808S021	
VE10-60	Matrix Spike	Duplicate	Solid	GC/N	IS OO	08/08/16	08/09/16	06:51 ´	160808S021	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> %Rec.	<u>MSD</u> Conc.	<u>MSD</u> %Rec.	%Rec. CL	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>
Benzene	ND	50.00	46.33	93	48.27	97	61-127	4	0-20	
Carbon Tetrachloride	ND	50.00	38.36	77	41.87	84	51-135	9	0-29	
Chlorobenzene	ND	50.00	44.00	88	43.63	87	57-123	1	0-20	
1,2-Dibromoethane	ND	50.00	45.78	92	44.73	89	64-124	2	0-20	
1,2-Dichlorobenzene	ND	50.00	42.38	85	42.59	85	35-131	0	0-25	
1,2-Dichloroethane	ND	50.00	39.21	78	40.42	81	80-120	3	0-20	3
1,1-Dichloroethene	ND	50.00	43.27	87	44.65	89	47-143	3	0-25	
Ethylbenzene	ND	50.00	44.01	88	44.98	90	57-129	2	0-22	
Toluene	ND	50.00	47.79	96	49.34	99	63-123	3	0-20	
Trichloroethene	ND	50.00	49.02	98	51.46	103	44-158	5	0-20	
Vinyl Chloride	ND	50.00	59.12	118	63.16	126	49-139	7	0-47	
p/m-Xylene	ND	100.0	90.20	90	91.17	91	70-130	1	0-30	
o-Xylene	ND	50.00	46.29	93	46.59	93	70-130	1	0-30	
Methyl-t-Butyl Ether (MTBE)	ND	50.00	51.25	103	51.35	103	57-123	0	0-21	
Tert-Butyl Alcohol (TBA)	ND	250.0	240.1	96	235.6	94	30-168	2	0-34	
Diisopropyl Ether (DIPE)	ND	50.00	48.60	97	49.85	100	57-129	3	0-20	
Ethyl-t-Butyl Ether (ETBE)	ND	50.00	49.08	98	49.66	99	55-127	1	0-20	
Tert-Amyl-Methyl Ether (TAME)	ND	50.00	47.06	94	46.98	94	58-124	0	0-20	
Ethanol	ND	500.0	491.5	98	453.7	91	17-167	8	0-47	

Return to Contents

🛟 eurofins

Frey Environmental, Inc.	Date Received:	08/08/16
2817-A Lafayette Avenue	Work Order:	16-08-0515
Newport Beach, CA 92663-3715	Preparation:	EPA 5030C
	Method:	EPA 8260B
Project: Anaheim Car Wash / 469-01		Page 5 of 5

Quality Control Sample ID	Туре		Matrix	Instr	ument	Date Prepare	d Date Ana	lyzed	MS/MSD Bat	tch Number
16-08-0633-1	Sample		Solid	GC/	MS OO	08/09/16	08/09/16	18:05	160809S011	
16-08-0633-1	Matrix Spike		Solid	GC/	MS OO	08/09/16	08/09/16	19:27	160809S011	
16-08-0633-1	Matrix Spike	Duplicate	Solid	GC/	MS OO	08/09/16	08/09/16	19:54	160809S011	
Parameter	<u>Sample</u> Conc.	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> %Rec.	<u>MSD</u> Conc.	<u>MSD</u> %Rec.	<u>%Rec. CL</u>	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>
Benzene	ND	50.00	34.94	70	37.18	74	61-127	6	0-20	
Carbon Tetrachloride	ND	50.00	32.63	65	35.84	72	51-135	9	0-29	
Chlorobenzene	ND	50.00	30.95	62	32.50	65	57-123	5	0-20	
1,2-Dibromoethane	ND	50.00	24.49	49	26.11	52	64-124	6	0-20	3
1,2-Dichlorobenzene	ND	50.00	27.36	55	29.21	58	35-131	7	0-25	
1,2-Dichloroethane	ND	50.00	24.39	49	25.91	52	80-120	6	0-20	3
1,1-Dichloroethene	ND	50.00	35.81	72	39.50	79	47-143	10	0-25	
Ethylbenzene	ND	50.00	33.82	68	35.43	71	57-129	5	0-22	
Toluene	ND	50.00	35.68	71	38.25	76	63-123	7	0-20	
Trichloroethene	ND	50.00	35.61	71	38.39	77	44-158	8	0-20	
Vinyl Chloride	ND	50.00	54.49	109	52.20	104	49-139	4	0-47	
p/m-Xylene	ND	100.0	66.38	66	68.88	69	70-130	4	0-30	3
o-Xylene	ND	50.00	32.01	64	33.28	67	70-130	4	0-30	3
Methyl-t-Butyl Ether (MTBE)	ND	50.00	26.77	54	28.88	58	57-123	8	0-21	3
Tert-Butyl Alcohol (TBA)	ND	250.0	104.4	42	105.3	42	30-168	1	0-34	
Diisopropyl Ether (DIPE)	ND	50.00	31.93	64	34.53	69	57-129	8	0-20	
Ethyl-t-Butyl Ether (ETBE)	ND	50.00	29.72	59	31.46	63	55-127	6	0-20	
Tert-Amyl-Methyl Ether (TAME)	ND	50.00	26.78	54	28.67	57	58-124	7	0-20	3
Ethanol	ND	500.0	234.0	47	231.6	46	17-167	1	0-47	

Frey Environmental, Inc.	Date Received:	08/08/16
2817-A Lafayette Avenue	Work Order:	16-08-0515
Newport Beach, CA 92663-3715	Preparation:	EPA 5030C
	Method:	EPA 8015B (M)
Project: Anaheim Car Wash / 469-01		Page 1 of 7

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-14-571-3181	LCS	Solid	GC 24	08/10/16	08/10/16 10:52	160810L014
Parameter		Spike Added	Conc. Recover	red LCS %Re	<u>. %Rec.</u>	<u>CL</u> <u>Qualifiers</u>
TPH as Gasoline		10.00	8.532	85	70-124	4

Frey Environmental, Inc.	Date Received:	08/08/16
2817-A Lafayette Avenue	Work Order:	16-08-0515
Newport Beach, CA 92663-3715	Preparation:	EPA 5030C
	Method:	EPA 8015B (M)
Project: Anaheim Car Wash / 469-01		Page 2 of 7

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-14-571-3184	LCS	Solid	GC 24	08/11/16	08/11/16 22:06	160812L011
Parameter		Spike Added	Conc. Recove	red LCS %Re	ec. <u>%Rec</u>	. CL Qualifiers
TPH as Gasoline		10.00	10.22	102	70-12	4

Frey Environmental, Inc.	Date Received:	08/08/16
2817-A Lafayette Avenue	Work Order:	16-08-0515
Newport Beach, CA 92663-3715	Preparation:	EPA 5030C
	Method:	EPA 8015B (M)
Project: Anaheim Car Wash / 469-01		Page 3 of 7

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-14-571-3186	LCS	Solid	GC 24	08/11/16	08/11/16 22:06	160812L012
Parameter		Spike Added	Conc. Recove	red LCS %Re	ec. <u>%Rec</u>	. CL Qualifiers
TPH as Gasoline		10.00	10.22	102	70-12-	4

Frey Environmental, Inc.	Date Received:	08/08/16
2817-A Lafayette Avenue	Work Order:	16-08-0515
Newport Beach, CA 92663-3715	Preparation:	EPA 5030C
	Method:	EPA 8260B
Project: Anaheim Car Wash / 469-01		Page 4 of 7

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared Da	ate Analyzed LO	CS Batch Number
099-12-796-11550	LCS	Solid	GC/MS OO	08/08/16 08	8/08/16 15:59 16	60808L017
Parameter	<u>Spike Ad</u>	lded <u>Conc. I</u>	Recovered LCS	<u>%Rec. %Rec.</u>	<u>. CL ME C</u>	<u>Qualifiers</u>
Benzene	50.00	55.42	111	78-120	0 71-12	27
Carbon Tetrachloride	50.00	58.04	116	49-139	9 34-15	54
Chlorobenzene	50.00	53.35	107	79-120	0 72-12	27
1,2-Dibromoethane	50.00	54.11	108	80-120	0 73-12	27
1,2-Dichlorobenzene	50.00	52.85	106	75-120	0 68-12	28
1,2-Dichloroethane	50.00	48.30	97	80-120	0 73-12	27
1,1-Dichloroethene	50.00	55.18	110	74-122	2 66-13	30
Ethylbenzene	50.00	55.22	110	76-120	0 69-12	27
Toluene	50.00	56.10	112	77-120	0 70-12	27
Trichloroethene	50.00	55.05	110	80-120	0 73-12	27
Vinyl Chloride	50.00	62.67	125	68-122	2 59-13	31 ME
p/m-Xylene	100.0	108.6	109	75-12	5 67-13	33
o-Xylene	50.00	54.40	109	75-12	5 67-13	33
Methyl-t-Butyl Ether (MTBE)	50.00	58.38	117	77-120	0 70-12	27
Tert-Butyl Alcohol (TBA)	250.0	299.3	120	68-122	2 59-13	31
Diisopropyl Ether (DIPE)	50.00	60.17	120	78-120	0 71-12	27
Ethyl-t-Butyl Ether (ETBE)	50.00	60.05	120	78-120	0 71-12	27
Tert-Amyl-Methyl Ether (TAME)	50.00	56.82	114	75-120	0 68-12	28
Ethanol	500.0	544.1	109	56-140	0 42-15	54

Total number of LCS compounds: 19 Total number of ME compounds: 1 Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

Frey Environmental, Inc.	Date Received:	08/08/16
2817-A Lafayette Avenue	Work Order:	16-08-0515
Newport Beach, CA 92663-3715	Preparation:	EPA 5030C
	Method:	EPA 8260B
Project: Anaheim Car Wash / 469-01		Page 5 of 7

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-12-796-11559	LCS	Solid	GC/MS OO	08/08/16	08/09/16 04:08	160808L036
Parameter	Spike Ac	dded <u>Conc.</u>	Recovered LCS	<u>%Rec. %Re</u>	ec. CL ME	<u>ECL</u> <u>Qualifiers</u>
Benzene	50.00	51.62	103	78-1	20 71	-127
Carbon Tetrachloride	50.00	43.90	88	49-1	39 34-	-154
Chlorobenzene	50.00	49.26	99	79-1	20 72-	-127
1,2-Dibromoethane	50.00	51.30	103	80-1	20 73-	-127
1,2-Dichlorobenzene	50.00	48.55	97	75-1	20 68·	-128
1,2-Dichloroethane	50.00	43.57	87	80-1	20 73-	-127
1,1-Dichloroethene	50.00	46.93	94	74-1	22 66-	-130
Ethylbenzene	50.00	49.08	98	76-1	20 69-	-127
Toluene	50.00	51.53	103	77-1	20 70-	-127
Trichloroethene	50.00	49.54	99	80-1	20 73-	-127
Vinyl Chloride	50.00	53.05	106	68-1	22 59·	-131
p/m-Xylene	100.0	96.36	96	75-1	25 67-	-133
o-Xylene	50.00	48.76	98	75-1	25 67-	-133
Methyl-t-Butyl Ether (MTBE)	50.00	53.90	108	77-1	20 70-	-127
Tert-Butyl Alcohol (TBA)	250.0	274.7	110	68-1	22 59·	-131
Diisopropyl Ether (DIPE)	50.00	54.02	108	78-1	20 71-	-127
Ethyl-t-Butyl Ether (ETBE)	50.00	54.86	110	78-1	20 71-	-127
Tert-Amyl-Methyl Ether (TAME)	50.00	53.32	107	75-1	20 68-	-128
Ethanol	500.0	570.2	114	56-1	40 42	-154

Total number of LCS compounds: 19 Total number of ME compounds: 0 Total number of ME compounds allowed: 1 LCS ME CL validation result: Pass

RPD: Relative Percent Difference. CL: Control Limits

Frey Environmental, Inc.	Date Received:	08/08/16
2817-A Lafayette Avenue	Work Order:	16-08-0515
Newport Beach, CA 92663-3715	Preparation:	EPA 5030C
	Method:	EPA 8260B
Project: Anaheim Car Wash / 469-01		Page 6 of 7

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Nu	mber
099-12-796-11560	LCS	Solid	GC/MS OO	08/08/16	08/09/16 04:08	160808L037	
Parameter	Spike Ac	lded <u>Conc.</u> I	Recovered LCS	<u>%Rec. %R</u>	ec. CL MI	<u>E CL</u>	Qualifiers
Benzene	50.00	51.62	103	78-	120 71	1-127	
Carbon Tetrachloride	50.00	43.90	88	49-1	139 34	1-154	
Chlorobenzene	50.00	49.26	99	79-	120 72	2-127	
1,2-Dibromoethane	50.00	51.30	103	80-	120 73	3-127	
1,2-Dichlorobenzene	50.00	48.55	97	75-7	120 68	3-128	
1,2-Dichloroethane	50.00	43.57	87	80-	120 73	3-127	
1,1-Dichloroethene	50.00	46.93	94	74-′	122 66	6-130	
Ethylbenzene	50.00	49.08	98	76-7	120 69	9-127	
Toluene	50.00	51.53	103	77-'	120 70)-127	
Trichloroethene	50.00	49.54	99	80-	120 73	3-127	
Vinyl Chloride	50.00	53.05	106	68-1	122 59	9-131	
p/m-Xylene	100.0	96.36	96	75-7	125 67	7-133	
o-Xylene	50.00	48.76	98	75-	125 67	7-133	
Methyl-t-Butyl Ether (MTBE)	50.00	53.90	108	77-′	120 70)-127	
Tert-Butyl Alcohol (TBA)	250.0	274.7	110	68-1	122 59	9-131	
Diisopropyl Ether (DIPE)	50.00	54.02	108	78-	120 71	1-127	
Ethyl-t-Butyl Ether (ETBE)	50.00	54.86	110	78-7	120 71	1-127	
Tert-Amyl-Methyl Ether (TAME)	50.00	53.32	107	75-	120 68	3-128	
Ethanol	500.0	570.2	114	56-	140 42	2-154	

Total number of LCS compounds: 19 Total number of ME compounds: 0 Total number of ME compounds allowed: 1 LCS ME CL validation result: Pass

RPD: Relative Percent Difference. CL: Control Limits

Frey Environmental, Inc.	Date Received:	08/08/16
2817-A Lafayette Avenue	Work Order:	16-08-0515
Newport Beach, CA 92663-3715	Preparation:	EPA 5030C
	Method:	EPA 8260B
Project: Anaheim Car Wash / 469-01		Page 7 of 7

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-12-796-11561	LCS	Solid	GC/MS OO	08/09/16	08/09/16 15:33	160809L023
Parameter	<u>Spike Ad</u>	Ided <u>Conc.</u>	Recovered LCS	<u>%Rec.</u> <u>%Re</u>	ec. CL ME	<u>CL</u> <u>Qualifiers</u>
Benzene	50.00	49.65	99	78-1	20 71-	-127
Carbon Tetrachloride	50.00	45.87	92	49-1	39 34-	-154
Chlorobenzene	50.00	47.46	95	79-1	20 72-	-127
1,2-Dibromoethane	50.00	49.77	100	80-1	20 73-	-127
1,2-Dichlorobenzene	50.00	47.32	95	75-1	20 68-	-128
1,2-Dichloroethane	50.00	42.80	86	80-1	20 73-	-127
1,1-Dichloroethene	50.00	47.69	95	74-1	22 66-	-130
Ethylbenzene	50.00	48.06	96	76-1	20 69-	-127
Toluene	50.00	49.45	99	77-1	20 70-	-127
Trichloroethene	50.00	47.68	95	80-1	20 73-	-127
Vinyl Chloride	50.00	49.52	99	68-1	22 59-	-131
p/m-Xylene	100.0	94.35	94	75-1	25 67-	-133
o-Xylene	50.00	47.66	95	75-1	25 67-	-133
Methyl-t-Butyl Ether (MTBE)	50.00	46.32	93	77-1	20 70-	-127
Tert-Butyl Alcohol (TBA)	250.0	255.4	102	68-1	22 59-	-131
Diisopropyl Ether (DIPE)	50.00	52.47	105	78-1	20 71-	-127
Ethyl-t-Butyl Ether (ETBE)	50.00	52.44	105	78-1	20 71-	-127
Tert-Amyl-Methyl Ether (TAME)	50.00	50.19	100	75-1	20 68-	-128
Ethanol	500.0	511.4	102	56-1	40 42-	-154

Total number of LCS compounds: 19 Total number of ME compounds: 0 Total number of ME compounds allowed: 1 LCS ME CL validation result: Pass

Work Order: 16-08-0515				Page 1 of 1
Method	Extraction	Chemist ID	Instrument	Analytical Location
EPA 8015B (M)	EPA 5030C	715	GC 24	2
EPA 8260B	EPA 5030C	849	GC/MS OO	2

Location 2: 7445 Lampson Avenue, Garden Grove, CA 92841

Glossary of Terms and Qualifiers

Work Order: 16-08-0515

Calscience Page 1 of 1 Qualifiers Definition * See applicable analysis comment. Less than the indicated value. < > Greater than the indicated value. Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further 1 clarification. 2 Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification. 3 Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control. 4 The MS/MSD RPD was out of control due to suspected matrix interference. 5 The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference. 6 Surrogate recovery below the acceptance limit. 7 Surrogate recovery above the acceptance limit. В Analyte was present in the associated method blank. ΒU Sample analyzed after holding time expired. ΒV Sample received after holding time expired. CI See case narrative. F Concentration exceeds the calibration range. ET Sample was extracted past end of recommended max. holding time. HD The chromatographic pattern was inconsistent with the profile of the reference fuel standard. HDH The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected). HDL The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected). J Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated. JA Analyte positively identified but quantitation is an estimate. LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean). ME ND Parameter not detected at the indicated reporting limit. Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike Q concentration by a factor of four or greater. SG The sample extract was subjected to Silica Gel treatment prior to analysis. Х % Recovery and/or RPD out-of-range. Ζ Analyte presence was not confirmed by second column or GC/MS analysis. Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis. Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time. A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

Calscience	Environmental Labor	atories, Inc.											СН	IAIN	10	FC	บรา	FOD	Y R	ECC	SRE	כ
7440 Linc	oln Way rove, CA 92841-1427												Date)	8/	5/11	6					_
TEL: (714)	895-5494 • FAX: (714) 894-7	501											Page	e	l		c	of	l	2		
ABORATORY CLIENT: FREY I	ENVIRONMENTAL, INC.				CLII		ROJEC	T NA	ME / N	UMBE	ER:	ila	-	,		P.O.	NO.:					
DDRESS: 2817-0						JECT	CONT	r L	ar V	Vers	n/r	161	-0			LAB	USE C	NLY				
ITY	ST.	ATE		ZIP	-	Ke	nt	Tu	cher	~						16				51	5	
	DRT BEACH, (CA	92663	3-3715	SAN	1PLER	:(S): (P	RINT))		С	OELT	LOG	CODE	Ξ	coo	LER R	ECEII	ग			
949/723-1645	949/723/1854	ent Tucher	@freyi	nc.com	_	Sd	m E	>ou	4	Concentration of						TEM	P=			(1998) (1997) (1997)	°(С
				5			90094410000949440000			REC	QUE	ST	ED	A		LYS	SES	;				2010/07402200
		LASDATS L			-			T		Τ	ھ ا		Ĩ		(Ĩ	Ī	T			
					_			ŝ			UC01				(801	(B)		15)				
		`			5		1B)	3021	TES		B) E) or ((601		Ę F				
GID #	2 1 060544912	5			15		(802	NS (8	ENA.		826(0			504.1	LAS		V) or				
EDF Requ	And				N		TBE	2BO	ΥGI	60B)	35 /	2700	81A)	32)	CP (E	MEJ	<u>(</u>)	-14/				
			1		- O	(D) o	(/ M	CAF	0)	\$ (82	s+(5(Cs (8	(81	(80	/ DB(T22	; (83	DT (
AB ISE GEIMS ID	SAMPLE ID	SAMPLING	MAT	TRIX OF	H	H	BTE	HALO	BTE	Ň	ΛΟÇ	SVO	PESI	PCB	EDB	CAC,	PNA	ŐŐ				
1	& VG10-5	B/5/16 9	:10 4	5 1	X					X												
2		Q:	16		11					1												
3	-15	9:	22																			
4	-20	9:	26																			
3	-25	9:	130		$\uparrow\uparrow$																	
	-30	9:	35																			
2 7	-38	92	43																			
R I	-40	9;	50																			
9	-45	91	55			<u> </u>																
p	1 .50	10			十,	<u> </u>																Personal de la companya de la
Relinquished by: (Signature)		<u> </u>	Received	by (Sign	1 Y ture/A	I ffjilig/ig	n)			\mathcal{A}		l		ł	Date	⊨ ∍: ⊘	· · · · ·	ŕ	Time	L .:		
			1	JU	-2	Yl	4								$\underline{\mathcal{B}}$	<u></u>	$-\mathcal{H}$	د		<u>2/02</u>	2	
Kelinguished by isignature	2			ady: (Signa	iture/A	miatio	on) ∕					i	Ð	1	B	•-8-	-16		12	38		
Relinquished by: (Signature)			Received	by: (Signa	ture A	ffiliatio	on)							·	Date	э:	-		Time			
	a with final conset. One and Maller	i ta Cliant		******		***				•]	05/0	1/07 5		

Please note that pages 1 and 2 of 2 of our T/Cs are printed on the reverse side of the green and yellow conies respectively.

Calscience E	Environmental Labor	atories, I	nc.										C	:HA	NC	FC	UST	ΓOD	YR	ECC	ORD
7440 Linco Garden Gro TEL: (714) 8	In Way ove, CA 92841-1427 95-5494 • FAX: (714) 894-75	601											D P	ate		8/4 2	5/16	S	Ź	2	
BORATORY CLIENT:						CLIE		ROJEC	TNA	VE / N	JMBEI	र:	····· ···· ·	<u> </u>		P.O.	NO.:				
DRESS:	NVIRONMENTAL, INC.						An	where	n L	ar W	ash	14	9-0	1					-		
2817-A I	LAFAYETTE AVENUE			711	D	PRO		CONT	ACT:	· r		•					OSE C	- 17	١đ	ГЛ	P
NEWPO	RT BEACH, C	A	92	2663-37	715	SAM	PLER	۲ <u>۳ گی</u> (S): (P	Iv RINT)	whie		co	ELT LO	G CO	DE			RECEIF	<u>। प</u> ग		<u> </u>
.: 949/723-1645	X: E-Ma 949/723/1854	Katt	ucker @	freyinc.	com		5	olm.	Ś.	"G	5275 ¹					TEN	1P=				°C
RNAROUND TIME: SAME DAY 24 HR	48 HR 72 HR	5 DAYS	🗌 10 C	DAYS						F	EQ	UE	STE	DA	NA	LY	SES)			
CIAL REQUIREMENTS (ADDIT	IONAL COSTS MAY APPLY)											Core			8011)) (8)		5)			
ECIAL INSTRUCTIONS:						٦ ک		â	021B	ШS		B) El) or ((601		5			
\langle	1					Š		8021	IS (8	INAT		8260			04.1	ALS		() or (
Dec	puge					00		LBE (BON	YGE	30B)	35/	2/00		CP (5	MET	(0)	-14A			-
	•	1907 - 1907 - 1907 - 1907 - 1907 - 1907 - 1907 - 1907 - 1907 - 1907 - 1907 - 1907 - 1907 - 1907 - 1907 - 1907 -		-		. O	D) 0	LW /	CAF	Ô	82(; (50	.S (8)		DBC	T22	(831	б То			
B E GEIMS ID Y	SAMPLE ID	DATE	PLING TIME	MATRIX	NO. OF CONT.	TPH (TPH (BTEX	HALC	BTEX	VOCS	VOCS	SVU(D D D D D D D D D D D D D D D D D D D	EDB	CAC,	PNAs	VOCS			
/	V610-55	8/5/16	10622	5	1	X					X										
	1, -60	L	10:25	J	1	\downarrow					de la										
		/				 															
				1																	
															-	1					
elinquished by: (Signature)			Rece	ived by:	(Signat	ure/Af	finatio	2 2 2		l			L		Da				Time	00	<u>_</u>
elinquished by: (Signature)	No.		Rece	ived by:	(Signat	ure/Al	filiatio			71			13	1		te:	-16	p	Time	20)
elinquished by: (Signature)			Rece	ived by:	(Signat	ure/Al	ffiliatig	h)	/					/	Da	te:	1*		Time		
DISTRIBUTION: White	with final report, Green and Yellow	to Client.			1			•				****							05/0	1/07 R	evisio

4 ,

🔹 eurofins 🛛 👘 🗸 v		NUMBER:	16-08	ge 74 c	5515
Calscience SAMPLE RECEIPT CH	HECKLIST	с	OOLER		OF _/
CLIENT: Frey Env'l.		DA	ге: 08 /	08	/ 2016
TEMPERATURE: (Criteria: 0.0°C – 6.0°C, not frozen except sediment Thermometer ID: SC2A (CF: 0.0°C); Temperature (w/o CF): □ Sample(s) outside temperature criteria (PM/APM contacted by: □ Sample(s) outside temperature criteria but received on ice/chilled	t/tissue) °C (w/ CF): <u>3</u>) d on same day of	َڪ°C; ا sampling	Blank	□ San	nple
□ Sample(s) received at ambient temperature; placed on ice for transp Ambient Temperature: □ Air □ Filter	port by courier		Checke	d by: _	836
CUSTODY SEAL: Cooler □ Present and Intact □ Present but Not Intact □ Sample(s) □ Present and Intact □ Present but Not Intact □	2 Not Present 2 Not Present	□ N/A □ N/A	Checke Checke	d by: _ d by: _	826
SAMPLE CONDITION: Chain-of-Custody (COC) document(s) received with samples COC document(s) received complete Sampling date Sampling time Matrix Number of conta	ainers		Yes I I I	No □ □	N/A
Sampler's name indicated on COC Sample container label(s) consistent with COC Sample container(s) intact and in good condition Proper containers for analyses requested Sufficient volume/mass for analyses requested Samples received within holding time			AAAAAA		
Aqueous samples for certain analyses received within 15-minute ho pH Residual Chlorine Dissolved Sulfide Dissolved Ox Proper preservation chemical(s) noted on COC and/or sample contained Unpreserved aqueous sample(s) received for certain analyses	olding time xygen er				Þ Þ
Container(s) for certain analysis free of headspace	Oxygen (SM 450 ogen Sulfide (Had)()) (h)			
Tedlar™ bag(s) free of condensation					ø
CONTAINER TYPE:Aqueous: \lor VOA \lor VOAh \lor VOAna2 \Box 100PJ \Box 100PJna2 \Box 12 \Box 125PBznna \Box 250AGB \Box 250CGB \Box 250CGBs \Box 250PB \Box 250 \Box 500PB \Box 1AGB \Box 1AGBna2 \Box 1AGBs \Box 1PB \Box 1PBna $____$ Solid: \Box 4ozCGJ \Box 8ozCGJ \Box 16ozCGJ \Box Sleeve $\bigcirc_$ \bigcirc Air: \Box Tedlar TM \Box Canister \Box Sorbent Tube \Box PUF $__$ OContainer:A = Amber, B = Bottle, C = Clear, E = Envelope, G = Glass, J = JanPreservative:b = buffered, f = filtered, h = HCl, n = HNO3, na = NaOH, na2 = D	(Trip Blank 25AGB □ 125AG 0PBn □ 500AGE ores [®] () □ □ 0ther Matrix (r, P = Plastic, and 2 Na ₂ S ₂ O ₃ , p = H ₃ PC	x Lot Number Bh □ 125A 3 □ 500AGJ □ TerraCores®): □ z = Ziploc/Res 4, Labeled	GBp 1 GBp 500A () 1 ealable Ba d/Checked Review	25PB GJs g d by:) 876 1423

Return to Contents

i.

APPENDIX E

SOIL DISPOSAL MANIFEST

	Manifes	t	SOIL SAFE ON Non-Hazard			F CA – TPST lous Soils		↓ Manifest # ↓			
	Date of Shipment:	Responsible for Consa	Payment: .11:1::::::::::::::::::::::::::::::::	Tra	insport 7	Fruck #:	Facility #:		Approval Nun 04637	nber: 1	Load #
	Generator's Nemeand Billing Address STREET PAD INVESTORS, 111 MAIN STREET, "				85 ,	Generator's Phone #: Person to Contact:					
	STE 500 VANCOUVER, WA 92660				-	FAX#:		Customen Argung humber			
	Consultant's Name and Billing Address: FREY ENVIRUMMENTAL					Cônștilitant's Phone #:					
	2817 A LAFAYETTE AVE. NEWPORT DEACH, CA 92663					Person to Contact: EMBIL INVOICE to UNENLEDITEVI FAX#: Customer Account, Number					
	Generation Site (Transport from): (name & address)					Site Phone #:			1000	54313	
nt	900 WEST LINCOLN AVENUE				-	Person to Contact:					
onsulta	ANAXEIM, CA 92801				-	FAX#:					
d/or C	Designated Facility (Transport to): (name & address) SOIL SAFE OF CALIFORNIA "INC				_	Facility Phone #: Facility Phone #: 246-8001				·	
tor an	12328 XIBISCUS AVE				-	Person to Contact: JUI: HWIVANSAL					
enera	HIR:LARIU, CA V2301.					Transporter's Phone #:					
	PO BOX 104.10					Person to Contact:					
	SANTA ANA, CA 92711					FAX# PROBWAT		Customer Account Number			
	Description of Soil	Moisture Content	Contaminate	ed by:	Approx	. Qty: De	scription of Deliv	very	Gross Weight	Tare Weight	Net Weight
	Sand 🗆 Organic 🗆 Clay 🗆 Other 🗅	0 - 10% 10 - 20% 20% - over 0 - 10%	Gas Diesel Other		Hfo	ns			46740	39100	7640
	Sand Organic Clay Other Clay Other Strength Stre	10 - 20% 20% - over ted above:	Diesel Other				Scale Ticket #		100		3.89
	Consider a martine rest for the state of the										
	Generator's ana/or consultant's certification: I/VVe certify that the soil referenced Sheet completed and certified by me/us for the Generation Site shown above an in any way.						ein is taken entif thing has been a	dded or	n those soils d done to such	escried in th soil that we	ie Soil Data ould alter it
	Print or Type Name: Generator 🗆 Consultant 🗅 Sig					gnature and date: Month Day Year					
ansporter	Transporter's certification: I/We acknowledge receipt of the soil referenced above and certify that such soil is being delivered in exactly the same condition as when received. I/We further certify that the soil is being directly transported from the Generation Site to the Designated Facility without off-loading adding to, subtracting from or in any way delaying delivery to such site.										
12	Discrepancies:										
Facility											
sycling	Recycling Facility certifies the receipt of the soil covered by this manifest except as noted above: Print or Type Name: Signature and date:										
Rec	J. PROVANSAL /	D. BISHOP	∕ B. ME	EK			A	>	10)-12-	.16
Pleas	se print or type.					(0			

FACILITY COPY

APPENDIX F

SURVEYOR'S REPORT

RdM Surveying Inc											
23016 L Laguna (949) 8 RDMSUR	.ake Forest Hills, CA 92 358-2924 VEYING@COX.N	10000000000000000000000000000000000000	ADDRESS PROJECT:900 WEST LINCOLN AVE., JOB:(2-66) ANAHEIM DATE: 12/20/2006, 03/04/2012, 9/8/2016								
WELL #	NORTHING	EASTING	LATITUDE	LONGITUDE	ELEV. (PVC)	ELE∨. (RIM)					
B9	2,250,674.29	6,053,164.14	33.8326155	-117.9244859	NZA	N/A					
B10	2,250,608.38	6,053,118.95	33.8324324	-117.9246313	N/A	NZA					
MW1	2,250,665.36	6,053,144.19	33.8325901	-117.9245512	146.91	147.29					
MW2	2,250,642.35	6,053,100.33	33.8325249	-117.9246944	146.16	146.64					
MW3	2,250,621.22	6,053,114.80	33.8324675	-117.9246456	144.98	145.81					
VE1 VE1	2,250,650.44	6,053,128.13	33.8325484	-117.9246033	146.34 (D) 146.33 (S)	146.73					
VE2	2,250,670.61	6,053,119.33	33.8326034	-117.9246333	147.04 (D)	147.47					
VE2					147.02 (S)						
VE3 VE3	2,250,732.44	6,053,060.94	33.8327707	-117.9248288	146.50 (D) 146.33 (S)	146.81					
VE4	2,250,726.04	6,053,116.12	33.8327556	-117.9246468	146.13 (D)	146.65					
VE4					146.16 (S)						
VE5 VE5	2,250,681.40	6,053,127.43	33.8326334	-117.9246072	146.85 (S) 146.64 (D)	147.58					
VE6	2,250,636.31	6,053,076.85	33.8325073	-117.9247714	146.17 (S)	146.61					
COUNTY OF ORANGE BENCH MARK NUMBER 1A-142-90 BEING AN ALUMINUM BENCHMARK DISK STAMPED "1A-142-90", SET IN THE SOUTHEASTERLY CORNER OF A 4 FT. BY 6 FT. CONCRETE CATCH BASIN. MONUMENT IS LOCATED IN THE SOUTHEASTERLY CORNER OF THE INTERSECTION OF CITRON STREET AND BROADWAY, 50 FT. SOUTHERLY OF CENTERLINE OF BROADWAY AND 25 FT. EASTERLY OF CENTERLINE OF CITRON STREET. MONUMENT IS SET LEVEL WITH THE SIDEWALK WITH AN ELEVATION OF 145.176 GRRY ABOVE MEAN SEA LEVEL USING NAVD 88 DATUM.											
METHODOLOGY: MEASURED USING CONVENTIONAL DIFFERENTIAL LEVELING WITH A NON-DIGITAL, (FEDERAL GEODETIC CONTROL SUBCOMMITTEE, THIRD ORDER) BASED ON A MINIMUM OF 1 GEODETIC CONTROL POINT.											
USING A THALES GPS RECEIVER AND POST PROCESSING DATA USING REFERENCE STATIONS <u>CHAB</u> AND <u>PIN1</u>											

MONITORING WELLS

PAGE 2 DF 3

TO GET SUB-METER ACCURACY ON MONITORING WELLS. METHOD: USING REAL-TIME KINEMATIC (RTK) GPS SURVEY TECHNIQUE WITH 2 GEODETIC CONTROL POINTS BASED ON CALIFORNIA SPATIAL REFERENCE SYSTEM HORIZONTAL (CSRS-H), DATA COLLECTED IN REAL TIME.
RdM Su 23016 l Laguna (949) 8 RDMSUR	rveying Inc _ake Forest Hills, CA 92 358-2924 VEYING@CDX.N	Drive#409 653 f NET]	ADDRESS PRO. JOB:(2-66) DATE: 12/20/2	JECT:900 WES 2006, 03/04/2	ST LINCE A1 2012, 9/]LN A∨E., NAHEIM 8/2016
WELL #	NORTHING	EASTING	LATITUDE	LONGITUDE	ELEV. (PVC)	ELE∨. (RIM)
VE7	2,250,625.76	6,053,113.17	33.8324798	-117.9246512	N/A	N/A
VE8	2,250,640.04	6,053,109.50	33.8325189	-117.9246641	N/A	N/A
VE9	2,250,653.57	6,053,124.14	33.8325567	-117.9246165	N/A	N/A
CB1	2250646.47	6053098.89	33.8325362	117.9246993	N/A	N/A
CB5	2250647.41	6053118.24	33.8325396	117.9246357	N/A	N/A
CB3	2250669,05	6053142.76	33.8326001	117.9245561	N/A	N/A
CB4	2250673.11	6053118.89	33,8326103	117,9246349	N/A	N/A
CB5	2250624.49	6053118.36	33,8324766	117.9246341	N/A	N/A
VE10	2250642.35	6053105.43	33.8325251	117.9246776	146.29	146.60

MONITORING WELLS

PAGE 3 DF 3

APPENDIX G

BORING LOGS

Date drilled/completed	Boring depth
Geologist	Initial depth to water
Drilling equipment	Static depth to water
Surface elevation	Well screen depth
Top of casing elevation	Borehole diameter

SOIL DESCRIPTION

мс	DISTURE CONTENT	CONSISTENCY AND DENSITY (assumes Modified Standard Penetration Test)				
DRY	No perceptible moisture	Fine-grained soils (consistency)				
DAMP	Some perceptible moisture, no moisture remains on hands sfter squeezing	very soft 0 - 2 soft 2 - 4 firm 4 - 8 stiff 8 - 16				
MOIST	Perceptible moisture, moisture remains on hands after squeezing	very stiff 16 - 32 hard >32				
		Coarse-grained soil (relative density)				
WET	Some pore/voids filled with liquid, typical of capillary fringe	- blows/foot very loose 0 - 4				
SATURATED	All pores/voids filled with liquid, free liquid visible, typical of below ground water table	loose 4 - 10 medium-dense 10 - 30 dense 30 - 50 very dense over 50				

GRADING

Well Graded

Wide range of grain sizes and substantial amounts of all intermediate particle sizes

Poorly Graded

Predominantly one grain size or is obviously missing intermediate grain sizes

MODIFIERS						
trace	<5%					
minor	5 -12%					
some	12 - 20%					

PERCENTAGES										
5% . · ·	12%	20%	50%							

UNIFIED SOIL CLASSIFICATION SYSTEM (USCS)

	MAJOR DIVISIONS		Group Symbol	Graphic Symbol	GROUP NAME
		Clean Gravels	GW		Well-graded GRAVEL Well-graded GRAVEL with Sand
	Gravels		GP		Poorly-graded GRAVEL Poorly-graded GRAVEL with Sand
Coarse-grained Soils	coarse fraction retained on	Gravels with fines	GM		Silty GRAVEL Silty GRAVEL with Sand
More than 50%	10. 4 SIEVE		GC		Clayey GRAVEL Clayey GRAVEL with Sand
no. 200 sieve	Sands	Clean	sw		Well-graded SAND Well-graded SAND with Gravel
	More than 50% of coarse fraction	Sands	SP		Poorly-graded SAND Poorly-graded SAND with Gravel
	passes no. 4 sieve	Sands	SM		Silty SAND / Clayey SAND with Gravel
		with fines	SC		Silty SAND / Clayey SAND with Gravel
	Silts and Cl		ML		SILT / SILT with Sand or Gravel Sandy SILT / Sandy SILT with Gravel Gravelly SILT / Gravelly SILT with Sand
	Liquid limi	CL		Lean CLAY / Lean CLAY with Sand or Gravel Sandy lean CLAY / Sandy lean Clay with Gravel Gravelly lean CLAY / Gravelly lean CLAY with Sand	
Fine-grained Soils	50% or les	S	OL		Organic SILTS or organic CLAYS of low plasticity
50% or more passes no. 200 sieve	Silts and Cl	ave	МН		Elastic SILT / Elastic SILT with Sand or Gravel Sandy elastic SILT / Sandy elastic SILT with Gravel Gravelly elastic SILT / Gravelly elastic SILT with Sand
		t :0%	СН		Fat CLAY / Fat CLAY with Sand or Gravel Sandy fat CLAY / Sandy fat CLAY with Gravel Gravelly fat CLAY / Gravelly fat CLAY with Sand
	greater than 5	00%	ОН		Organic CLAYS or organic SILTS of medium to high plasticity
	Highly Organic Soils		РТ		PEAT, MUCK and other highly organic soils

SAMPLE TYPES

NOTES:

- Subsurface information from boring and test pit logs depict conditions only at the specific locations and dates indicated. Soil conditions and water levels at other locations may differ from conditions at these locations. Also the conditions at these locations may change with time.
- Blow counts on logs are the number of blows to drive the sampler 12 inches with a 140 pound hammer falling 30 inches unless otherwise specified.
- 3) USCS soil classification reference = ASTM Standard D2487-85.

	-First encountered groundwater in feet BGS
▼	-Post well construction water level in feet BGS and date

FREY ENVIRONMENTAL, INC.

BORING LOG LEGEND AND UNIFIED SOIL CLASSIFICATION SYSTEM

	201 10 201 10 201 10 201 10 201	1000 1000 1000 1000 1000 1000 1000 100	Manual Construction	2010 2011 2011 2011 2011 2011 2011 2011	001 2011 2011 2011 2011 2011 2011 2011		Contraction of the second seco	Contraction of the second
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 106 107 107 108 109 109 100 107 108 107 108 109 100 107 108 109 100 108 109 100 107 108 109 100 107 108 109 100 107 108 109 100 107 108 109 100 107 108 109 100 107 108 109 100 107 108 109 100 107 108 109 100 100 100 100 100 100 100 100 100	ND<0.50	<1	# 3 mesh Sand 4 inch dia. SCH 40 PVC 0.010" slot screen			M Olive brown, fine to coarse	wet, very dense, Silty, Sandy, graded GRAVELS	Figure No.
	Project N	lumber 4	169-01				B2/MW1	4

Date drilled/completed	April 23, 2003	Top of casing elevation	143.80 feet MSL	
Geologist	D. Reed	Boring depth	Approx. 110 feet BGS	
Drilling equipment	CME 85	Water depth	Approx. 97 feet BGS	
Surface elevation	144.28 feet MSL	Well screen depth	79.5 to 109.5 feet BGS	

Date drilled/completed	April 22, 2003	Top of casing elevation	144.67 feet MSL	
Geologist	D. Parcells	Boring depth	Approx. 95 feet BGS	
Drilling equipment	CME 85	Water depth	Approx. 93 feet BGS	
Surface elevation	145.11 feet MSL	Well screen depth	20 to 50 and 65 to 95 feet BGS	

	Date drilled/completed November 20, 2006 Geologist J. Moeller Drilling equipment CME 75 HSA 8" O. D. Surface elevation 146,61 feet MSL).		To Bo W	Top of casing elevation146.17 feet MSLBoring depthApprox. 81.5 feet BGSWater depthApprox. 73 feet BGSWell screen depth38 to 58 and 65 to 75 feet BGS			
Ceon	60,5 10,000	0 4 00 4 4 00 4 4 00 4	anno aco	M CON CON CON CON CON CON CON CON CON CON	100	000 Jugo	Son Courts	000 NO	2010 2010 2010 2010 2010 2010	Concernition of the second sec	Cescilian Distriction	12 Control	
0 - 1 -				Traffic bearing box Concrete						Concrete 6-inche	s thick	Post hole to 4 feet BGS	
2 3			22222 222222 222222	Volclay Grout									
4 5 6 7	ND<0.50	<1		2-inch dia. SCH 40 PVC blank	X	26	5		SP	Brown, dry, medi SAND	um dense, fine grained	▼ No petroleum hydrocarbon odor	
8 9 10	ND<0.50					23	10						
11 12 13 14						20	10						
14 15 16 17 - 18	ND<0.50	<1				45	15			Becomes light gr to fine grained	ay, damp, dense, medium		
19 20 21 22	ND<0.50	<1			X	35	20		ML	Olive, damp, har	d SILT	Vo petroleum hydrocarbon odor	
23 24 - 25 26 27 -	ND<0.50	13			X	43	25					• - - - -	
28 29												T	
30	Projec Projec	ct Nar ct Nur	ne nber	FORMER 469-01	AN	AHE	IM (CAF	WAS	Н	Log of Boring B11/VE6	Figure No. 1	

FREY ENVIRONMENTAL, INC.

_

Cott	Control Control Control Control		ooe (num	N C C C C C C C C C C C C C C C C C C C		NOLO TOC	Si CO	ON POL	0000 CO	ion interview in	in the second se	te mark
60 -		3,150		2-inch dia.		/ 🗸						Strong
61 —			· · · · · · · · · · · · · · · · · · ·	SCH 40 PVC 0.020"	X	15	60	· · · · · · · · ·	SP	grained SAND	num dense, fine to mealum	Petroleum Hydrocarbon
62 -				Slotted Screen						Bottom of boring	at 61.5 feet BGS	Odor
63 -												
64 —				Nominal								
65 -				Sieve Size Sand								
66 —												
67 —												
68 —												
69 —												
70 -												
71 —												
72 —												
73 –												
74 —												
75 -												
76 —												
77 –												
78 -												
79 -												
80 -												
81 -												
82 -												
83 —												
84 —												
85 —												
86 —												
87 —												
88 —												
89 —												
90 —	Project Project	Name Numl	e Der	FORMER 469-01	X A	NAH	IEII	мс	AR \	WASH	Log of Boring VE7	Figure No. 3

APPENDIX H

VAPOR INFLUENT SAMPLING LABORATORY REPORT

Baseline Analytical Services P. O. Box 2243 Huntington Beach, CA 92647

Telephone: 714.273.2955

Laboratory Report

Client: FREY Environmental, Inc. Client Address: 2817-A Lafayette Avenue Newport Beach, California 92663

Project Name: Anaheim Car Wash Project Address: 900 N. Lincoln Avenue Anaheim, California Contact: Kent Tucker Report Date: 8/30/16 Lab Project Number: 16292 Client Project Number: 469-01

> Dates Sampled: 8/23/16 Dates Received: 8/23/16 Dates Analyzed: 8/24/16 Sample Matrix: Vapor

Analyses Requested:

1. EPA 8015M – TPH as Gasoline

2. EPA 8260B – Volatile Aromatic Compounds (BTEX) and Fuel Oxygenates

Baseline received vapor samples collected from the project shown above. A Chain-of-Custody Record (COC) is attached.

The samples were analyzed for the parameters shown above per the COC. In this report, *Baseline* presents the results and a QA/QC summary for this analysis.

Brian & Ca

Approved Brian K. Kato, Laboratory Manager

Client: FREY Environmental, Inc. Client Address: 2817-A Lafayette Avenue Newport Beach, California 92663 Project Name: Anaheim Car Wash Project Address: 900 N. Lincoln Avenue Anaheim, California Contact: Kent Tucker

Report Date: 8/30/16 Lab Project Number: 16292 Client Project Number: 469-01 Dates Sampled: 8/23/16 Dates Received: 8/23/16 Dates Analyzed: 8/24/16 Sample Matrix: Vapor

TPH as Gasoline (TPH-G), Volatile Aromatic Compounds (BTEX), and Fuel Oxygenates Results

Sam	ple ID:	VE10 Start	VE10 Middle	VE10 End	Method Blank
	Units:	PPMV	PPMV	PPMV	PPMV
Dilutior	n Factor:	1	1	1	1
Compound Name	EPA Method				
TPH as Gasoline	8015M	170	310	370	 ND<5.0
Volatile Organic Compounds					
Benzene	8260B	3.4	5.3	7.2	ND<0.050
Toluene	8260B	6.6	11	16	ND<0.050
Ethylbenzene	8260B	0.20	0.83	1.1	ND<0.050
Total Xylenes	8260B	1.2	10	15	ND<0.050
Fuel Oxygenates					
Methyl t-Butyl Ether (MTBE)	8260B	3.9	8.8	10	ND<0.050
t-Butanol (TBA)	8260B	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Di-Isopropyl Ether (DIPE)	8260B	ND<0.050	ND<0.050	ND<0.050	ND<0.050
Ethyl t-Butyl Ether (ETBE)	8260B	ND<0.050	ND<0.050	ND<0.050	ND<0.050
t-Amyl Methyl Ether (TAME)	8260B	ND<0.050	ND<0.050	ND<0.050	ND<0.050
Ethanol	8260B	ND<5.0	ND<5.0	ND<5.0	ND<5.0

ND: Not detected at the indicated method detection limit; PPMV: Parts per Million by Volume

Client: FREY Environmental, Inc. Client Address: 2817-A Lafayette Avenue Newport Beach, California 92663

Project Name: Anaheim Car Wash Project Address: 900 N. Lincoln Avenue Anaheim, California Contact: Kent Tucker Report Date: 8/30/16 Lab Project Number: 16292 Client Project Number: 469-01

> Dates Sampled: 8/23/16 Dates Received: 8/23/16 Dates Analyzed: 8/24/16 Sample Matrix: Vapor

Constituent:	TPH-G	MTBE	Benzene	Toluene	Ethylbenzene	Total Xylenes
Method:	8015M	8260B	8260B	8260B	8260B	8260B
QC Parameter						
Result (PPMv)	370	10	7.2	16	1.1	15
Dup. Result (PPMv)	360	9.7	6.9	15	1.2	13
RPD (%)	3	3	4	8	6	11
QC Limits (%)	0-30	0-30	0-30	0-30	0-30	0-30

Quality Control Summary

QC Sample ID: VE10 End

MS: Matrix Spike; MSD: Matrix Spike Duplicate; RPD: Relative Percent Difference LCS/LCSD: Lab Control Sample/Duplicate

Laboratory Report (Units: µg/L)

Client: FREY Environmental, Inc. Client Address: 2817-A Lafayette Avenue Newport Beach, California 92663

Project Name: Anaheim Car Wash Project Address: 900 N. Lincoln Avenue Anaheim, California Contact: Kent Tucker Report Date: 8/30/16 Lab Project Number: 16292 Client Project Number: 469-01

> Dates Sampled: 8/23/16 Dates Received: 8/23/16 Dates Analyzed: 8/24/16 Sample Matrix: Vapor

TPH as Gasoline (TPH-G), Volatile Organic Compounds (VOC's), and Fuel Oxygenates Results

Sam	ple ID:	VE10 Start	VE10 Middle	VE10 End	Method Blank
	Units:	μ g/L	μg/L	μ g/L	μg/L
Dilution	n Factor:	1	1	1	1
Compound Name	EPA Method				
TPH as Gasoline	8015M	590	1100	1300	ND<25
Volatile Organic Compounds					
Benzene	8260B	11	17	23	 ND<0.30
Toluene	8260B	25	41	61	ND<0.30
Ethylbenzene	8260B	0.85	3.6	4.9	 ND<0.30
Total Xylenes	8260B	5.4	45	63	ND<0.30
Fuel Oxygenates					
Methyl t-Butyl Ether (MTBE)	8260B	14	32	37	ND<0.30
t-Butanol (TBA)	8260B	ND<10	ND<10	ND<10	ND<10
Di-Isopropyl Ether (DIPE)	8260B	ND<2.0	ND<2.0	ND<2.0	 ND<2.0
Ethyl t-Butyl Ether (ETBE)	8260B	ND<2.0	ND<2.0	ND<2.0	ND<2.0
t-Amyl Methyl Ether (TAME)	8260B	ND<2.0	ND<2.0	ND<2.0	ND<2.0
Ethanol	8260B	ND<50	ND<50	ND<50	ND<50

ND: Not detected at the indicated reporting limit; units of $\mu g/L$ is equivalent to mg/m³

FREY Environmental, Inc	C.	Project Name ANAHEIM CARWASH					 	ŀ	Re	≹equested Analyses			CHAIN-OF-CUSTODY RECORD		
2817-A Lafayette Avenue	8	Project Address	no IN. Lin	cain An	P,	اک ق		\vdash	5	Ť			Page 1 of		
Newport Beach, Californ	ia 92663	Anal	pim. CA	97/4 ()5	5	, Vap	lers		100				Laboratory Project #:		
Phone: 949.723.1645; FAX: 94	Project Number 4 100 - 0 i				er (S	ontair	0	1				16292			
Contact: Kent Tur	201					, Wat	rofC	5	Š				10-12		
Sample ID	Sample	Location	Sampling	Sampling	Lab	oi (S)	umbe	66	320				Comments		
VEID-Stan-			8123116	10:56		N N	<u>z</u> 1	<u> </u>							
11FID - 4 0010			0/23/11	14:5/2		V	1	X	X						
VEID FLIDATE			G/23/11	4:55	ł	1/	; i	1	X						
			01-910					~	A	_					
	-														
		· · · · ·													
······································															
					l										
						, ,									
												-			
													······································		
	-												· · · · · · · · · · · · · · · · · · ·		
		-													
											1				
1. Relinquished by		2. Receive	d by	v 1		Tu	rna	rou	ind	Ti	me:				
signature: X	1mp	signature: X	Brink.	lat	_	Spe	ecia	i ins	ទជាប	Clio	ns/N	NOte	35:		
Date/Time: 8-23-11	Q	7 Date/Time: Ø	112/11.	1920											
3. Relinquished by		4. Receive	d by	1100											
signature: X		signature: V													
		oignature. A_	· · · · · · · · · · · · · · · · · · ·	<u> </u>		San	nple	e Co	ondi	tior	<u></u>		Sealed? Y / N		
Date/Time:		Date/Time:											Chilled? Y / N		
ERASE	INF	P. O. Box 2	2243								Tel	lepi	hone: (714) 273-2955		

RA	SEIINE	P. 0
VI I	<i></i>	
SITE	ANALYSIS	Hun

Huntington Beach, California 92647

Telephone: (714) 273-2955

Baseline Analytical Services P. O. Box 2243 Huntington Beach, CA 92647

Telephone: 714.273.2955

Laboratory Report

Client: FREY Environmental, Inc. Client Address: 2817-A Lafayette Avenue Newport Beach, California 92663

Project Name: Anaheim Car Wash Project Address: 900 N. Lincoln Avenue Anaheim, California Contact: Kent Tucker Report Date: 8/30/16 Lab Project Number: 16293 Client Project Number: 469-01

> Dates Sampled: 8/24/16 Dates Received: 8/25/16 Dates Analyzed: 8/25/16 Sample Matrix: Vapor

Analyses Requested:

1. EPA 8015M – TPH as Gasoline

2. EPA 8260B - Volatile Aromatic Compounds (BTEX) and Fuel Oxygenates

Baseline received vapor samples collected from the project shown above. A Chain-of-Custody Record (COC) is attached.

The samples were analyzed for the parameters shown above per the COC. In this report, *Baseline* presents the results and a QA/QC summary for this analysis.

Approved Brian K. Kato, Laboratory Manager

Client: FREY Environmental, Inc. Client Address: 2817-A Lafayette Avenue Newport Beach, California 92663

Project Name: Anaheim Car Wash Project Address: 900 N. Lincoln Avenue Anaheim, California Contact: Kent Tucker Report Date: 8/30/16 Lab Project Number: 16293 Client Project Number: 469-01 Dates Sampled: 8/24/16 Dates Received: 8/25/16

Dates Analyzed: 8/25/16 Sample Matrix: Vapor

TPH as Gasoline (TPH-G), Volatile Aromatic Compounds (BTEX), and Fuel Oxygenates Results

Sam	Sample ID:			VE10 End	Method Blank
	Units:	PPMV	PPMV	PPMV	PPMV
Dilutior	n Factor:	1	1	1	1
Compound Name	EPA Method				
TPH as Gasoline	8015M	250	430	570	 ND<5.0
Volatile Organic Compounds					
Benzene	8260B	5.3	3.4	4.1	ND<0.050
Toluene	8260B	8.2	5.3	5.6	ND<0.050
Ethylbenzene	8260B	0.22	0.25	0.94	ND<0.050
Total Xylenes	8260B	1.5	3.2	2.1	ND<0.050
Fuel Oxygenates					
Methyl t-Butyl Ether (MTBE)	8260B	11	7.4	7.2	ND<0.050
t-Butanol (TBA)	8260B	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Di-Isopropyl Ether (DIPE)	8260B	ND<0.050	ND<0.050	ND<0.050	ND<0.050
Ethyl t-Butyl Ether (ETBE)	8260B	ND<0.050	ND<0.050	ND<0.050	ND<0.050
t-Amyl Methyl Ether (TAME)	8260B	ND<0.050	ND<0.050	ND<0.050	ND<0.050
Ethanol	8260B	ND<5.0	ND<5.0	ND<5.0	ND<5.0

ND: Not detected at the indicated method detection limit; PPMV: Parts per Million by Volume

Client: FREY Environmental, Inc. Client Address: 2817-A Lafayette Avenue Newport Beach, California 92663

Project Name: Anaheim Car Wash Project Address: 900 N. Lincoln Avenue Anaheim, California Contact: Kent Tucker Report Date: 8/30/16 Lab Project Number: 16293 Client Project Number: 469-01 Dates Sampled: 8/24/16

Dates Sampled: 0/24/10 Dates Received: 8/25/16 Dates Analyzed: 8/25/16 Sample Matrix: Vapor

Constituent:	TPH-G	MTBE	Benzene	Toluene	Ethylbenzene	Total Xylenes
Method:	8015M	8260B	8260B	8260B	8260B	8260B
QC Parameter						
Result (PPMv)	570	7.2	4.1	5.6	0.94	2.1
Dup. Result (PPMv)	550	6.9	4.0	5.3	0.87	1.9
RPD (%)	4	4	2	5	8	8
QC Limits (%)	0-30	0-30	0-30	0-30	0-30	0-30

Quality Control Summary

QC Sample ID: VE10 End

MS: Matrix Spike; MSD: Matrix Spike Duplicate; RPD: Relative Percent Difference LCS/LCSD: Lab Control Sample/Duplicate

Laboratory Report (Units: µg/L)

Client: FREY Environmental, Inc. Client Address: 2817-A Lafayette Avenue Newport Beach, California 92663

Project Name: Anaheim Car Wash Project Address: 900 N. Lincoln Avenue Anaheim, California Contact: Kent Tucker Report Date: 8/30/16 Lab Project Number: 16293 Client Project Number: 469-01

> Dates Sampled: 8/24/16 Dates Received: 8/25/16 Dates Analyzed: 8/25/16 Sample Matrix: Vapor

TPH as Gasoline (TPH-G), Volatile Organic Compounds (VOC's), and Fuel Oxygenates Results

Sam	ple ID:	VE10 Start	VE10 Middle	VE10 End	 Method Blank
	Units:	μ g/L	μg/L	μg/L	μ g/L
Dilution	n Factor:	1	1	1	1
Compound Name	EPA Method				
TPH as Gasoline	8015M	870	1500	2000	ND<25
Volatile Organic Compounds					
Benzene	8260B	17	11	13	ND<0.30
Toluene	8260B	31	20	21	ND<0.30
Ethylbenzene	8260B	0.94	1.1	4.1	ND<0.30
Total Xylenes	8260B	6.5	14	8.9	ND<0.30
Fuel Oxygenates					
Methyl t-Butyl Ether (MTBE)	8260B	41	27	26	ND<0.30
t-Butanol (TBA)	8260B	ND<10	ND<10	ND<10	ND<10
Di-Isopropyl Ether (DIPE)	8260B	ND<2.0	ND<2.0	ND<2.0	 ND<2.0
Ethyl t-Butyl Ether (ETBE)	8260B	ND<2.0	ND<2.0	ND<2.0	ND<2.0
t-Amyl Methyl Ether (TAME)	8260B	ND<2.0	ND<2.0	ND<2.0	ND<2.0
Ethanol	8260B	ND<50	ND<50	ND<50	ND<50

ND: Not detected at the indicated reporting limit; units of μ g/L is equivalent to mg/m³

Page 4

2817-A Lafayette Avenue Newport Beach, California 92663 Phone: 949.723.1645; FAX: 949.723.1854 Contact: Kent Tucket Sample ID Sample VE10 Start VE10 Mille VE10 End	Project Address Project Number	69-01 Sampling Date 8-24-16	Sampling Time), Water (W), Vapor (V	Containers	(0)	3) BlextOxve				Page / of / Laboratory Project #:				
Newport Beach, California 92663 Phone: 949.723.1645; FAX: 949.723.1854 Contact: <i>Lent Tuckes</i> Sample ID Sample VE10 Start VE10 Mille VE10 End	Project Number	69-01 Sampling Date 8-24-16	Sampling Time), Water (W), Vap	Containers	() ()	3) BlextC				Laboratory Project #:				
Phone: 949.723.1645; FAX: 949.723.1854 Contact: Kent Tuckes Sample ID Sample VE10 Start VE10 Middle VE10 End	Project Number 4	69-01 Sampling Date 8-24-16	Sampling Time	Lob), Water (W	Contair	6	3) Bl								
Contact: Kent Tuckes Sample ID Sample VE10 Start VE10 Mille VE10 End	Location	Sampling Date 8-24-16	Sampling Time	Loh), Wa	2	ト、	100				16242				
Sample ID Sample VE10 Start VE10 Mille VE10 End	Location	Sampling Date 8-24-16	Sampling Time	100	പറ	ber of C	ber of C	ber of (ber of (ber of	2	0 CT				
VEID Start VEID Mildle VEID End		8-24-16		ID	Soil (Numt	80	820				Comments				
VEID Mille VEID End			6:01		V	1	X	×								
			11:00	~~~												
			5:00		\mathbb{V}	γ	r	\checkmark								
						·										
	_									-						
							~									
												·				
	<u> </u>															
· · · · · · · · · · · · · · · · · · ·																
									\square							
			•													
I. Relinquisned by	2. Receive	a by	3	_	Tu	rna ecia	rou I Ins	Ind strue	Ti ctio	me ns/l	: Note					
ignature: X	signature: X	Z	K		- 1- 6											
Date/Time: 8-24-11.	/ Date/Time: 8	125/ 11	, 1:4	4												
3. Relinquished by	4. Receive	d by														
ignature: X	signature: X															
				-	Sar	nple	e Co	ondi	tior	:		Sealed? Y / N				
	Date/Time:		·									Chilled? Y / N				

ON-SITE ANALYSIS M Huntington Beach, California 92647

APPENDIX I

LTCP CHECKLIST

Site Name: FORMER ANAHEIM CARWASH Site Address: 900 W. LINCOLN AV., ANAHEIM

Site meets the criteria of the Low-Threat Underground Storage Tank (UST) Case Closure Policy as described below.¹

		_
General Criteria General criteria that must be satisfied by all candidate sites:		
Is the unauthorized release located within the service area of a public water system?	X Yes □ No	
Does the unauthorized release consist only of petroleum?	⊠Yes □ No	
Has the unauthorized ("primary") release from the UST system been stopped?	Q1Yes □ No	
Has free product been removed to the maximum extent practicable?	XYes INO INA	
Has a conceptual site model that assesses the nature, extent, and mobility of the release been developed?	ØKYes □ No	
Has secondary source been removed to the extent practicable?	XYes □ No	
Has soil or groundwater been tested for MTBE and results reported in accordance with Health and Safety Code Section 25296.15?	⊠Yes □ No	
Does nuisance as defined by Water Code section 13050 exist at the site?	□ Yes XNo	
Are there unique site attributes or site-specific conditions that demonstrably increase the risk associated with residual petroleum constituents?	口 Yes 反No	
<u>Media-Specific Criteria</u> Candidate sites must satisfy all three of these media-specific criteria:		
1. Groundwater: To satisfy the media-specific criteria for groundwater, the contaminant plume that exceeds water quality objectives must be stable or decreasing in areal extent, and meet all of the additional characteristics of one of the five classes of sites:		
Is the contaminant plume that exceeds water quality objectives stable or decreasing in areal extent?		
Does the contaminant plume that exceeds water quality objectives meet all of the additional characteristics of one of the five classes of sites?	□Yes □No XÍNA	
If YES, check applicable class:		

¹ Refer to the Low-Threat Underground Storage Tank Case Closure Policy for closure criteria for low-threat petroleum UST sites.

For sites with releases that have not affected groundwater, do mobile constituents (leachate, vapors, or light non-aqueous phase liquids) contain sufficient mobile constituents to cause groundwater to exceed the groundwater criteria?	□ Yes XNo □ NA	
2. Petroleum Vapor Intrusion to Indoor Air: The site is considered low-threat for vapor intrusion to indoor air if site-specific conditions satisfy all of the characteristics of one of the three classes of sites (a through c) or if the exception for active commercial fueling facilities applies.		
Is the site an active commercial petroleum fueling facility? Exception: Satisfaction of the media-specific criteria for petroleum vapor intrusion to indoor air is not required at active commercial petroleum fueling facilities, except in cases where release characteristics can be reasonably believed to pose an unacceptable health risk.	□ Yes 귳́No	
a. Do site-specific conditions at the release site satisfy all of the applicable characteristics and criteria of scenarios 1 through 3 or all of the applicable characteristics and criteria of scenario 4?	₽Yes □ No □ NA	
 b. Has a site-specific risk assessment for the vapor intrusion pathway been conducted and demonstrates that human health is protected to the satisfaction of the regulatory agency? 	□Yes □No ØNA	
C. As a result of controlling exposure through the use of mitigation measures or through the use of institutional or engineering controls, has the regulatory agency determined that petroleum vapors migrating from soil or groundwater will have no significant risk of adversely affecting human health?	口 Yes 口 No 风NA	
3. Direct Contact and Outdoor Air Exposure: The site is considered low-threat for direct contact and outdoor air exposure if site-specific conditions satisfy one of the three classes of sites (a through c).		
a. Are maximum concentrations of petroleum constituents in soll less than or equal to those listed in Table 1 for the specified depth below ground surface (bgs)?	©(Yes □ No □ NA	
b. Are maximum concentrations of petroleum constituents in soil less than levels that a site specific risk assessment demonstrates will have no significant risk of adversely affecting human health?	□Yes □No ፬(NA	
c. As a result of controlling exposure through the use of mitigation measures or through the use of institutional or engineering controls, has the regulatory agency determined that the concentrations of petroleum constituents in soil will have no significant risk of adversely affecting human health?	□Yes □No 54NA	

APPENDIX J

EXAMPLE CALCULATION OF PETROLEUM HYDROCARBON MASS REMOVAL

EXAMPLE CALCULATIONS OF PETROLEUM HYDROCARBON MASS REMOVAL

The estimated hydrocarbon removal rate from wells used for vapor extraction can be calculated using the formula:

R = C Q	where;	
	R= Removal Rate (mg/min)	
	C = Concentration (mg/l)	
	Q = Flow Rate (I/min)	
		_
Average Influ	ent Concentration (C) - Conversion fr	om ppmv to mg/
The [mg/l] and	d [ppm gasoline] units are related by the	equation:
O (mag. m/l)		
C= (mg/l) =	(ppmv gasoline)(100,000 mg gasoline/m	101e gasoline)(1E-6)
	(0.0621-atm/deg. K-mole)	298 deg. K)
vmqq	ma/l	
350	1.431	
	1	
Measured Fle	ow Rate (Q) - Conversion from CFM to	liters/min
CFM	liters/min	
161	4,559	
Calculated R	emoval Rate (R=CQ) -	
P-	6 522 ma/min	Given
IX-	9 39 ka/day	0.00000000000000000000000000000000000
	20.66 lbs/day	1 kilogram = 2.2 pounds
	3.42 gallons/day	Q = 220 CFM = 6.230 liters/min
	0.86 lbs/hour	
Example Est	imation of Total Mass Removed for a (Given Operation Period:
For Operation	Period = 20 Hours	
	<u>17</u> lbs removed in 20	hours
	<u>3</u> Gal removed in 20	hours