APPENDIX K EXISTING TRAFFIC CONDITIONS FREEWAY RAMP LEVEL OF SERVICE CALCULATION WORKSHEETS — CALTRANS FACILITIES ANALYSIS (HCM METHODOLOGY) APPENDIX K-I EXISTING TRAFFIC CONDITIONS – CALTRANS FREEWAY RAMP ANALYSIS (HCM METHODOLOGY) MERGE/DIVERGE ANALYSIS | | | RAMP | S AND | RAMI | P JUN | CTIONS | S W | ORKS | HE | ET | | | |---|----------------------------------|---------------------------------------|--|----------------------|---|--|----------|-----------------|----------|---|---------------------------------------|---| | General | Informati | | | | | Site In: | | | | ···· | | · · · · · · · · · · · · · · · · · · · | | Analyst2
Agency or Co
Date Perform
Analysis Time | ompany
ned | ZS
LLG Engi
07/14/10
AM Peak | Hour | √B On-Ra | Ju
Ju
Ai | reeway/Dir of
inction
irisdiction
nalysis Yea | of Tra | | I-
C | 5 NB
n-Ramp
altrans D
xisting 20 | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | Inputs | | , , , , , , , , , , , , , , , , , , , | | 10 011 110 | amp acrea | tona | | | | | · · · · · · · · · · · · · · · · · · · | | | Upstream Ad | j Ramp | Terrain Leve | | | | | | | | | Downstrea | m Adj Ramp | | ₹ Yes | ™ On | | | | | | | | | | ₩ Yes | □ On | | ∏ No | l™ Off | | | | | | | | | | Mo
L _{down} = | I⊞ Off
ft | | L _{up} = | 1400 ft | | 2 70 | 0h | | | | 05.0 | | | | | | ******* | 230 veh/h | | | Sketch (| | es, L _A , L _D ,V | 111 | 35.0 mj | on | | VD = | veh/h | | Convers | ion to pc | /h Under | Base | Condi | tions | | | | | | | | | (pc/h) | V
(Veh/hr) | PHF | Ten | | Truck | %Rv | | f _{HV} | , | f _p | v=V/PHF f | _{⊣V} f _p | | Freeway | 4710 | 0.90 | Lev | | 9 | 0 | + | 957 | | 1.00 | 5469 | | | Ramp
UpStream | 200
230 | 0.90 | Lev | _ | 9 | 0 | | 957 | | 1.00 | 232 | | | DownStream | | 0.80 | Lev | eı | 9 | 0 | U. | 957 | <u>-</u> | 1.00 | 267 | | | | <u> </u> | Merge Areas | | | | | <u> </u> | | Dive | rge Area | S | · · · · · · · · · · · · · · · · · · · | | Estimation | on of v ₁₂ | | | | | Estima | tion | of v. | 12 | | | | | | ation 25-2 or 2
using Equatio | • |) | | | L _{EQ} = (Ed
P _{FD} = us
V ₁₂ = pc/ | ing Ed | n 25-8 o | | V _R + (V _F | - V _R)P _{FD} | | | Capacity | Checks | | | | | Capaci | ity C | heck | s | | | | | | Actua | l Max | imum | LOS | S F? | | | Actu | al | Ma | ximum | LOS F? | | V_{FO} | 5701 | See Evi | nibit 25-7 | No | • | V _{F1} =V ₁ | F | | | See Ex | hibit 25-14 | | | *F0 | 3701 | Jee LA | 11UIC 20-1 | IN | 0 | V ₁₂ | | | | 44 | 00:All | | | V _{R12} | 2136 | 460 | 0:All | No | 0 | V _{FO} = V _F
V _R | - | | | | hibit 25-14 | | | | | | _ | | **** | V _R | | | | | chibit 25-3 | | | | Service L | | ······································ | | <u>5) </u> | Level c | | | | | nation (if | not F) | | • | 5.475 + 0.0073 | 34 v _R + 0.007 | 8 V ₁₂ - 0.6 |)0627 L _A | | | | •• | 52+(|).0086 V. | ₁₂ - 0.009 L _D | | | •• | 9 (pc/ m/ln) | | | | | '' | (pc/ m | • | | | | | | ` | Exhibit 25-4) | | <u> </u> | | | | • | it 25-4) | | | | | | | stimation | | | <u> </u> | | Speed | | | | | | | | • | 19 (Exibit 25- | • | | | | D _s = | • | bit 25-19 | • | | | | | • | 1 mph (Exhibi | • | | | | • ` | | Exhibit 2 | | | | | | • | 4 mph (Exhibi | • | | | | ľ | • | (Exhibit | | - | | | | S= 63.7 | 7 mph (Exhibi | t 25-14) | | | | S = 1 | mph (| Exhibit 2 | (5-15) | 1 | | | Copyright © 2000 University of Florida, All Rights Reserved | | | RAMP | S AND | RAMI | JUN | CTIONS | WOF | RKSHE | ET | | | |--|----------------------------------|--|--------------------------|---------------------|----------------|--|--|------------------------------|--|--|-------------------| | General l | Informati | on | | | | Site In | forma | tion | | | | | Analyst2
Agency or Co
Date Performe
Analysis Time
Proiect Descri | ed | ZS
LLG Engi
07/14/10
PM Peak
disting (Year) | Hour | B On-Ra | Ju
Ju
Ar | eeway/Dir onction
risdiction
nalysis Year
tella | | 0 | 5 NB
n-Ramp
altrans D
xisting 2 | | | | Inputs | | | | | | | | | <u>"</u> | | | | Upstream Adj | Ramp | Terrain Leve | | | | | | | | Downstrear | n Adj Ramp | | ☑ Yes | I On | | | | | | | | | Yes No | On Off | | ™ No | I™ Off | | | | | | | • | | L _{down} = | ft | | L _{up} == | 1400 ft | | | | | | | | | | | | | 320 veh/h | | | Sketch (: | | s, L _A , L _D ,V | S _{FR} = 35
' _R ,V _t) | 5.0 mph | | VD = | veh/h | | Convers | ion to pc | h Under | Base (| Condi | tions | | | | | | | | (pc/h) | V
(Veh/hr) | PHF | Terra | | Truck | %Rv | f _{HV} | | f _p | v=V/PHF f _H | IV ^f p | | Freeway | 7230
280 | 0.90
0.90 | Leve
Leve | | 9 | 0 | 0.95
0.95 | | 1.00
1.00 | 8395
325 | | | Ramp
UpStream | 320 | 0.90 | Leve | | 9 | 0 | 0.95 | | 1.00 | 372 | | | DownStream | | 0.00 | 2010 | | <u></u> | <u> </u> | 0.00 | | 1.00 | 1 | | | | | Merge Areas | 3 | | | | | | rge Area | as | | | Estimatio | on of v ₁₂ | | | | | Estima | ition c | of v ₁₂ | | | | | | ation 25-2 or 2
using Equatio | | | | | L _{EQ} = (Eo
P _{FD} = us
V ₁₂ = pc/ | sing Equa | 5-8 or 25-9 | | ·-V _R)P _{FD} | | | Capacity | Checks | | · | | | Capaci | ity Ch | ecks | | | | | | Actua | l Max | imum | LOS | SF? | | | Actual | Ma | aximum | LOS F? | | V_{FO} | 8720 | See Ex | hibit 25-7 | N | 0 | V _{Fi} =V | F | | ┡—— | xhibit 25-14
400:All | | | V _{R12} | 3150 | 460 | 0:Ail | N | 0 | V_{12} $V_{FO} = V_{F}$ V_{R} | - | | | xhibit 25-14 | | | KIZ | | | | | | V _R | | | See E | xhibit 25-3 | | | Level of | Service L |)etermin | ation (i | f not i | F) | Level o | of Ser | vice De | term | ination (il | not F) | | $D_{R} = 6$ | 5.475 + 0.0073 | 34 v _R + $\overline{0.00}$ | 78 V ₁₂ - 0.0 | 0627 L _A | |] | D_R | = 4.252 + | 0.0086 \ | / ₁₂ - 0.009 L _D | • | | O _R = 26. | 8 (pc/ m/ln) | | | | | D _R = | (pc/ m/ln |) | | | | | LOS = C (| Exhibit 25-4) | | | | | LOS= | (Exhibit 2 | 25-4) | | | | | Speed F | stimation | | | | | Speed | Estin | nation | | | | | opecu C | | | | | | D _s = | (Exhibit | 25-19) | | | | | | 77 (Exibit 25 | -19) | | | | ļ ~ | | | | | | | M _S = 0.3 | 77 (Exibit 25
4 mph (Exhib | • | • | | | i - | mph (Ex | chibit 25-19 |) | | | | $M_S = 0.3$ $S_R = 59.$ | • | it 25-19) | | | | S _R = | | chibit 25-19
xhibit 25-19 | _ | | | | | | RAM | PS AN | D RAMP | JUNC | TIONS W | /OR | KSHEE | Т | | | | |-------------------------|--------------------------------|--------------------------------------|----------|------------|--------------|---|----------------------|---------------------|--------------------|-----------------------|---------------------------|--| | General Inf | ormation | | | Sit | te Infor | | | | | | | | | Analyst | | ZS | | | Fre | eway/Dir | of | Travel | I-5 S | В | | | | Agency or C | • • | LLG Eng | | 1 | Jui | nction | | | | Ramp at | | a | | Date Perforr | | 07/14/10 | | | Ju | isdiction | | | Caltr | ans D12 | 2 | | | Analysis Tin | | | | | | alysis Ye | | | Exist | ing 200 | 8 | | | Project Des | ription AM | l Existing (| ear 20 | 008) I-5 S | SB Off-F | Ramp at I | Cate | lla | | | | | | Inputs | | I | | | | | | | | | ••• | | | Upstream A | | Terrain Le | evel | | | | | | | | wnstrea
mp | am Adj | | ▼ Yes | On | | | | | | | | | | Yes | ∭ On | | I≣ No I | ☑ Off | | | | | | | | | K | No | ™ Off | | L _{up} = 1 | 130 ft | | | 70.0 | _ | | | 05.0 | 1. | L _d | own = | ft | | l
lVu≂ 4 | 50 veh/h | . 5 | | 70.0 mph | | | | = 35.0 (| npn | V |) = | veh/h | | | | | | | now iar | nes, L _A , L | D, V | ₹, V _f) | | | | _ | | Conversion | | der Base (| Conditi | ons | | T . | | | | | | | | (pc/h) | (Veh/hr) | PHF | Те | rrain | Truck | %Rv | | f _{HV} | f _p | 4. | V/PHF
/ ^f p | | | Freeway | 5590 | 0.90 | Le | vel | 9 | 0 | 0. | .957 | 1.00 |) | 6491 | | | Ramp | 540 | 0.90 | Le | vel | 9 | 0 | 0. | 957 | 1.00 |) | 627 | | | UpStream | 450 | 0.90 | Le | vel | 9 | 0 | 0. | 957 | 1.00 |) | 523 | | | DownStream | n | | | | | | | | | | | | | | Me | erge Areas | | | | · | | | Diverge | Areas | | ······································ | | Estimation | of v ₁₂ | | | | | Estimati | ion | of v ₁₂ | | | • | | | | | = V _E (P _{EM}) | | | | 1 | | | = V _D 4 | · (V _F - V | S)Pes | | | L _{EQ} = (Equ | | | | | | L _{EO} = (E | aus | • | | • | K/ FD | | | F | | 20-0) | | | | | | | | | | | | P _{FM} = using | Equation | | | | | $P_{FD} = 0.2$ | | | =quatio | กับ | | | | V ₁₂ = pc/h | | | | | | V ₁₂ = 1899 pc/h | | | | | | | | Capacity C | | | ······ | | | Capacit | y Cl | | | | | | | | Actual | Maxin | num | LOS | F? | · | | Actua | | Maximu | m | LOS F? | | \/ | | See Exh | ibit 25- | | | V _{FI} =V _F | : | 5518 | | 9600 | | No | | V _{FO} | | 7 | | | | V ₁₂ | | 1899 | | 4400:Al | l l | No | | V _{R12} | | 4600 | :All | | | $V_{FO} = V_{FO}$ | - - | 4891 | | 9600 | | No | | R12 | | | | ÷ | ľ | V _R | | 627 | | 3800 | | No | | Level of Se | vice Detern | nination (i | f not F | <u> </u> | 1 | Level of | Se | | termin | | not F) | | | | + 0.00734 \ | L | | | | | 86 V ₁₂ - | | -n | | | | | 1 `` | mi /ln) | K | 12 | | ^ | D _R = | | (pc/ mi / | | 12 | | D | | LOS = (Ex | nibit 25-4) | | | | | LOS= | A (I | Exhibit 2 | 5-4) | | | | | Speed Estir |
nation | | | | | Speed E | stir | nation | | | * | | | | bit 25-19) | | | | | | | 84 (Exhi | bit 25-1 | 9) | | | | 1 | n (Exhibit 25 | -19) | | | | S _R = 56.4 mph (Exhibit 25-19) | | | | | | | | | ı (Exhibit 25
ı (Exhibit 25 | - | | | | S ₀ = 73.6 mph (Exhibit 25-19) | | | | | | | | | n (Exhibit 25
n (Exhibit 25 | • | | | | _ · | | | | | | | | [- mp | ı. (⊏XIIIDIL 20 | -14) | | | niversity of | S = 66.6 mph (Exhibit 25-15) | | | | | | Versi | Copyright © 2000 University of Florida, All Rights Reserved | | · · · · · · · · · · · · · · · · · · · | RAM | PS AN | D RAMP | JUNC | TIONS W | ORKSHI | EET | | | | | |---------------------------|---------------------------------------|--------------------------------------|----------|------------|----------------|--|------------------------|--------|----------------|------------------------|------------------|--| | General Infor | mation | | | Sit | e Inform | nation | | | | | | | | Analyst | | ZS | | | Fre | eway/Dir | of Trave | I I- | 5 SB | | | | | Agency or Co | mpany | LLG Eng | ineers | | Jun | ction | | | | p at Kate | lla | | | Date Performe | ed | 07/14/10 | | | Jur | isdiction | | C | altrans | D12 | | | | Analysis Time | | PM Peak | | | | alysis Yea | | E | xisting | 2008 | | | | Project Descri | iption PM | Existing (| ear 20 | 008) I-5 S | SB Off-F | Ramp at k | Catella | | <u></u> | | | | | Inputs | | | | | | | | | | | | | | Upstream Adj | · | Terrain Le | vel | | | | | | | Downstr
Ramp | eam Adj | | | Yes 🗔 | On | | | | | | | | | I≣ Yes | I≣ On | | | I≣ No 🗵 | Off | | | | | | | | | I No | I≣ Off | | | L _{up} = 11 | 30 ft | S | = - | 70.0 mph | | S | _{FR} = 35 | 0 mpl | | L _{down} = | ft | | | Vu = 44 | 0 veh/h | | • • | | | | | .op. | • | VD = | veh/h | | | | | D <i>(</i> | | | IIUW Iaii | lanes, L _A , L _D ,V _R ,V _f) | | | | | | | | Conversion t | | ier Base (| onaiti | ons | , | | | | <u></u> | v=V/PHI | - | | | (pc/h) | V
(Veh/hr) | PHF | Те | rrain | Truck | %Rv | f _{HV} | | f _p | | | | | Freeway | 6930 | 0.90 | Le | vel | 9 | 0 | 0.957 | | 1.00 | 8047 | | | | Ramp | 200 | 0.90 | Le | vel | 9 | 0 | 0.957 | | 1.00 | 232 | | | | UpStream | 440 | 0.90 | Le | vel | 9 | 0 | 0.957 | | 1.00 | 511 | | | | DownStream | | · | | | | | | | | | · | | | | M∈ | erge Areas | | | | | | | erge Are | as | | | | Estimation o | f v ₁₂ | | | | | Estimati | ion of v ₁₂ | 2 | | | | | | | V ₁₂ : | = V _F (P _{FM}) | | | | $V_{12} = V_R + (V_F - V_R)P_{FD}$ | | | | | | | | L _{EQ} = (Equat | | | | | | L = (E | quation 2 | | '` | | | | | | | 20 0) | | | | | 260 usir | | | 1 | | | | P _{FM} = using E | quation | | | | | 1 ' - | | ig Equ | | , | | | | V ₁₂ = pc/h | | | | | | 1 | 46 pc/h | _ | | | | | | Capacity Ch | | 1 | | 100 | F0 [| Capacit | y Checks | | May | dinas (ma | LOS E2 | | | | Actual | Maxin | | LOS | Γ! | 11 -11 | | tual | | cimum | LOS F? | | | V _{FO} | | See Exh | ibit 25- | | Į. | V _{FI} =V _F | | | | 500 | No | | | - 1-0 | | 7 | | | | V ₁₂ | 18 | 46 | 440 | 00:All | No | | | V _{R12} | | 4600 | :Ali | | | $V_{FO} = V_{I}$ V_{R} | 62 | 06 | 96 | 600 | No | | | - K12 | | | | | ŀ | V _R | 23 | 32 | 38 | 00 | No | | | Level of Serv | ice Deterr | nination (i | f not F |) | ` | Level of | Service | Detei | rminatio | n (if not l | 5) | | | D _R = 5.475 | | | | | L _A | | $D_R = 4$. | 252 + | 0.0086 | V ₁₂ - 0.00 | 9 L _D | | | ., | ni /ln) | r, | 14 | | ~ | $D_R = 1.2 \text{ (pc/ mi /ln)}$ | | | | | | | | LOS = (Exhi | bit 25-4) | | | | | LOS= A (Exhibit 25-4) | | | | | | | | Speed Estim | ation | | | | | Speed Estimation | | | | | | | | | it 25-19) | | | | | D _s = 0.449 (Exhibit 25-19) | | | | | | | | | (Exhibit 25 | i-19) | | | | S _R = 57.4 mph (Exhibit 25-19) | | | | | | | | B | (Exhibit 25 | - | | | | S ₀ = 71.7 mph (Exhibit 25-19) | | | | | | | | | (Exhibit 25 | • | | | | | | | | | | | | inpi | (EXHIBIT ZO | 1 1) | | | | S = 67.0 mph (Exhibit 25-15) | | | | | | | Copyright © 2000 University of Florida, All Rights Reserved | | | RAMP | S AND | RAMI | P JUN | CTIONS | WO! | RKSHE | ET | - | | | |---|---|---------------------------------------|--------------------------------------|----------------------|----------------|---|---|-------------------------------------|--|-----------------------------------|------------------------------|--| | General | Informati | ion | | | | Site Int | forma | ition | | | | | | Analyst2
Agency or Co
Date Perform
Analysis Tim | ed
e Period | ZS
LLG Engi
07/14/10
AM Peak | Hour | | Ju
Ju
Ar | eeway/Dir onction
risdiction
ralysis Year | r | E
C | R-57 NB
B On-Ra
altrans D
xisting 2 | imp at Katella
)12 | | | | | ription AME | xisting (Year : | 2008) SR- | 57 NB EE | On-Ram | p at Katella | 1 | | | | | | | Inputs | | | | | | | | | | | | | | Upstream Ad | j Ramp | Terrain Leve | el | | | | | | | Downstrea | m Adj Ramp | | | □ Yes | □ On | | | a. | | | | | | ✓ Yes | ☑ On | | | ⊠ No | I≣ Off | | | | | | | | | ■ No | ₩ Off
1090 ft | | | L _{up} = | ft | | 2 - 70 | 0 mnh | | | ` 21 | F 0 | • | L _{down} = | | | | Vu = | veh/h | | | Sketch (| | es, L _A , L _D ,V | , , , | 5.0 mph | | Vp = | 150 veh/h | | | Convers | ion to pc. | /h Under | Base | Condi | tions | s | | | | | | | | (pc/h) | V
(Veh/hr) | PHF | Ter | | Truck | %Rv | f _H | | fp | v=V/PHF f | _{tV} f _p | | | Freeway | 4010 | 0.87 | Lev | | 6 | 0 | 0.97 | | 1.00 | | | | | Ramp
UpStream | 300 | 0.87 | Lev | el | 6 | 0 | 0.97 | 1 | 1.00 | | | | | DownStream | 150 | 0.87 | Lev | rel . | 6 | 0 | 0.97 | 1 | 1.00 | 178 | | | | | 1 | Merge Areas | | O. | | | 0.01 | | rge Area | | | | | Estimati | on of v ₁₂ | | | | | Estima | tion o | | | | | | | L _{EQ} = (Equ
P _{FM} = 0.333
V ₁₂ = 1579 | ation 25-2 or 2
using Equatio | • | | | | | quation 2 | V ₁₂ = \
25-8 or 25-9 | | - V _R)P _{FD} | | | | Capacity | Checks | | | | | Capaci | | ecks | | | | | | | Actua | ıl Max | imum | LOS | 6 F? | | 1 | Actual | Ma | ximum | LOS F? | | | | | | | | | V _{FI} =V _F | | | See Ex | hibit 25-14 | | | | V _{FO} | 5102 | See Ex | nibit 25-7 | No | 0 | V ₁₂ | | | | IOO:AII | | | | V _{R12} | 1934 | 460 | 0:All | No |) | $V_{FO} = V_{F}$ V_{R} V_{R} | - | | | chibit 25-14 | | | | l evel of | Level of Service Determination (if not F) | | | | | | | vice De | <u> </u> | xhibit 25-3
nation (it | rot El | | | | / | Level O | | | | ₁₂ - 0.009 L _D | not r) | | | | | | | • | 5.475 + 0.0073
3 (pc/ m/ln) | 7+ • R · 0.001 | 0 V ₁₂ - 0. | 30021 L _A | | D = 1 | • | | J.0000 ¥ | 12 - 0.003 L _D | | | | 1 | Exhibit 25-4) | | | | | l "' | pc/ m/ln
Exhibit 2 | = | | | | | | Speed E. | stimation | | | | | Speed Estimation | | | | | <u> </u> | | | M _S = 0.3 | 13 (Exibit 25- | | D _s = (Exhibit 25-19) | | | | | | | | | | | S _R = 61. | 2 mph (Exhibi | | S _R = mph (Exhibit 25-19) | | | | | | | | | | | | 1 mph (Exhibi | • | | | | S ₀ = mph (Exhibit 25-19) | | | | | | | | S= 64.: | 2 mph (Exhibi | t 25-14) | | | | S = mph (Exhibit 25-15) | | | | | | | Copyright @ 2000 University of Florida, All Rights Reserved | | | RAMP | S AND | RAM | P JUN | CTIONS | S W | ORKS | SHE | ET | | | |--|----------------------------------|---------------------------------------|--------------------------|----------------------|--------------------------------------|--|--------|-----------------|----------|--|--------------------------------------|--| | General | Informati | | | | | Site In | | | | | | | | Analyst2
Agency or Co
Date Perform
Analysis Tim | ompany
ned
e Period | ZS
LLG Engi
07/14/10
PM Peak | Hour | 57 AID E | Ji
Ji
Ai | reeway/Dir
Inction
Irisdiction
nalysis Yea | of Tra | | S | R-57 NB
B On-Ra
altrans D
xisting 2 | ımp at Katella
)12 | | | nputs | ription PM E | xisitiy (Tea: | 2000) SK- | O/ IND EE | o On-Ran | ip at Natelia | 1 | | | | | | | Upstream Ad | j Ramp | Terrain Leve | el | | | | | | | | Downstrea | m Adj Ramp | | ☐ Yes | □ On | | | | | | | | | | ☑ Yes | ⊠ On | | ▼ No | ि Off | | | | | | | | | | l No
L _{down} = | ™ Off
1090 ft | | _ _{up} = | ft | | | | | | | | | | GOWIL | | | Vu = | veh/h | | S: _{FF} = 70 | | show lane | es, L _A , L _D ,V | | 35.0 m | ph | | VD = | 240 veh/h | | Convers | ion to pc | /h Under | Base | Condi | tions | | | | | | | | | (pc/h) | (Veh/hr) | PHF
0.87 | Ten
Lev | | Truck | %Rv | | f _{HV} | | f _p | v=V/PHF f _t | _{IV} f _p | | Freeway
Ramp | 7230
450 | 6 | 0 | | 971 | | 1.00 | 8560 | | | | | | UpStream | 400 | 0.87 | Lev | C I | 0 | 0 | U. | 971 | <u> </u> | 1.00 | 533 | ······································ | | DownStream | 240 | 0.87 | Lev | el | 6 | 0 | 0. | 971 | | 1.00 | 284 | | | | | Merge Areas | | | • | | | | Dive | rge Area | | | | Estimati | on of v ₁₂ | | | | | Estima | tior | of v | 12 | | | | | | ation 25-2 or 2
using Equatio | • |) | | | L _{EQ} = (Ed
P _{FD} = us
V ₁₂ = pc/ | ing E | | | | - V _R)P _{FD} | | | Capacity | Checks | | | | | Capaci | ty (| heck | S | | | | | | Actua | ıl Max | imum | LOS | SF? | | | Actu | al | Ма | aximum | LOS F? | | V_{FO} | 9093 | See Ex | hibit 25-7 | N | 0 | V _{FI} =V _I | F | | | | chibit 25-14
100:All | | | V _{R12} | 3191 | 460 | 00:All | N | 0 | $V_{FO} = V_F$ V_R | - | | | | khibit 25-14 | | | | | | | | | V _R | | | • | See E | xhibit 25-3 | | | _evel of |
Service L | Determin | ation (i | f not l | <u>F)</u> | Level c | of S | ervice | De | termi | nation (if | not F) | | $D_R = 6$ | 5.475 + 0.0073 | 34 v _R + 0.007 | 78 V ₁₂ - 0.0 | 00627 L _A | | | 1 | $D_{R} = 4.2$ | 52 + (| 0.0086 V | ₁₂ - 0.009 L _D | | |) _R = 27. | 0 (pc/ m/ln) | | | | | D _R = (| (pc/ m | /ln) | | | | | | .OS = C (| Exhibit 25-4) | | | | _ | LOS= | (Exhib | it 25-4) | | | | | | Speed E | stimation |] | | | | Speed | Est | imatic | on | | | | | M _S = 0.3 | 81 (Exibit 25 | -19) | | | | D _s = | (Exh | ibit 25-1 | 9) | | : | | | = | 3 mph (Exhib | - | | | | S _R = ı | nph (| (Exhibit : | 25-19 |) | | | | | 6 mph (Exhib | • | | | S ₀ = mph (Exhibit 25-19) | | | | | | | | | | 5 mph (Exhibi | • | | | | S= ı | nph (| (Exhibit 2 | 25-15 |) | | | | noTM | | | Convriet | rt © 2000 I | Iniversity o | Florida All | | | | | | Ve | Copyright © 2000 University of Florida, All Rights Reserved | | | RAM | S AND | RAMF | JUNG | CTIONS | WC | ORKS | HE | ΞT | | | |--|---------------------------------------|---|---------------------------|------------|----------------|--|--------------|---------------------|---------|---|--------------------------------------|-------------------| | General l | nformati | on | | | | Site Inf | orm | ation |) | | | | | Analyst2
Agency or Co
Date Performe
Analysis Time
Project Descri | ed
Period | ZS
LLG Eng
07/14/10
AM Pea
disting (Yea |)
k Hour | 57 SB WE | Ju
Ju
An | eeway/Dir o
nction
risdiction
alysis Year
np at Katella | - | rel | W
Ca | R-57 SB
B On-Rai
altrans D'
cisting 20 | | | | Inputs | | | | | | | | | | | | | | Upstream Adj | Ramp | Terrain Lev | /el | | | | | | | | Downstrear | n Adj Ramp | | ∭ Yes | ∭ On | | | | | | | | | | ✓ Yes | ☑ On | | ☑ No | ™ Off | | | | | | | | | | ™ No
L _{down} = | ™ Off
1015 ft | | L _{up} = | ft | | | | | | | | | | _down | .010 1 | | Vu = | veh/h | | | Sketch (s | | s, L _A , L _D ,V | 111 | 35.0 m | ph | | V _D = | 160 veh/h | | Conversi | ion to pc | /h Unde | r Base | Condi | tions | | | | | | | | | (pc/h) | V
(Veh/hr) | PHF | Terr | ain | Truck | %Rv | <u> </u> | f _{HV} | | f _p | v=V/PHF f _H | ıv ^f p | | Freeway | 5490 | 0.87 | Lev | | 6 | 0 | - | 971 | | 1.00 | 6500 | | | Ramp | 240 | 0.87 | Lev | el | 6 | 0 | 0.9 | 971 | | 1.00 | 284 | | | UpStream
DownStream | 160 | 0.87 | Lev | el | 6 | 0 | 0 | 971 | | 1.00 | 189 | | | DOMINOUSCAIN | 100 | Merge Are | | - | | <u>`</u> | | | | ge Areas | | | | Estimation | on of v ₁₂ | Ť | | | | Estima | tion | of v | 12 | | | | | L _{EQ} = (Equa
P _{FM} = 0.342
V ₁₂ = 2220 | ation 25-2 or 2
using Equatio | | w) | | | L _{EQ} = (Ec
P _{FD} = us
V ₁₂ = pc/ | ing Ed
Ih | n 25-8 o
quation | r 25-9 | / _R + (V _F -
) | - V _R)P _{FD} | | | Capacity | Checks | | | | | Capaci | ity C | heck | S | | | | | | Actua | d Ma | aximum | LOS | SF? | | | Actu | al | Ma | ximum | LOS F? | | V_{FO} | 6784 | See F | xhibit 25-7 | N | 0 | V _{FI} =V, | F | | | See Ex | hibit 25-14 | | | *F0 | 0104 | | EXHIBIT 20 7 | | | V ₁₂ _ | | | | 44 | 00:All | | | V _{R12} | 2504 | 4 | 600:All | N | 0 | $V_{FO} = V_F$ V_R V_R | - | | -1 | | hibit 25-14
xhibit 25-3 | | | | 0 | <u> </u> | 4: / | | _ | | .50 | | . Da | | nation (if | Fnot E) | | | Service L | | | | | Level C | | | | | | not r) | | | 5.475 + 0.007;
7. (** * (** * !!*) | 34 V _R + 0.0 | 0/6 V ₁₂ - 0.0 | JUOZI LA | | _ | | •• | .)Z τ (| J.0000 V. | ₁₂ - 0.009 L _D | | | 1 '` | 7 (pc/ m/ln) | | | | | 1 '` | (pc/ m | • | | | | | | | Exhibit 25-4) | | | <u> </u> | | | <u> </u> | oit 25-4) | | | | | | Speed E | stimation | <u> </u> | | | | Speed | | | | | | | | ĭ | 34 (Exibit 25 | - | | | | D _s = | • | ibit 25-1 | | , | | | | l '' | 7 mph (Exhib | • | | | | I '' | • | (Exhibit | | | | | | • | 1 mph (Exhib | - | | | | I ° | • | (Exhibit | | - | | - | | S= 62. | 8 mph (Exhib | rue. | S = mph (Exhibit 25-15) | | | | | | | | | | | | | RAMP | SÄND | RAMI | PJUN | CTIONS | S WC | DRKSH | EET | | | |--|----------------------------------|---------------------------------------|-------------------------|----------------------|----------------|--|--------|------------------------|---|--|------------------------------| | General I | Informati | on | | | | Site In | form | ation | | | | | Analyst2
Agency or Co
Date Performe
Analysis Time | ed
Period | ZS
LLG Engi
07/14/10
PM Peak | Hour | | Ju
Ju
A: | eeway/Dir on
Inction
Irisdiction
Inalysis Year | r | rel | SR-57 SI
WB On-F
Caltrans
Existing | Ramp at Katella
D12 | 1 | | Project Descr | iption PM Ex | kisting (Year : | 2008) SR- | 57 SB W | 3 On-Ran | np at Katella | a | | | | | | Inputs | | T! | | | | | | | | | | | Upstream Adj | Ramp | Terrain Leve | 1 | | | | | | | | m Adj Ramp | | ™ Yes | On On | | | | | | | | | ✓ Yes | ☑ On | | ☑ No | I Off | | | | | | | | | III No
■ | ₩ Off
1015 ft | | L _{up} = | ft | | - 70 | O mah | | | ···· | 25 0 mmh | | L _{down} = | | | Vu = | veh/h | Š | S _{FF} = 70 | | show lane | es, L _A , L _D ,V | | 35.0 mph | | V _D = | 360 veh/h | | Conversi | ion to pc | h Under | Base | Condi | tions | | • | | | | ' | | (pc/h) | V
(Veh/hr) | PHF | Ten | rain | Truck | %Rv | | HV | fp | v=V/PHF f | _{tV} ^f p | | Freeway | 6690 | 0.87 | Lev | | 6 | 0 | 0.9 | | 1.00 | 7920 | | | Ramp
UpStream | 460 | 0.87 | Lev | 'el | 6 | 0 | 0.9 | 071 | 1.00 | 545 | | | DownStream | 360 | 0.87 | Lev | el | 6 | 0 | 0.9 | 71 | 1.00 | 426 | | | | | Merge Areas | | <u> </u> | | | 0.0 | | verge Are | | · | | Estimatio | | | | · | | Estima | tion | of v ₁₂ | Ĭ | | | | L _{EQ} = (Equa
P _{FM} = 0.309
V ₁₂ = 2447 | ation 25-2 or 2
using Equatio | | | | | L _{EQ} = (Eq
P _{FD} = usi
V ₁₂ = pc/l | ing Eq | 25-8 or 25 | | _F - V _R)P _{FD} | | | Capacity | Checks | | | | | Capaci | ty C | hecks | | | | | | Actua | Max Max | imum | LOS | § F? | | | Actual | М | laximum | LOS F? | | V _{FO} | 8465 | See Ext | nibit 25-7 | No | , | V _{F1} =V _F | | | See E | xhibit 25-14 | | | 10 | 0,00 | 000 2/4 | | ,,, | • | V ₁₂ | | | 4 | 400:All | - | | V _{R12} | 2992 | 460 | 0:All | No |) | $V_{FO} = V_{F}$ V_{R} | - | | | xhibit 25-14 | | | | | | | | | V _R | | | See | Exhibit 25-3 | | | Level of | Service D | etermin | ation (i | if not l | 5) | Level o | f Se | rvice D | eterm | ination (it | not F) | | $D_R = 5$ | .475 + 0.0073 | 4 v _R + 0.007 | 8 V ₁₂ - 0.0 | 00627 L _A | | | D | _R = 4.252 - | F 0.0086 Y | V ₁₂ - 0.009 L _D | | | D _R = 25.4 | f (pc/ m/ln) | , | | | | D _R = (| pc/ m/ | ln) | | | | | LOS = C (E | Exhibit 25-4) | | | | | LOS= (| Exhibi | t 25-4) | | | | | Speed Es | stimation | | | | | Speed | Estil | mation | | | | | • | 64 (Exibit 25- | • | | • | , | • | | oit 25-19) | | • | | | S _R = 59.8 | 3 mph (Exhibi | t 25-19) | | | | •• | | Exhibit 25-1 | - | | | | • | mph (Exhibi | · · | | | | S ₀ = mph (Exhibit 25-19) | | | | | | | S= 60.5 | mph (Exhibi | t 25-14) | | | | S= n | nph (E | Exhibit 25-1 | 5) | | | WEAVING ANALYSIS | Genera | l Informat | tion | | | /ING WOR | | | | | |--|--|---|--|--|--|--|----------------------|--|-----------------------| | Analyst
Agency/Co
Date Perfor
Analysis Ti | med | 07/14 | Engineers
/10
eak Hour | | Freeway/Dir
Weaving Sec
Jurisdiction
Analysis Yea | of Travel
J Location | Caltra | 7 NB
gewood On to
ins D12
ng 2008 | Katella Off | | Inputs
Freeway fre | ee-flow speed, | See (mi/h) | 65 | | 1 | | | | | | Weaving nu | imber of lanes, eg length, L (ft) | , N | 5
136
Lev | | Weaving type Volume ratio Weaving ratio | VR | | B
0.
0. | 19 ⁻
17 | |
Conver | sions to p | oc/h Unde | er Base C | ondition | ıs | | #### | | | | (pc/h) | ٧ | PHF | Truck % | RV % | E _T | E _R | fHV | fp | ٧ | | Vo1 | 3860 | 0.87 | 6 | 0 | 1.5 | 1.2 | 0.971 | 1.00 | 4569 | | Vo2 | 10 | 0.87 | 6 | 0 | 1.5 | 1.2 | 0.971 | 1.00 | 11 | | Vw1 | 730 | 0.87 | 6 | 0 | 1.5 | 1.2 | 0.971 | 1.00 | 864 | | Vw2 | 150 | 0.87 | 6 | 0 | 1.5 | 1.2 | 0.971 | 1.00 | 177 | | √w | | | | 1041 | Vnw | | | <u> </u> | 4580 | | V | | | | | | | | | 5621 | | Weavin | g and No | n-Weavin | g Speeds |
S | | | | | 0021 | | | Y | | Unconstr | | | | Cons | trained | | | | | Weaving | ı (i = w) | Non-Wea | ving (i = nw) | Weavir | g (i = w) | Non-Wea | ving (= nw) | | a (Exhibit 2 | | 0.0 | | | .00 | | | | | | b (Exhibit 2 | | 2.2 | **** | | 00 | * | | ļ | | | c (Exhibit 2
d (Exhibit 2 | | 0.70 | | | 00
50 | | ···· | | | | Weaving intens | | 0.3 | | | 17 | | | | | | Weaving and n | on-weaving | 53.4 | | | .05 | | | | | | Maximum ก | anes required umber of lanes | for unconstrai
, Nw (max) | ned operation, | Nw | 1.16
3.50 | if Nw > Nw | (max) constr | ained operati | on | | Weavin | g Segmer | nt Speed, | Density, | Level of | Service, | and Cap | acity | | | | Weaving se | gment speed, | S (mi/h) | | 60.25 | | | | | | | | gment density, | D (pc/mi/ln) | | 18.66 | | | | | | | evel of ser | | , " | | В | · <u></u> | | | | | | | base condition | | | 11477 | | | | | | | | a 15-minute flo | | | 11143 | | <u>.</u> | | | | | | a full-hour voit | ıme, c _h (veh/h |) | 9694 | | | | | | | Capacity con Capacity occ Three-lane Ty Four-lane Ty Capacity cons | strained by basic frours under constrained
ype A segments do
pe A segments do no
drained by maximur
pe A segments do no
drained by maximur
pe A segments do no
drained by basic frour
drained by basic frour frour trained
trained by basic frour frou frou | eeway capacity. ed operating condi not operate well a tot operate well at allowable weavii ot operate well at | tions.
t volume ratios great
volume ratios great
ng flow rate: 2,800
volume ratios great | ater than 0.45. Po
ter than 0.35. Po
pc/h (Type A), 4,
ter than 0.20. Poc | as using the procedu
oor operations and so
or operations and so
000 (Type B), 3,500
or operations and so | some local queuin
ome local queuin
(Type C).
me local queuino
me local queuino | ng are expected in s | such cases.
such cases. | | HCS2000[™] | Genera | l Informa | tion | · · · · · · · · · · · · · · · · · · · | | Site Info | rmation | | | **** | |---|--|---|---|--|---|---|---|---------------------------|--------------| | Analyst
Agency/Co
Date Perfo
Analysis Ti | mpany
rmed | ZS
LLG I
07/14 | Engineers
/10
eak Hour | | Freeway/Dir
Weaving Seg
Jurisdiction
Analysis Yea | of Travel
Location | SR-57 NB
Orangewood On to Katelia
Caltrans D12
Existing 2008 | | | | Inputs | | | | | | | | | | | Weaving no
Weaving se
Terrain | ee-flow speed,
umber of lanes,
eg length, L (ft)
sions to p | N ´ | 65
5
136
Lev | rel | Weaving type
Volume ratio,
Weaving ratio | VR | | B
0.:
0.: | | | pc/h) | V | PHF | Truck % | RV % | Ε _Τ | E _R | fhv | f. | Τ | | Vo1 | 6960 | 0.87 | 6 | 0 | 1.5 | 1.2 | 0.971 | fp | V | | /o2 | 10 | 0.87 | 6 | 0 | 1.5 | 1.2 | 0.971 | 1.00
1.00 | 8240
11 | | /w1 | 550 | 0.87 | 6 | 0 | 1.5 | 1.2 | 0.971 | 1.00 | 651 | | /w2 | 270 | 0.87 | 6 | 0 | 1.5 | 1.2 | 0.971 | 1.00 | 319 | | /w | | 1 | | 970 | Vnw | 1.2 | 0.971 | 1.00 | | | / | = | | | | Aliva | | | | 8251 | | Neavin | g and No | n-Weavin | a Speeds | <u> </u> | ··· | | | | 9221 | | | <u> </u> | | Unconstr | | | | Cons | trained | ······ | | | | Weaving | (i = w) | Non-Wea | ving (i = nw) | Weavir | ng (i = w) | | /ing (= nw) | | (Exhibit 2 | | 0.08 | | | .00 | | | | | | (Exhibit 2 | | 2.20 | | | .00 | | | | | | (Exhibit 24) | | 0.70
0.50 | | | .00 | | ··· | | | | Veaving intens | | 0.52 | | | .50
.18 | | | | | | Veaving and n | on-weaving | 51.1 | | · · · · · · · · · · · · · · · · · · · | .52 | | | | | | /laximum n | anes required fumber of lanes | or unconstrair
, Nw (max)
(max) unconsi | ned operation, | Nw | 0.72
3.50 | | / (max) constr | I ained operation | on | | | | | Density, | Level of | Service, | and Cap | acity | | | | | gment speed, S | | | 60.23 | | | | | | | | gment density, | D (pc/mi/ln) | | 30.62 | | | ` | | | | evel of ser | base condition, | o (no/h) | ·-· | D 44700 | | · · · | | | | | | a 15-minute flo | | /b) | 11733 | ····· | | | | | | | a full-hour volu | | | 11391
9910 | | | | | | | lotes | Tall Hour Void | THO, OF (VCISII | | 3310 | | | | | | | Weaving segrical Capacity occurs. Three-lane Type Capacity constructions Type Capacity constructions. | strained by basic tre
irs under constraine
rpe A segments do ra
ie A segments do na
trained by maximum | eway capacity. d operating condit not operate well at v i operate well at v i allowable weavin it operate well at v | ons
volume ratios great
olume ratios great
g flow rate: 2,800 p
olume ratios greate | ater than 0.45. Pe
er than 0.35. Po
oc/h (Type A), 4,
er than 0.20. Poc | oor operations and so
oor operations and so
oo (Type B), 3,500
or operations and son | ome local queuir
ne local queuing
(Type C).
ne local queuing | ng are expected in
pare expected in s | such cases.
uch cases. | | | Ganara | Informat | | | | Site Info | KSHEE | | · | | |---|---|--|---|---|---|---|-------------------------------------|---|-------------| | <u>Jenera</u> | i iliiOllia | uvii | | | Site info | mation | | | | | Analyst
Agency/Cor
Date Perfor
Analysis Tir | med | 07/14 | ngineers
/10
eak Hour | | Freeway/Dir
Weaving Seç
Jurisdiction
Analysis Yea | Location | Caltra | 7 SB
la On to Oran
ans D12
ng 2008 | gewood Of | | Inputs | · · · · · · · · · · · · · · · · · · · | | | <u> </u> | | | | | 777444 | | Weaving nu | e-flow speed,
imber of lanes,
g length, L (ft) | , N ` ´ | 65
5
178
Lev | | Weaving type
Volume ratio
Weaving ratio | VR | | A
0.:
0.: | | | Conver | sions to p | oc/h Unde | er Base C | ondition | S · | | | | | | (pc/h) | V | PHF | Truck % | RV % | E _T | ER | fHV | fp | ٧ | | Vo1 | 5490 | 0.87 | 6 | 0 | 1.5 | 1.2 | 0.971 | 1.00 | 6499 | | Vo2 | 10 | 0.87 | 6 | 0 | 1.5 | 1.2 | 0.971 | 1.00 | 11 | | Vw1 | 700 | 0.87 | 6 | 0 | 1.5 | 1.2 | 0.971 | 1.00 | 828 | | √w2 | 150 | 0.87 | 6 | 0 | 1.5 | 1.2 | 0.971 | 1.00 | 177 | | √w | | | | 1005 | Vnw | | | | 6510 | | / | 1 | | | | <u> </u> | | | | 7515 | | Weavin | g and No | n-Weavin | g Speeds | \$ | | | <u> </u> | | | | | | | Unconstr | | | | Cons | trained | | | _ | | Weaving | | Non-Weav | /ing (i = nw) | Weavin | g (i = w) | Non-Wea | ving (= nw | | a (Exhibit 24 | | 0.15 | | 0.0 | | | | | | | Exhibit 24
(Exhibit 24 | | 2.20 | | 4.1 | | | | | | | f (Exhibit 24 | | 0.97 | | 1.3
0. | | | | | | | Veaving intensi | | 0.60 | | 0.1 | | | | | | | Veaving and no | n-weaving | 49.4 | | 57. | | | | | | | Maximum ni | anes required tumber of lanes | 1
for unconstrair
i, Nw (max)
(max) unconst | ned operation,
rained operati | Nw
on | 1.22
1.40 | | | Iained operation | on | | Veavin | g Segmer | nt Speed, | Density, | Level of | Service, | | | | | | Veaving se | gment speed, 3 | S (mi/h) | | 56.53 | | - | | | | | | gment density, | D (pc/mi/ln) | | 26.59 | | | | | | | evel of serv | | | | С | | | | | | | | base condition | | | 11047 | | | | | | | | | ow rate, c (veh | | 10725 | | | | | | | | a tull-hour volu | ıme, c _h (veh/h |) | 9331 | | | | | | | . Capacity cons
. Capacity occu
. Three-lane Typ
. Four-lane Typ
Capacity const | strained by basic fre
rs under constraine
rpe A segments do
re A segments do n
trained by maximun | eway capacity. ed operating condit not operate well at ot operate well at v n allowable weavin | ions.
volume ratios great
rolume ratios great
g flow rate: 2,800 g | ater than 0.45, Po
er than 0.35, Poo
oc/h (Type A), 4.0 | s using the procedu
or operations and so
or operations and so
i00 (Type B), 3,500
r operations and so | ome local queuin
me local queuing
(Type C). | g are expected in are expected in s | such cases,
such cases, | | | General | Informat | | NECVYA | VI VYEAV | ING WOF | | <u> </u> | | |
--|---|--|---|---|--|--|--|--|---------------------------------------| | Genera | illioilliai | HOIL | | | Site into | rmation | | | | | Analyst
Agency/Cor
Date Perfort
Analysis Tin | ned | 07/14/ | ngineers
10
ak Hour | | Freeway/Dir
Weaving Se
Jurisdiction
Analysis Yea | g Location | Caltra | 7 SB
a On to Oran
ans D12
ng 2008 | gewood Off | | Inputs | | | | | | | | | ···· | | Weaving nu
Weaving se
Terrain | e-flow speed,
mber of lanes,
g length, L (ft) | N | 65
5
178
Lev | el | Weaving type
Volume ratio
Weaving ratio | , VR | | | 14
32 | | Conver | sions to p | c/h Unde | r Base C | ondition | S | | 7 | | | | (pc/h) | V | PHF | Truck % | RV % | E _T | . E _R | fHV | fp | ٧ | | Vo1 | 6680 | 0.87 | 6 | 0 | 1.5 | 1.2 | 0.971 | 1.00 | 7908 | | Vo2 | 20 | 0.87 | 6 | 0 | 1.5 | 1.2 | 0.971 | 1.00 | 23 | | Vw1 | 710 | 0.87 | 6 | 0 | 1.5 | 1.2 | 0.971 | 1.00 | 840 | | Vw2 | 340 | 0.87 | 6 | 0 | 1.5 | 1.2 | 0.971 | 1.00 | 402 | | Vw | | | | 1242 | Vnw | | | | 7931 | | V | 1 | | | | | | | | 9173 | | Weaving | and No | n-Weaving | Speeds | <u> </u> | | ·. · · · · · · | | | 00 | | | | | Unconstr | | | | Cons | trained | | | | | Weaving | (i = w) | Non-Weav | ing (i = nw) | Weavin | g (i = w) | Non-Wea | ving (= nw) | | a (Exhibit 24 | | 0.15 | | 0.0 | | | | | | | b (Exhibit 24
c (Exhibit 24 | | 2.20 | | 4.0 | | | | | | | d (Exhibit 24 | | 0.97
0.80 | | 1.3
0.7 | | | | | | | Weaving intensit | | 0.73 | | 0.3 | | | | | | | Weaving and no | n-weaving | 46.81 | | 55. | | - | | | | | speeds, Si (mi/h
Number of la | | or unconstrain | | | 1.26 | | · · · · · · · · · · · · · · · · · · · | | · · · · · · · · · · · · · · · · · · · | | Maximum nu | mber of lanes | Nw (max) | ou oporación, | | 1.40 | | | | | | | | max) unconstr | | | 000
000 | if Nw > Nw | (max) constr | ained operati | on | | Weaving | Segmen | t Speed, | Density, | Level of | Service, | and Cap | acity | | | | Neaving sec | ment speed, S | S (mi/h) | | 53.82 | | | | **** | | | - | ment density, | D (pc/mi/ln) | | 34.09 | | | | | | | evel of serv | | . (1) | | D | | | | | | | ***** | ase condition, | ~ | | 11035 | | | | | | | | | w rate, c (veh/ | | 10714 | | | | | | | | a Tuli-nour Volu | me, c _h (veh/h) | | 9321 | | | | | | | Capacity cons Capacity occur Three-lane Type Four-lane Type Capacity construction Five-lane Type Type B weavin | rained by basic fre
s under constraine
se A segments do no
ained by maximum
A segments do no
g segments do not | d operating condition to operate well at vote operate well at vote allowable weaving to operate well at vote | ons.
volume ratios great
flume ratios great
flow rate: 2,800 p
lume ratios greate | ater than 0.45. Po
er than 0.35. Poo
och (Type A), 4,0
er than 0.20. Poor
than 0.80. Poor | or operations and s
r operations and so
00 (Type B), 3,500
operations and so
operations and so | some local queuing
ome local queuing
(Type C).
me local queuing
ne local queuing a | g are expected in are expected in sare expected in sare expected in sare | such cases.
uch cases.
uch cases. | - Paper Salar Paul | Copyright © 2003 University of Florida, All Rights Reserved | General Information | | | | AY WEAVING WORKSHEET | | | | | | | | |---|--|--|---|--|---|--|---|---|------|--|--| | Genera | ı ınıormaı | ion | | · | Site Information | | | | | | | | Analyst ZS Agency/Company LLG Engineers Date Performed 07/14/10 Analysis Time Period AM Peak Hour | | | | | Weaving Seg Location Katel
Jurisdiction Caltri | | | 57 NB
Illa On to Ball Off
rans D12
ting 2008 | | | | | Inputs | | 2 (| 0.7 | | | | | | | | | | Freeway free-flow speed, SFF (mi/h) 65 Weaving number of lanes, N 4 Weaving seg length, L (ft) 213 Terrain Leve | | | Mooving ratio D | | | B
0.21
0.14 | | | | | | | Conver | sions to p | c/h Unde | r Base C | ondition | IS | | | | | | | | (pc/h) | V | PHF | Truck % | RV % | Ε _τ | ER | fHV | fp | ٧ | | | | Vo1 | 3600 | 0.87 | 6 | 0 | 1.5 | 1.2 | 0.971 | 1.00 | 4262 | | | | /o2 | 10 | 0.87 | 6 | 0 | 1.5 | 1.2 | 0.971 | 1.00 | 11 | | | | /w1 | 840 | 0.87 | 6 | 0 | 1.5 | 1.2 | 0.971 | 1.00 | 994 | | | | /w2 | 140 | 0.87 | 6 | 0 | 1.5 | 1.2 | 0.971 | 1.00 | 165 | | | | /w | 1 | | · | 1159 | Vnw | | | | 4273 | | | | V | | | | | | 5432 | | | | | | | Veavin | g and No | n-Weavin | g Speeds | | | | | | 0402 | | | | | · · · · · · · · · · · · · · · · · · · | | Unconstr | | | | | | | | | | Weaving (i = w) | | | Non-Weaving (i = nw) | | Weavin | Weaving (i = w) No | | ving (= nw | | | | | (Exhibit 2 | | 0.08 | | 0.00 | | | | | | | | | (Exhibit 2 | | 2.20 | | 6.00 | | | | | | | | | (Exhibit 24
I (Exhibit 24 | | 0.70 | | 1.00 | | | | | | | | | Veaving intens | | 0.50
0.41 | | 0.50
0.19 | | | | | | | | | Veaving and n | on-weaving | 53.90 | | 61,30 | | | | | | | | | speeds, Si (mi/h) 53.90 Number of lanes required for unconstrained operation, | | | | | | | | | | | | | Maximum n | anes required to umber of lanes If Nw < Nw | , Nw (max) | • | | 0.85
3.50 | ື່if Nw > Nພ | (max) constr | rained operation | on | | | | | | | | | | | | amou oporati | 011 | | | | Weaving Segment Speed, Density, Weaving segment speed, S (mi/h) | | | | 59.56 | | | | | | | | | Weaving segment density, D (pc/mi/ln) | | | | 22.80 | | | | | | | | | Level of service, LOS | | | С | | | | | | | | | | Capacity of base condition, c _b (pc/h) | | | | 9318 | | | | | | | | | Capacity as a 15-minute flow rate, c (veh/h) | | | | 9047 | | | | | | | | | Capacity as a full-hour volume, c _h (veh/h) | | | | 7871 | | | | | | | | | lotes | | | | | | | | | | | | | . Capacity con: . Capacity occi . Three-lane Ty, . Four-lane Tyr, Capacity cons . Five-lane Typ . Type B weavi | strained by basic fre
urs under constraine
upe A segments do no
trained by maximum
e A segments do no
ng segments do no
ng segments do not | eway capacity. d operating conditi not operate well at vo n allowable weaving t operate well at vo | ons.
volume ratios great
plume ratios great
glow rate:
2,800 p
plume ratios greate
ume ratios greate | ater than 0.45. Po
er than 0.35. Poo
oc/h (Type A), 4,0
er than 0.20. Poor
r than 0.80. Poor | s using the procedu
or operations and so
or operations and so
000 (Type B), 3,500
or operations and so
operations and so | ome local queuing
me local queuing
(Type C).
me local queuing
te local queuing | g are expected in are expected in sare expected in sare expected in sare expected in sare | such cases.
such cases.
such cases. | | | | Copyright © 2003 University of Florida, All Rights Reserved | | | | FREEWA | Y WEAV | ING WOF | RKSHEE | Γ | | | | |--|--|---|--|---|----------------------|---|---------------------|----------------|--------------|--| | Genera | Informat | | | | Site Information | | | | | | | Analyst ZS Agency/Company LLG Engineers Date Performed 07/14/10 Analysis Time Period PM Peak Hour | | | | Freeway/Dir
Weaving Se
Jurisdiction
Analysis Yea | g Location | SR-57 NB
Katella On to Ball Off
Caltrans D12
Existing 2008 | | | | | | Inputs | | | ** | | | | | | | | | Freeway free-flow speed, SFF (mi/h) 65 Weaving number of lanes, N 4 Weaving seg length, L (ft) 21: Terrain Le | | rel | Weaving type
Volume ratio, VR
Weaving ratio, R | | B
0.11
0.26 | | | | | | | Conver | sions to p | c/h Unde | r Base C | ondition | s | | | | | | | (pc/h) | V | PHF | Truck % | RV % | ET | ER | fHV | fp | ٧ | | | Vo1 | 7050 | 0.87 | 6 | 0 | 1.5 | 1.2 | 0.971 | 1.00 | 8346 | | | Vo2 | 10 | 0.87 | 6 | 0 | 1.5 | 1.2 | 0.971 | 1.00 | 11 | | | Vw1 | 660 | 0.87 | 6 | 0 | 1.5 | 1.2 | 0.971 | 1.00 | 781 | | | Vw2 | 230 | 0.87 | 6 | 0 | 1.5 | 1.2 | 0.971 | 1.00 | 272 | | | Vw | | | | 1053 | Vnw | | | | 8357 | | | V | | | | | | | | 9410 | | | | Weavin | g and Nor | า-Weavin | g Speeds | 3 | ···· | | | | <u> </u> | | | Unconstr | | | | | | | | Constrained | | | | (m. 1 11 11 a | | Weaving | | Non-Weaving (i = nw) | | Weavin | g (i = w) | Non-Weav | /ing (= nw) | | | a (Exhibit 24
b (Exhibit 24 | | 0.08
2.20 | | 0.00
6.00 | | | | | | | | c (Exhibit 24 | | 0.70 | | 1.00 | | | | ' | | | | d (Exhibit 24 | | 0.50 | | 0.50 | | | | | | | | Weaving intensi | | 0.50 | | 0.19 | | | | | | | | Weaving and ποη-weaving
speeds, Si (mi/h) | | 51.6 | .63 | | .12 | | | | | | | Number of la | anes required fumber of lanes | | ed operation, | | 0.41
3.50 | | <u> </u> | | | | | J | ☑ If Nw < Nw(| (max) unconst | rained operat | ion | 95 | if Nw > Nw | (max) constra | ained operatio | n | | | Weaving | g Segmen | t Speed, | Density, | Level of | | | | <u> </u> | | | | Weaving segment speed, S (mi/h) | | | | 59.88 | | | | | | | | Weaving segment density, D (pc/mi/ln) | | | 39.28 | | | | | | | | | Level of service, LOS | | | E | | | | | | | | | Capacity of base condition, c _b (pc/h) | | | | 9400 | | | | | | | | Capacity as a 15-minute flow rate, c (veh/h) | | | 9126 | | | | | | | | | Capacity as a full-hour volume, c _h (veh/h) | | | 7940 | | | | | <u>.</u> | | | | Notes | | | | | | | | | | | | b. Capacity cons c. Capacity occu d. Three-lane Ty e. Four-lane Typ | nents longer than 25
trained by basic fre
rs under constraine
pe A segments do re
e A segments do no | eway capacity.
d operating condit
not operate well at
of operate well at v | ions.
volume ratios great
olume ratios great | ater than 0.45. Po | or operations and so | some local queuir
ome local queuing | o are expected in : | such cases. | | | Copyright @ 2003 University of Florida, All Rights Reserved e. Four-latter type A segments do not operate well at volume ratios greater than 0.50. Poor operations and some local queuing are expected in such cases. f. Capacity constrained by maximum allowable weaving flow rate: 2,800 pc/h (Type A), 4,000 (Type B), 3,500 (Type C). g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20. Poor operations and some local queuing are expected in such cases. h. Type B weaving segments do not operate well at volume ratios greater than 0.50. Poor operations and some local queuing are expected in such cases. Type C weaving segments do not operate well at volume ratios greater than 0.50. Poor operations and some local queuing are expected in such cases. | General Information | | | | AT VVEAV | AVING WORKSHEET | | | | | | |---|---|--|--|---|---|---|---|--|------|--| | General information | | | | | Site Information | | | | | | | Date Performed 07/ | | LLG E
07/14/ | Engineers
4/10
Peak Hour | | Freeway/Dir of Travel
Weaving Seg Location
Jurisdiction
Analysis Year | | SR-57 SB
Ball On to Katella Off
Caltrans D12
Existing 2008 | | | | | Inputs | | , | | | | | | | | | | Freeway free-flow speed, SFF (mi/h) 65 Weaving number of lanes, N 4 Weaving seg length, L (ft) 249 Terrain Leve | | | rel | Weaving type
Volume ratio, VR
Weaving ratio, R | | | B
0.23
0.42 | | | | | Conver | sions to p | c/h Unde | r Base C | ondition | S | | | - | | | | (pc/h) | ٧ | PHF | Truck % | RV % | E _T | E _R | fHV | fp | ٧ | | | Vo1 | 4890 | 0.87 | 6 | 0 | 1.5 | 1.2 | 0.971 | 1.00 | 5789 | | | Vo2 | 30 | 0.87 | 6 | 0 | 1.5 | 1.2 | 0.971 | 1.00 | 35 | | | Vw1 | 840 | 0.87 | 6 | 0 | 1.5 | 1.2 | 0.971 | 1.00 | 994 | | | Vw2 | 600 | 0.87 | 6 | 0 | 1.5 | 1.2 | 0.971 | 1.00 | 710 | | | Vw | | | | 1704 | Vnw | <u></u> | | | 5824 | | | V | | | | | | | | | 7528 | | | Weavin | g and No | n-Weavin | a Speeds | | | <u> </u> | | | | | | | <u> </u> | | Unconstr | | ed Constrained | | | | | | | | - | Weaving | (i = w) | Non-Weaving (i = nw) Weav | | Weavin | ng (i = w) Non-Weaving (= nw | | | | | a (Exhibit 2 | | 0.08 | | 0.00 | | | | | | | | b (Exhibit 2 | | 2.20 | | 6.00 | | | | <u> </u> | | | | c (Exhibit 24
d (Exhibit 24 | | 0.70
0.50 | | 1.00
0.50 | | | | ļ | · | | | Weaving intens | | 0.49 | | 0.26 | | | | | | | | Weaving and no | n-weaving | 51.86 | | 58.77 | | | | | | | | speeds, Si (mi/f |)
anes required (| | | | | | | <u> </u> | | | | Maximum n | umber of lanes | . Nw (max) | eu operation, | IVW | 0.86
3.50 | | | | | | | | ☑ If Nw < Nw | | rained operati | ion | | if Nw > Nw | (max) constr | ained operati | on | | | | | | | Level of Service, and Capacity | | | | | | | | Weaving segment speed, S (mi/h) | | | | 57.05 | | | | | | | | Weaving segment density, D (pc/mi/ln) | | | | 32.99 | | | | | | | | Level of service, LOS | | | D | | | | | | | | | Capacity of base condition, c _b (pc/h) | | | | 9275 | | | | | | | | Capacity as a 15-minute flow rate, c (veh/h) | | |
9005 | | | | | | | | | Capacity as a full-hour volume, c _h (veh/h) | | | | 7834 | | | | | | | | Notes | | | | | | | | | | | | Capacity const Capacity occurity Four-lane Type Capacity const Capacity const Five-lane Type Type B weavity | nents longer than 2
strained by basic fre
rs under constraine
pe A segments do
e A segments do no
rained by maximun
e A segments do no
ng segments do no | eway capacity. It operating condition operate well at operate well at vortion at operate well at vortion at operate well at votion at operate well at votion operate well at votion vo | ons.
volume ratios great
olume ratios great
g flow rate: 2,800
olume ratios great
ume ratios greate | ater than 0.45. Po
ter than 0.35. Poo
pc/h (Type A), 4,0
er than 0.20. Poor
r than 0.80. Poor | or operations and s
r operations and so
00 (Type B), 3,500
operations and so | some local queuing
me local queuing
(Type C).
me local queuing
ne local queuing a | g are expected in
are expected in s
are expected in s
tre expected in su | such cases.
such cases.
uch cases. | | | Copyright © 2003 University of Florida, All Rights Reserved | | | FREEVY | T WEA | VING WOF | · · · · · · · · · · · · · · · · · · · | | | | | | | |--|--|-----------------|----------------------|--|---------------------------------------|---|--------------------|-----------|--|--|--| | General Informa | tion | | | Site Information | | | | | | | | | Analyst ZS Agency/Company LLG Engineers Date Performed 07/14/10 Analysis Time Period PM Peak Hour | | | | Freeway/Dir of Travel
Weaving Seg Location
Jurisdiction
Analysis Year | | SR-57 SB
Ball On to Katella Off
Caltrans D12
Existing 2008 | | | | | | | Inputs | | | | | | | | | | | | | Freeway free-flow speed, SFF (mi/h) 65 Weaving number of lanes, N 4 Weaving seg length, L (ft) 249 Terrain Lev | | Masying ratio P | | B
0.16
0.43 | | | | | | | | | Conversions to | pc/h Unde | r Base C | onditio | าร | | | | | | | | | (pc/h) V | PHF | Truck % | RV % | Ε _T | E _R | fHV | fp | ٧ | | | | | Vo1 6190 | 0.87 | 6 | 0 | 1.5 | 1.2 | 0.971 | 1.00 | 7328 | | | | | Vo2 30 | 0.87 | 6 | 0 | 1.5 | 1.2 | 0.971 | 1.00 | 35 | | | | | Vw1 660 | 0.87 | 6 | 0 | 1.5 | 1.2 | 0.971 | 1.00 | 781 | | | | | Vw2 500 | 0.87 | 6 | 0 | 1.5 | 1.2 | 0.971 | 1.00 | 591 | | | | | Vw | | | 1372 | Vnw | | <u> </u> | | 7363 | | | | | V | | • | | | | 8735 | | | | | | | Weaving and No | n-Weavin | g Speeds | 3 | | | | | | | | | | | | Unconstr | | | Constrained | | | | | | | | · (E. L.) (0.4.0) | Weaving (i = w) | | Non-Weaving (i = nw) | | Weaving (i = w) | | Non-Weaving (= nw | | | | | | a (Exhibit 24-6)
b (Exhibit 24-6) | 0.08
2.20 | | 0.00
6.00 | | | | | | | | | | c (Exhibit 24-6) | 0.70 | | 1.00 | | | | | - · · · · | | | | | d (Exhibit 24-6) | | 0.50 | | 0.50 | | | | | | | | | Weaving intensity factor, Wi | 0.48 | | 0.21 | | | | | | | | | | Weaving and non-weaving
speeds, Si (mi/h) | 52.1 | 15 6 | | .45 | 45 | | | | | | | | Number of lanes required
Maximum number of lane | | - | | 0.56
3.50 | if Nhu > Nhu | (max) constr | ainad anarati | | | | | | Weaving Segme | | | | Service : | and Can | acity | amed operation | O11 | | | | | Weaving segment speed, | | | 58.98 | | una vap | uvity | | | | | | | Neaving segment density | 37.03 | | | | | | | | | | | | evel of service, LOS | E | | | | | | | | | | | | Capacity of base condition | 9400 | | | | | | | | | | | | Capacity as a 15-minute f | 9126 | | | | | | | | | | | | | Capacity as a full-hour volume, c _h (veh/h) | | | | 7940 | | | | | | | | | ume, c _h (ven/n | | 1340 | | | | | | | | | - c. Capacity occurs under constrained operating conditions. d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45. Poor operations and some local queuing are expected in such cases. e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35. Poor operations and some local queuing are expected in such cases. f. Capacity constrained by maximum allowable weaving flow rate: 2,800 pc/h (Type A), 4,000 (Type B), 3,500 (Type C). g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20. Poor operations and some local queuing are expected in such cases. h. Type B weaving segments do not operate well at volume ratios greater than 0.80. Poor operations and some local queuing are expected in such cases. Type C weaving segments do not operate well at volume ratios greater than 0.50. Poor operations and some local queuing are expected in such cases. Copyright © 2003 University of Florida, All Rights Reserved