

December 23, 2009

File No. 103567/ENV2

Jones and Stokes

1 Ada, Suite 100 Irvine, California 92618

Attention: Mr. David Feytag

Subject: Limited Preliminary Phase II Environmental Site Assessment Proposed Anaheim Regional Transportation Intermodal Center (ARTIC) – Phase 1 Anaheim, California

Dear Mr. Feytag:

Kleinfelder is pleased to present this report of our Limited Preliminary Phase II Environmental Site Assessment for the above-referenced property. We trust the information presented in this report meets your need at this time. We appreciate this opportunity to provide our services to you. Should you require additional information or have questions regarding this report, please contact Michael Counte at (949) 727-4466.

Respectfully submitted,

KLEINFELDER WEST, INC.

munu

Paolo M. Dizon, REA Environmental Scientist

andA.I.

Herbert "Bert" A. Vogler III, PG Senior Hydrogeologist

Michael A. Counte, REA, RBP Environmental Group Manager

103567-ENV2/LBE9R038 Copyright 2009 Kleinfelder

LIMITED PRELIMINARY PHASE II ENVIRONMENTAL SITE ASSESSMENT PROPOSED ANAHEIM REGIONAL TRANSPORTATION INTERMODAL CENTER (ARTIC) – PHASE I ANAHEIM, CALIFORNIA

Project No. 103567/ENV2

December 23, 2009

Report Prepared for:

Jones and Stokes 1 Ada, Suite 100 Irvine, California 92618

LIMITED PRELIMINARY PHASE II ENVIRONMENTAL SITE ASSESSMENT PROPOSED ANAHEIM REGIONAL TRANSPORTATION INTERMODAL CENTER (ARTIC) – PHASE 1 ANAHEIM, CALIFORNIA

Kleinfelder Project No. 103567/ENV2

munu

Paolo M. Dizon, REA Environmental Scientist

Herbert "Bert" A. Vogler III, PG Senior Hydrogeologist

KLEINFELDER WEST, INC. 2 Ada, Suite 250 Irvine, CA 92618 (949) 727-4466

December 23, 2009

TABLE OF CONTENTS

<u>Se</u>	<u>ction</u>		<u>Page</u>
EX	ECUTIVE	E SUMMARY	ES-1
1	INTROD 1.1 1.2 1.3 1.4	OUCTION SITE DESCRIPTION SITE HISTORY PROJECT UNDERSTANDING ASSESSMENT OBJECTIVES	1 3 4 4
2	FIELD A 2.1 2.2 2.3	CTIVITIES HEALTH AND SAFETY PLAN AND RELATED ACTIVITIES UTILITY CLEARANCE. SOIL SAMPLING 2.3.1 SAMPLING PROGRAM. 2.3.2 SOIL SAMPLE COLLECTION. 2.3.3 BOREHOLE LOGGING 2.3.4 EQUIPMENT DECONTAMINATION. 2.3.5 INVESTIGATION-DERIVED WASTE.	5 5 6 6 7 8 8 9
3	ANALYT	ICAL PROGRAM	10
4	RESULT 4.1 4.2	S FIELD RESULTS SOIL ANALYTICAL RESULTS	12 12 13
5	EVALUA	TION, CONCLUSIONS, AND RECOMMENDATIONS	15
6	LIMITAT	IONS	19
7	REFERE	ENCES	21
ТА	BLES		

Table 1	Soil Analytical Results for TPH-CCID, VOCs, OCPs, and PCBs
Table 2	Soil Analytical Results for CCR Title 22 Metals

PLATES

Plate 1	Site Location Map
Plate 2	Boring Location Map

TABLE OF CONTENTS (continued)

Section

APPENDICES

Appendix A Logs of Borings

Appendix B Laboratory Reports and Chain-of-Custody Records

EXECUTIVE SUMMARY

Kleinfelder has prepared this Limited Preliminary Phase II Environmental Site Assessment (ESA) Report of the proposed Anaheim Regional Transportation Intermodal Center (ARTIC) – Phase 1 project site (the Site) for Jones and Stokes (the Client). The Site is generally located at the southeast corner of Katella Avenue and South Douglass Road in the City of Anaheim, Orange County, California (see Plate 1, Site Location Map). Kleinfelder performed this Limited Preliminary Phase II ESA to assess potential soil impact that may have resulted from the following recognized environmental conditions (RECs) and potential RECs identified in Kleinfelder's Phase I ESA report of the Site, dated July 17, 2009:

- Blue-green colored staining was observed on asphalt pavement and concrete, near a dipping vat and within a drainage swale, at the Sullivan & Mann Lumber Company at 1790 South Douglass Road.
- A gravel-filled pit was observed within a corrugated metal building on the southern portion of the Site parcel with an address of 1750 South Douglass Road. The former use of this pit is unknown to Kleinfelder and previous environmental sampling in this area was not identified by the Phase I ESA.
- The presence of undocumented fill material was reported in a former quarry on the Site parcel with an address of 1750 South Douglass Road.

In addition to the RECs and potential RECs discussed above, Kleinfelder also assessed the following potential areas of concern which we believe warranted further investigation and/or confirmation sampling:

- An inactive laboratory and a former hazardous materials storage shed are located at 1750 South Douglass Road. In addition, a paint booth was formerly located inside the present-day warehouse building at 1790 South Douglass Road.
- Paint staining was observed in close proximity to a floor drain at 1750 South Douglass Road, adjacent to a former hazardous materials storage building.

- The Site parcel at 1750 South Douglass Road also contained a former fueling facility including two 10,000-gallon gasoline underground storage tanks (USTs), one 10,000-gallon diesel UST, two 5,000-gallon diesel USTs, and associated fuel These USTs, along with two waste oil USTs (280-gallon and dispensers. 300-gallon capacity) that were located farther to the east on the Site, were removed in March 1998. The gasoline and diesel USTs were replaced with a 20,000-gallon gasoline UST and a 20,000-gallon diesel UST, which were removed along with associated dispensers in July 2008. Based on Kleinfelder's review of available Site assessment information, the maximum detected concentrations of benzene, toluene, ethylbenzene, and total xylenes (BTEX) were in samples from a boring ("B-3") advanced by Tait Environmental Management, Inc. (Tait) to the north of the two former 10,000-gallon gasoline USTs. Soil hydrocarbon impact was also evident in samples from Tait's Boring "B-5," which was located by a former dispenser island beneath a presently-existing canopy; and in Boring "B-6," which was located between the two former 5,000-gallon diesel USTs. Borings B-5 and B-6 are at the locations where Tait reported the highest concentrations of total petroleum hydrocarbons (TPH) from its assessment. Additionally, Block Environmental (Block) reported detected concentrations of total recoverable petroleum hydrocarbons (TRPH) and tetrachloroethylene (PCE) in samples of soil stockpiled from removal of the two former waste oil USTs. The stockpiled soil was subsequently removed from the Site.
- Three hydraulic lifts and associated equipment and piping were removed from the Site parcel at 1750 South Douglass Road in September and October 2008. A soil sample collected at a depth of approximately 15 feet below grade from a remedial excavation on the north side of former "Hydraulic Lift #2" apparently contained the highest detected TPH concentration in soil not subsequently removed from this area.
- Four wastewater clarifiers and associated sewer piping were removed from the Site parcel at 1750 South Douglass Road in October 2008. The excavation areas were filled with gravel and not sealed at the surface.

Kleinfelder's scope of services did not include sampling soil within the railroad right of way on the Site or sampling of groundwater beneath the Site. For this reason, although identified as potential RECs in the Phase I ESA report, the following were <u>not</u> addressed as part of this Limited Preliminary Phase II ESA:

- Former "pouring" of oil along the railroad tracks at/near the Anaheim Stadium Metrolink/Amtrak Station and the potential presence of agricultural chemicals (due to former agricultural land use on surrounding areas from at least 1938 through at least 1952) and heavy metals and creosote (from treated railroad ties associated with the railroad tracks).
- Potential impacts to Site groundwater resulting from upgradient off-Site facilities where releases are known to, or may, have impacted shallow groundwater.

This Limited Preliminary Phase II ESA included performing environmental soil sampling, laboratory analyses, and data evaluation, along with formulation of conclusions and recommendations. A summary of the assessment sampling locations is presented below:

Kleinfelder collected environmental soil samples from six geotechnical soil borings (B-1 through B-5 and W-1) that were drilled to depths of approximately 61.5 to 101.5 feet below ground surface (bgs). The environmental samples were collected to a maximum depth of approximately 50 feet bgs. Borings B-1, B-2, and W-1 were sampled as "background" locations based on an absence of identified or suspect environmental concerns within these general areas. (Boring W-1 was subsequently converted into a geotechnical monitoring well.) Boring B-3 was sampled to assess the potential for subsurface contamination in the vicinity of a former hazardous materials storage shed. Borings B-4 and B-5 were sampled to assess the presence of undocumented fill material reported within a former quarry that was in that area of the Site. Kleinfelder submitted the environmental soil samples from these borings to a laboratory, for analysis of TPH with carbon chain identification (TPH-CCID), volatile organic compounds (VOCs) including fuel oxygenates, organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and California Code of Regulations (CCR)

Title 22 Metals. These and other analyses discussed below were performed using United States Environmental Protection Agency (US EPA) methodology.

- Two environmental soil borings (KA-1 and KA-2) were advanced and sampled to a depth of approximately 15 feet bgs in the vicinity of the Sullivan & Mann Lumber Company at the Site's 1790 South Douglass Road parcel. Boring KA-1 was installed in the location of a former paint booth, and Boring KA-2 was installed within a stained concrete drainage swale near a dipping vat. Soil samples from these borings were submitted to the laboratory for analysis of TPH-CCID, VOCs, and Title 22 Metals.
- Two environmental soil borings (KA-3 and KA-9) were advanced and sampled to a maximum depth of approximately 10 feet bgs within a former hazardous materials storage shed (Boring KA-3) and in an inactive laboratory (Boring KA-9) located on the Site's 1750 South Douglass Road parcel. The soil samples from these borings were submitted to the laboratory for analysis of TPH-CCID, VOCs, OCPs, PCBs, and Title 22 Metals.
- One environmental soil boring (KA-4) was advanced and sampled to a maximum depth of approximately 4.5 feet bgs in the vicinity of a floor drain and nearby paint staining within a bermed area at the 1750 South Douglass Road parcel. Soil samples were submitted to the laboratory for analysis of TPH-CCID, VOCs, OCPs, PCBs, and Title 22 Metals.
- Four environmental soil borings (KA-5, KA-8, KA-13, and KA-16) were advanced and sampled to a maximum depth of approximately 15 feet bgs at four former wastewater clarifier locations. Soil samples were submitted to the laboratory for analysis of TPH-CCID, VOCs, OCPs, and PCBs.
- One environmental soil boring (KA-6) was advanced and sampled to a maximum depth of approximately 5 feet bgs within a gravel-filled pit observed within a corrugated metal building on the southern portion of the 1750 South Douglass Road parcel. Soil samples were submitted to the laboratory for analysis of TPH-CCID, VOCs, OCPs, PCBs, and Title 22 Metals.

- One environmental soil boring (KA-7) was advanced and sampled to a maximum depth of approximately 20 feet bgs on the north side of former "Hydraulic Lift #2." This former lift was located within a concrete tilt-up building at the 1750 South Douglass Road parcel. Soil samples were submitted to the laboratory for analysis of TPH-CCID, VOCs, OCPs, and PCBs.
- Five environmental soil borings (KA-10 through KA-12, KA-14, and KA-15) were advanced and sampled to a maximum depth of approximately 20 feet bgs at former UST and dispenser island locations. Borings KA-10 and KA-12 were installed in the vicinity of former diesel and gasoline USTs and Boring KA-11 was installed in the vicinity of a former dispenser island. Soil samples from these borings were submitted to the laboratory for analysis of TPH-CCID and VOCs. Borings KA-14 and KA-15 were installed in the vicinity of former waste oil USTs, and soil samples from these borings were submitted to the laboratory for analysis of TPH-CCID, VOCs, and PCBs.

A summary of the assessment's findings and conclusions is presented below:

- Diesel- and oil-range TPH, at respective concentrations of 15.4 milligrams per kilogram (mg/kg) and 109 mg/kg, were detected in one soil sample collected from 20 feet bgs from Boring KA-7, which was drilled on the north side of former "Hydraulic Lift #2." The chromatograms for the diesel- and oil-range results were reported by the analytical laboratory to not match that of the diesel and motor oil standards, which suggests the presence of hydraulic oil instead of diesel fuel and motor oil. Because the 20-foot bgs sample was the deepest sample collected from this boring, it is not known whether TPH concentrations increase below a depth of 20 feet.
- The organochlorine pesticide 4,4'-dichlorodiphenyltrichloroethane (DDT) was detected at a concentration of 0.002 mg/kg in one soil sample, collected from approximately 10 feet bgs in Boring B-2, which was drilled in the central portion of the Site parcel at 1750 South Douglass Road. Deeper soil samples (collected at approximate depths of 20, 30, 40, and 50 feet bgs) that were analyzed from this boring did not contain detected DDT concentrations at or above the laboratory practical quantitation limits (PQLs). To assist in assessing the

significance of the detected DDT concentration, Kleinfelder compared the result to the DDT US EPA Regional Screening Level (RSL) for Industrial Soil, and to DDT California the Human Health Screening Level (CHHSL) for Commercial/Industrial Land Use Soil. The RSLs and CHHSLs are human health risk-based tools for evaluating and cleaning up contaminated sites. They are considered to be protective for humans (including sensitive groups) over a lifetime. Residential values are lower and therefore more conservative than the corresponding values for Commercial/Industrial Use, but because residential Site use is not presently planned, the commercial/industrial values were judged to be appropriate for use in the comparison with Site data. Generally, if contaminant concentrations fall below RSLs and CHHSLs, no further action or study is warranted, so long as the exposure assumptions match those taken into account by the screening value calculations. The DDT Industrial Soil RSL is 7.0 mg/kg and the DDT Soil CHHSL for Commercial/Industrial Land Use is 6.4 mg/kg. Because the detected DDT concentration is far below its Industrial Soil RSL and Commercial/ Industrial Land Use Soil CHHSL, in Kleinfelder's opinion no further study with regard to concern for human health is warranted by this finding. Additionally, the detected DDT concentration was compared to the CCR Title 22 Total Threshold Limit Concentration (TTLC) value for DDT of 1.0 mg/kg, and also 10 times the CCR Title 22 Soluble Threshold Limit Concentration (STLC) value for DDT of 0.1 milligram per liter (mg/L). If a constituent's concentration in waste soil exceeds the constituent's TTLC value (assuming there is one), then the waste is California-hazardous. If a constituent's concentration in a soil waste is 10 times its STLC value or higher, then analysis for the soluble constituent is required to determine if the waste is California-hazardous. Certain constituents also have Federal and/or CCR Title 22 Toxicity Characteristic Leaching Procedure (TCLP) values, which are used to assess whether a waste is Resource Conservation and Recovery Act (RCRA)-hazardous, but DDT does not have a TCLP value. Since the detected DDT concentration is less than 10 times the DDT STLC value and also below the DDT TTLC value, on the basis of this result the tested soil would be considered a non-hazardous waste.

• The VOC toluene was detected in 16 soil samples collected from various depths (to a maximum of approximately 50 feet bgs) in Borings B-1, B-2, and B-4, at a

maximum concentration of 0.035 mg/kg. The VOC 2-butanone (also known as methyl ethyl ketone [MEK]) was detected in one soil sample, collected from approximately 20 feet bgs from Boring B-2, at a concentration of 0.039 mg/kg. Based on our evaluation of the data and our knowledge of the Site, the source (or sources) of these VOC constituents is not readily apparent. The maximum detected concentrations of toluene and MEK are below their respective US EPA Industrial Soil RSLs of 46,000 mg/kg and 195,000 mg/kg. VOCs do not have established Soil CHHSLs, and the presence of these VOCs may pose indoor air intrusion concerns should a building be constructed in the vicinity of the sampled locations. MEK has both a Federal and CCR Title 22 TCLP value of 200 mg/L. If a constituent concentration in a soil sample is 20 times its TCLP value or higher. analysis for the soluble constituent is warranted to assess whether the material is a hazardous waste. The detected 0.039 mg/kg concentration of MEK is far below 20 times the MEK TCLP value, so on the basis of these results, the tested soil would be considered a non-hazardous waste.

- TPH, VOCs, and OCPs were not detected at or above their respective PQLs in the remaining analyzed soil samples.
- PCBs were not detected at or above their respective PQLs in the analyzed soil samples.
- The detected concentrations of metals in the soil samples for which they were analyzed are below their respective CHHSLs and RSLs and also below hazardous waste thresholds including CCR Title 22 TTLC values, 10 times the CCR Title 22 STLC values, and 20 times the Federal and CCR Title 22 TCLP values. On the basis of these results, in Kleinfelder's opinion no further study with regard to concern for human health is warranted by the detected metals, and the tested soil would be considered a non-hazardous waste.

In summary, petroleum hydrocarbons in the diesel and oil ranges were detected in a soil sample collected at approximately 20 feet bgs from Boring KA-7, in the area of the former location of "Hydraulic Lift #2." This is the area of a historic petroleum hydrocarbon release known to have impacted soil, where remedial excavation was performed under oversight of the Orange County Health Care Agency (OCHCA), which

issued a November 21, 2008 "no further action" letter (OCHCA Case No. 08IC027) confirming completion of the remedial action. Because the 20-foot bgs sample was the deepest sample collected by Kleinfelder from this boring, it is not known whether higher TPH concentrations may be present below a depth of 20 feet bgs. For this reason, Kleinfelder recommends additional assessment of the vertical extent of impact to soil in this area, especially if Site redevelopment will involve excavation at this location.

In addition, the VOC toluene was detected in soil samples from various depths (to a maximum of 50 feet bgs) from Borings B-1, B-2, and B-4, and the VOC MEK was detected in one soil sample collected from approximately 20 feet bgs from Boring B-2. Based on our evaluation of the data and our knowledge of the Site, the source (or sources) of these VOCs is not readily apparent. Before a building is constructed in the vicinity of these sampled locations, we recommend assessment of the potential for indoor air intrusion, by performing a limited soil vapor survey.

Kleinfelder's scope of services did not include soil sampling within the railroad right of way on the Site, or sampling of groundwater beneath the Site. To minimize risk, we therefore recommend performing soil sampling to assess for petroleum hydrocarbons, agricultural chemicals, heavy metals, and creosote in the vicinity of the railroad right of way, and performing groundwater sampling to assess for potential impact to groundwater beneath the Site resulting from upgradient off-Site facilities where releases are known to, or may, have impacted shallow groundwater.

1 INTRODUCTION

This report presents the results of a Limited Preliminary Phase II ESA performed by Kleinfelder of the proposed ARTIC - Phase 1 project site, generally located at the southeast corner of Katella Avenue and South Douglass Road in the City of Anaheim, Orange County, California. The assessment was performed to assess the following RECs and potential RECs that were identified in Kleinfelder's Phase I ESA of the Site, dated July 17, 2009:

- Blue-green colored staining was observed on asphalt pavement and concrete, near a dipping vat and within a drainage swale, at the Sullivan & Mann Lumber Company at 1790 South Douglass Road.
- A gravel-filled pit was observed within a corrugated metal building on the southern portion of the Site parcel with an address of 1750 South Douglass Road. The former use of this pit is unknown to Kleinfelder and previous sampling in this area was not identified by the Phase I ESA.
- The presence of undocumented fill material was reported in a former quarry on the Site parcel with an address of 1750 South Douglass Road.

In addition to the RECs and potential RECs discussed above, Kleinfelder also assessed the following potential areas of concern which we believe warranted further investigation and/or confirmation sampling:

- An inactive laboratory and a former hazardous materials storage shed are located at 1750 South Douglass Road. In addition, a paint booth was formerly located inside the present-day warehouse building at 1790 South Douglass Road.
- Paint staining was observed in close proximity to a floor drain at 1750 South Douglass Road, adjacent to a former hazardous materials storage building.
- This Site parcel at 1750 South Douglass Road also contained a former fueling facility including two 10,000 gallon gasoline USTs, one 10,000-gallon diesel UST,

two 5,000-gallon diesel USTs, and associated fuel dispensers. These USTs, along with two 280-gallon and 300-gallon capacity waste oil USTs that were located farther to the east on the Site, were removed in March 1998. The gasoline and diesel USTs were replaced with a 20,000-gallon gasoline UST and a 20,000-gallon diesel UST, which were removed, along with the associated OCHCA issued a Remedial Action Completion dispensers, in July 2008. Certification dated June 19, 1998 for the investigation and remedial action for the USTs removed in March 1998. A March 4, 2009 letter with subject "No Further Action for Diesel Fuel and Gasoline Contaminated Soil" was issued by the Anaheim Public Utilities Department (APUD) to the Orange County Department of Public Works (OCPW) for removal of the USTs in July 2008, in reference to Santa Ana Regional Water Quality Control Board (SARWQCB) Case No. 083003990T. Based on Kleinfelder's review of available Site assessment information, the maximum detected concentrations of BTEX were in samples from a boring (B-3) advanced by Tait to the north of the two former 10,000-gallon gasoline USTs. Soil hydrocarbon impact was also evident in samples from Tait's Boring B-5, which was located by a former dispenser island beneath a presently-existing canopy; and in Boring B-6, which was located between the two former 5,000-gallon diesel USTs. Borings B-5 and B-6 are at the locations where Tait reported the highest concentrations of TPH from its assessment. Additionally, Block reported detected concentrations of TRPH and PCE in samples of soil stockpiled from removal of the two former waste oil USTs.

- Three hydraulic lifts and associated equipment and piping were removed from the Site parcel at 1750 South Douglass Road in September and October 2008 under the oversight of OCHCA, which subsequently issued a November 21, 2008 case closure letter (OCHCA Case No. 08IC027) confirming completion of remedial action. A soil sample collected at a depth of approximately 15 feet bgs from a remedial excavation on the north side of former "Hydraulic Lift #2" apparently contained the highest detected TPH concentration for soil not subsequently removed from this area.
- Four wastewater clarifiers and associated sewer piping systems were removed from the Site parcel at 1750 South Douglass Road in October 2008. OCHCA's

aforementioned November 21, 2008 Closure Letter (OCHCA Case No. 08IC027) also confirmed completion of remedial action associated with removal of these clarifiers. The excavation areas were filled with gravel but not sealed at the surface.

This Limited Preliminary Phase II ESA included performing soil sampling, laboratory analyses, and data evaluation, along with formulation of conclusions and recommendations. Kleinfelder's scope of services did not include sampling soil within the railroad right of way on the Site or sampling of groundwater beneath the Site. For this reason, although identified as potential RECs in the Phase I ESA report, the following were <u>not</u> addressed as part of this Limited Preliminary Phase II ESA:

- Former "pouring" of oil along the railroad tracks at/near the Anaheim Stadium Metrolink/Amtrak Station and the potential presence of agricultural chemicals (due to former agricultural land use on surrounding areas from at least 1938 through at least 1952), and heavy metals and creosote (from treated railroad ties associated with the railroad tracks).
- Potential impacts to Site groundwater resulting from upgradient off-Site facilities where releases are known to, or may, have impacted shallow groundwater.

1.1 SITE DESCRIPTION

The Site is an irregularly-shaped property consisting of nine parcels or portions thereof, which are occupied by commercial buildings, a former operations-and-maintenance facility, a lumber facility, a portion of the Los Angeles to San Diego (LOSSAN) Railroad Corridor, and the Anaheim Stadium Metrolink/Amtrak Station, or are vacant land. The vacant parcels are generally small areas along the LOSSAN Railroad Corridor that do not have associated addresses. The approximate location of the Site, with respect to surrounding topographic features, is shown on Plate 1.

1.2 SITE HISTORY

Available historic information reviewed during Kleinfelder's Phase I ESA of the Site indicates that the eastern portion of the Site (east of the approximate present-day

location of State Route 57) appeared to be part of the Santa Ana River from at latest 1938 through 1952. Also during this period, the area of the Site which is presently occupied by the Anaheim Stadium Metrolink/Amtrak Station appeared to have been used for agricultural purposes (orchards). By at latest 1976 the Site was partially developed east of South Douglass Road and the Metrolink/Amtrak Station was in operation. Construction of the remaining developed portions of the Site took place subsequent to 1976.

1.3 PROJECT UNDERSTANDING

We understand that the Site is proposed to be re-developed as a major transit center that will provide Metrolink, Amtrak, and fixed-route bus service, and function as a regional gateway for the future California High Speed Train.

1.4 ASSESSMENT OBJECTIVES

The objective of this Limited Preliminary Phase II ESA was to assess RECs and potential RECs identified in Kleinfelder's Phase I ESA (Kleinfelder, 2009). The scope of services included the following:

- Performing a geophysical survey to locate identifiable subgrade utility lines in the immediate vicinity of proposed boreholes.
- Performing soil sampling activities, including the use of hollow-stem auger drilling and direct-push Geoprobe® technologies.
- Performing laboratory analysis of soil samples.
- Evaluating the results and documenting the assessment's findings and conclusions in this report.

2 FIELD ACTIVITIES

Kleinfelder provided personnel to perform a geophysical survey and drilling/soil sampling with the assistance of our contractors. Kleinfelder also documented observations in the field, submitted samples for laboratory analyses, evaluated the field and analytical data, and prepared this report of findings. The following provides a description of field activities performed as part of this Limited Preliminary Phase II ESA.

2.1 HEALTH AND SAFETY PLAN AND RELATED ACTIVITIES

Prior to the initiation of field activities Kleinfelder prepared a Site-specific health and safety plan (HSP). The HSP included information concerning anticipated chemical and physical hazards that would potentially be encountered, and environmental monitoring equipment to be used during field activities. Ambient air monitoring and screening of soil samples for total VOCs with a photo-ionization detector (PID) were performed during sampling activities. Site safety was discussed with the drilling subcontractor on-Site prior to sampling. A cellular phone was available at the Site to facilitate potential emergency response. Additionally, directions to the nearest hospital were included with the HSP presented to field personnel.

2.2 UTILITY CLEARANCE

Underground Service Alert (DigAlert) provided a partial location service for major utility lines free of charge. California law requires at least 48 hours (2 business days) advance notification of DigAlert prior to performing intrusive activities, and Kleinfelder provided the required notification in accordance with State requirements to arrange for utility marking within accessible areas.

Because DigAlert may not mark underground utilities on private property, a geophysical services subcontractor was contracted to locate and mark detectable utility lines at proposed sampling locations. Geophysical instruments were used to survey the sampling locations for underground obstructions prior to initiation of intrusive field

activities. Visual inspections of the sampling areas were also performed to assess potential subsurface obstructions.

2.3 SOIL SAMPLING

The following sections discuss the soil sampling activities performed during this assessment.

2.3.1 Sampling Program

The proposed sampling approach included the collection of soil samples from identified areas of potential environmental concern. The soil sampling was performed using a combination of drilling methods, including a conventional hollow-stem auger drill rig used between September 22 and 25, 2009, and a direct-push Geoprobe® drill rig used on October 15 and 16, 2009.

Prior to drilling, direct-push sampling locations on asphalt concrete pavement and concrete were cored using a core drill. Each boring location was subsequently cleared using a hand auger to a depth of approximately 5 feet bgs, during which time a near-surface soil sample (i.e., sample of first-encountered soil) from each boring was collected using the "grab" sampling method.

Kleinfelder's subcontractor California Pacific Drilling (Cal Pac) performed drilling of Borings B-1 through B-5 and Boring W-1 with a truck-mounted drill rig using hollow-stem augers. After collection of the "grab" near-surface sample, soil samples were collected from each of these borings using a California-modified split spoon sampler driven approximately 18 inches for each sample interval. These soil samples were collected beginning at a depth of approximately 5 feet bgs, then at approximately 10 feet bgs, and continuing at approximate 10-foot intervals beneath to a maximum depth of 50 feet bgs.

Kleinfelder's subcontractor HydroGeoSpectrum (HGS) performed direct-push drilling at 16 boring locations (KA-1 through KA-16) using a conventional truck-mounted

Geoprobe® drill rig or limited-access direct-push drill rig, as dictated by Site access conditions. Following collection of a "grab" near-surface sample at each location, soil samples were collected at varying depths, beginning at a depth of approximately 3 feet bgs at selected locations and continuing to a maximum depth of approximately 25 feet bgs. For each specified sampling location and depth, the Geoprobe[®] soil sampling system was attached to deployment rods, advanced to the desired sampling depth, and subsequently driven approximately 2 feet (unless refusal was encountered) to acquire the soil sample.

2.3.2 Soil Sample Collection

Kleinfelder field personnel performed the soil sampling under the technical guidance of a State of California Professional Geologist (PG). The near-surface soil samples were collected using a decontaminated hand auger and placed into 8-ounce glass jars and pre-preserved volatile organic analysis (VOA) vials as further discussed below. Relatively-undisturbed soil samples were collected from the hollow-stem auger borings using a split-spoon sampler lined with 2.5-inch diameter by 6-inch long stainless steel sleeves, and from the direct-push borings using a Geoprobe[®] soil sampler lined with acetate sleeves. For each specified sampling depth in each boring, a portion of the retrieved soil core sample was cut off and covered with Teflon[®] sheeting followed by tight-fitting plastic caps.

Soil samples were screened in the field using a PID calibrated to a 50-part per million by volume (ppmv) hexane standard. The PID had a detection limit of 0.1 ppmv. A portion of the soil from each sample interval was placed in a clean, resealable plastic bag that was subsequently sealed. The bag remained sealed at ambient air temperature for approximately 10 minutes to allow potential VOC vapors to volatize into the bag's headspace. Then the probe tip of the PID was placed into the bag by unsealing a small length of the seal, and the VOC vapor reading was recorded on the log of boring (see logs provided in Appendix A).

For soil samples intended for VOC analysis, a portion of the soil sample was placed in pre-preserved, laboratory-prepared VOA vials in accordance with US EPA Method 5035.

Each soil sample was labeled with a unique sample identification number, the project number, and date, and placed in an ice-chilled cooler for delivery under chain-of-custody (COC) protocol for analysis to Enviro-Chem, Inc. in Pomona, California.

Except for Boring W-1, after completion of soil sampling each boring was back-filled with bentonite slurry or hydrated bentonite chips or granules, and then the surface was patched with asphalt or concrete if appropriate to match the surrounding area. Boring W-1 was subsequently converted to a geotechnical monitoring well.

2.3.3 Borehole Logging

Kleinfelder field personnel, under the technical guidance of a State of California PG, examined the sampled soil and classified it in general accordance with the Unified Soils Classification System (USCS), using visual-manual procedures as described in ASTM International (formerly known as American Society for Testing and Materials) Designation D 2488-93. Additional geologic observations were noted as appropriate.

2.3.4 Equipment Decontamination

Drilling equipment used in Kleinfelder's assessment was decontaminated prior to use by high-pressure hot water washing. Soil sampling equipment was cleaned prior to collecting each sample by washing in a non-phosphate detergent (i.e., Liquinox®) and tap water wash, using a brush to dislodge soil, dirt, or other encrusted materials, and then double rinsing in distilled water.

2.3.5 Investigation-Derived Waste

For soil borings drilled using the hollow-stem auger drill rig, soil cuttings were collected and contained in labeled Department of Transportation (DOT) 17H, 55-gallon drums, and temporarily stored on the Site pending profiling and disposal. Rinse water generated during cleaning of equipment was also collected and contained in labeled DOT 17H, 55-gallon drums pending disposal.

For soil borings drilled using direct-push equipment, the soil sampling generated minimal to no soil cuttings.

3 ANALYTICAL PROGRAM

The following is a summary of the analyses performed on soil samples collected from the Site. Based on field observations and Site use, soil samples from the following borings were analyzed for the indicated constituents:

- Soil samples collected from Borings B-1 through B-5 and Boring W-1 were analyzed for TPH-CCID using US EPA Method 8015B, VOCs including fuel oxygenates using US EPA Methods 5035/8260B, OCPs using US EPA Method 8081A, PCBs using US EPA Method 8082, and Title 22 Metals using US EPA Methods 6010B/7471A.
- Soil samples collected from Borings KA-1 and KA-2 were analyzed for TPH-CCID using US EPA Method 8015B, VOCs using US EPA Methods 5035/8260B, and Title 22 Metals using US EPA Methods 6010B/7471A.
- Soil samples collected from Borings KA-3, KA-4, KA-6, and KA-9 were analyzed for TPH-CCID using US EPA Method 8015B, VOCs using US EPA Methods 5035/8260B, OCPs using US EPA Method 8081A, PCBs using US EPA Method 8082, and Title 22 Metals using US EPA Methods 6010B/7471A.
- Soil samples collected from Borings KA-5, KA-7, KA-8, KA-13, and KA-16 were analyzed for TPH-CCID using US EPA Method 8015B, VOCs using US EPA Methods 5035/8260B, OCPs using US EPA Method 8081A, and PCBs using US EPA Method 8082.
- Soil samples collected from Borings KA-10 through KA-12 were analyzed for TPH-CCID using US EPA Method 8015B and VOCs using US EPA Methods 5035/8260B.

 Soil samples collected from Borings KA-14 and KA-15 were analyzed for TPH-CCID using US EPA Method 8015B, VOCs using US EPA Methods 5035/8260B, and PCBs using US EPA Method 8082.

The soil analytical laboratory reports and chain-of-custody records are provided in Appendix B.

4 RESULTS

4.1 FIELD RESULTS

The soils encountered in the borings consisted of interbedded layers of sand, silty sand, clavey sand, sandy silt, gravel, clay, and sandy clay. Based on Kleinfelder's review of the logs, sands and silty sands appear to predominate at relatively shallow depths (to approximately 20 to 60 feet bgs depending on the location), whereas silts and clays tend to predominate at deeper depths (to approximately 80 to 85 feet bgs), although the deeper soils in Borings B-4, B-5, and W-1 include interbedded sand, silty sand, and gravel. Groundwater was encountered in only four of Kleinfelder's borings, at an approximate depth of 83 feet bgs in Boring B-2, 58 feet bgs in Boring B-3, 87 feet bgs in Boring B-4, and 25 feet bgs and 56 feet bgs in Boring W-1. Based on deeper soil samples that were not wet in Borings B-3 and W-1, the groundwater encountered in these borings appears likely to have been perched. Groundwater was not encountered in the remaining borings, although the geotechnical soil sample collected from 51 feet bas in Boring B-1 exhibited free water, suggesting a possibility of perched groundwater at this location also. A more-detailed description of the interpreted soil profile at each of the boring locations, based on the logged soil samples, is presented in Appendix A. The indicated groupings represent the predominant materials encountered, although relatively thin, discontinuous layers of different material may occur within the major divisions.

Petroleum hydrocarbon odors were noted in the two soil samples collected from Boring KA-12 at approximately 15 feet bgs and 19 feet bgs. There were no noticeable chemical/hydrocarbon odors or staining in the soil samples collected from the remaining borings. VOC vapors were detected by the PID in the screened soil samples from the following borings:

- Boring B-1 Five samples, at concentrations ranging from 0.5 ppmv to 2.0 ppmv.
- Boring B-2 12 samples, at concentrations ranging from 1.1 ppmv to 4.6 ppmv.
- Boring B-3 Six samples, at concentrations ranging from 0.5 ppmv to 2.3 ppmv.
- Boring B-4 Six samples, at concentrations ranging from 0.4 ppmv to 3.6 ppmv.

- Boring B-5 Eight samples, at concentrations ranging from 0.9 ppmv to 3.1 ppmv.
- Boring KA-15 Two samples, at concentrations ranging from 0.2 ppmv to 0.4 ppmv.
- Boring KA-16 Two samples, at concentrations ranging from 0.2 ppmv to 0.8 ppmv.

4.2 SOIL ANALYTICAL RESULTS

Analytical results for organic constituents (TPH-CCID, VOCs, OCPs, and PCBs) are summarized in Table 1. Analytical results for Title 22 Metals are summarized in Table 2. Approximate boring locations are shown on Plate 2. A summary of soil analytical results for the areas assessed follows:

- TPH in the diesel and oil ranges were detected in the 20-foot bgs soil sample collected from Boring KA-7, at respective concentrations of 15.4 mg/kg and 109 mg/kg. Boring KA-7 was drilled on the north side of former "Hydraulic Lift #2." The chromatograms for the diesel- and oil-range results were reported by the analytical laboratory to not match that of the diesel or motor oil standards.
- No TPH in the gasoline, diesel, and oil ranges was detected at or above the PQLs in the remaining analyzed soil samples.
- The VOC toluene was detected in 16 soil samples collected from various depths (maximum of approximately 50 feet bgs) in three borings (B-1, B-2, and B-4). Toluene was detected at a maximum concentration of 0.035 mg/kg in the 20-foot bgs soil sample collected from Boring B-2. Toluene was not detected in samples from the remaining borings.
- The VOC MEK was detected at a concentration of 0.039 mg/kg in the 20-foot bgs soil sample collected from Boring B-2, but was not detected at or above the PQL in either the other analyzed samples from this boring or in samples from other borings.

- No other VOCs were detected at or above the laboratory PQLs in the analyzed soil samples.
- The organochlorine pesticide DDT was detected in the 10-foot bgs soil sample collected from Boring B-2 at a concentration of 0.002 mg/kg. No other OCPs were detected at or above the laboratory PQLs in this sample.
- No OCPs were detected at or above the laboratory PQLs in the remaining analyzed soil samples.
- No PCBs were detected at concentrations at or above the laboratory PQLs in the analyzed soil samples.
- Nine of the 17 CCR Title 22 Metals were detected at or above their respective PQLs in some or all of the analyzed soil samples. Cadmium was detected in three samples, at a maximum concentration of 0.669 mg/kg in the 1-foot bgs sample from Boring KA-1. Cobalt was detected in 15 samples, at a maximum concentration of 4.69 mg/kg in the 5-foot bgs sample from Boring KA-2. Nickel was detected in 42 samples, at a maximum concentration of 18.8 mg/kg in the 20-foot bgs sample from Boring B-5. Lead was detected in 52 samples, at a maximum concentration of 33.8 mg/kg in the 5-foot bgs sample from Boring KA-2. Copper was detected in 55 samples, at a maximum concentration of 57.1 mg/kg in the 40-foot bgs sample from Boring B-2. Vanadium was also detected in 55 samples, at a maximum concentration of 55.4 mg/kg in the 20-foot bgs sample from Boring B-5. Barium was detected in 58 samples, at a maximum concentration of 157 mg/kg in the 20-foot bgs sample from Boring B-5. Chromium and zinc were detected in all 59 soil samples, at respective maximum concentrations of 27.6 mg/kg and 97.8 mg/kg, in the 20-foot bgs sample from Boring B-5.
- The remaining eight CCR Title 22 Metals were not detected at or above their respective PQLs in the 59 soil samples analyzed for metals. The eight metals that were not detected were antimony, arsenic, beryllium, mercury, molybdenum, silver, selenium, and thallium.

5 EVALUATION, CONCLUSIONS, AND RECOMMENDATIONS

Detected concentrations of analytes in soil were compared to the April 2009 RSLs for Industrial Soil tabulated by US EPA (US EPA, 2009) and to Soil CHHSLs for Commercial/Industrial Land Use published by the California Environmental Protection Agency (Cal/EPA) in January 2005 (Cal/EPA, 2005), providing that the specific analyte had an RSL and/or CHHSL. The RSLs and CHHSLs are human health risk-based tools for evaluating and cleaning up contaminated sites. They are considered to be protective for humans (including sensitive groups) over a lifetime. Residential values are lower and therefore more conservative than the corresponding values for Commercial/Industrial Use, but because residential Site use is not presently planned, the commercial/industrial values were judged to be appropriate for use in the comparison with Site data. Generally, if contaminant concentrations fall below RSLs and CHHSLs, no further action or study is warranted, so long as the exposure assumptions match those taken into account by the screening value calculations.

Analyte concentrations in soil were also compared to CCR Title 22 hazardous waste thresholds (i.e., the TTLC values and 10 times the STLC values) and to the Federal and CCR Title 22 TCLP values, again providing that there were such values for the specific analyte. If a constituent's concentration in waste soil exceeds the constituent's TTLC value (assuming there is one), then the waste is California-hazardous. If a constituent's concentration in a soil waste is 10 times its STLC value or higher, then analysis for the soluble constituent is required to determine if the waste is California-hazardous. Certain constituents also have Federal and/or CCR Title 22 TCLP values, which are used to further assess whether a waste is RCRA-hazardous. If a constituent concentration in a soil sample is 20 times its TCLP value or higher, analysis for the soluble constituent is warranted to determine if the material may be a hazardous waste.

Based on the results and findings of this assessment, Kleinfelder concludes the following:

• Diesel-range and oil-range TPH, at respective concentrations of 15.4 mg/kg and 109 mg/kg, were detected in one soil sample, collected at 20 feet bgs from

Boring KA-7, which was drilled on the north side of the location of former "Hydraulic Lift #2." The fact that the chromatograms for the diesel- and oil-range results were reported by the analytical laboratory to not match that of the diesel or motor oil standard suggests the presence of hydraulic oil in this sample instead of diesel fuel and motor oil. Although the total TPH concentration of 124.4 mg/kg does not necessarily warrant action, the 20-foot bgs sample was the deepest sample collected from this boring, so it is not known whether TPH concentrations increase below a depth of 20 feet. For this reason, additional assessment of the vertical extent of impact to soil in this area is recommended, especially if Site redevelopment will involve excavation in this area.

- DDT was detected at a concentration of 0.002 mg/kg in one soil sample, collected from approximately 10 feet bgs in Boring B-2, which was drilled in the central portion of the Site's 1750 South Douglass Road parcel. The detected concentration is far below the US EPA Industrial Soil RSL of 7.0 mg/kg and the Soil Commercial/Industrial Land Use CHHSL of 6.4 mg/kg. Based on this, in Kleinfelder's opinion no further study with regard to concern for human health is warranted. Additionally, the detected DDT concentration is far below the CCR Title 22 TTLC value for DDT of 1.0 mg/kg, and also far below 10 times the CCR Title 22 STLC value for DDT of 0.1 mg/L. Since DDT does not have a TCLP value and the detected DDT concentration is less than 10 times the DDT STLC value and also below the DDT TTLC value, on the basis of these results the tested soil would be considered non-hazardous waste. DDT was not detected at or above the laboratory PQLs in the deeper soil samples (20, 30, 40, and 50 feet bgs) analyzed from this boring. No additional assessment is recommended for DDT.
- The VOC toluene was detected at a maximum concentration of 0.035 mg/kg in 16 soil samples collected from various depths (to a maximum of approximately 50 feet bgs) in Borings B-1, B-2, and B-4. In addition, the VOC MEK was detected in one soil sample, collected from approximately 20 feet bgs from Boring B-2, at a concentration of 0.039 mg/kg. Based on our evaluation of the data and our knowledge of the Site, the source of these VOC constituents is not readily apparent. The detected maximum concentrations of toluene and MEK

are below their respective US EPA Industrial RSLs of 46,000 mg/kg and 195,000 mg/kg. Toluene and MEK do not have soil CHHSLs, and the presence of these VOCs may pose indoor air intrusion concerns should a building be constructed in the vicinity of the sampled locations. Before a building is constructed in the area of these locations, we recommend assessment of the potential for indoor air intrusion by performing a limited soil vapor study. MEK has both a Federal and CCR Title 22 TCLP value of 200 mg/L. The detected 0.039 mg/kg concentration of MEK is far below 20 times the TCLP value, so on the basis of these results the tested soil would not be considered a hazardous waste.

- The detected concentrations of metals in the soil samples analyzed for these constituents are below hazardous waste thresholds including TTLC values, 10 times the STLC values, and 20 times the TCLP values. The detected metal concentrations in the soil samples are also below their respective RSLs and CHHSLs. Kleinfelder therefore recommends no further assessment concerning the detected metals.
- TPH, VOCs, and OCPs were not detected at or above PQLs in the remaining soil samples collected from these and other sampled locations. No additional assessment of these other areas is recommended.
- PCBs were not detected at or above PQLs in the soil samples. No additional assessment for PCBs is recommended.

In summary, petroleum hydrocarbons in the diesel and oil ranges were detected in a soil sample collected at approximately 20 feet bgs from Boring KA-7, in the area of the former location of "Hydraulic Lift #2." This is the area of a historic petroleum hydrocarbon release known to have impacted soil, where remedial excavation was performed under oversight of OCHCA, which issued a November 21, 2008 "no further action" letter (OCHCA Case No. 08IC027) confirming completion of the remedial action. Because the 20-foot bgs sample was the deepest sample collected by Kleinfelder from this boring, it is not known whether higher TPH concentrations may be present below a depth of 20 feet bgs. We therefore recommend further assessment of the extent of impact to soil in this area, especially if Site redevelopment will involve excavation here.

In addition, VOC constituents were encountered at various depths, up to 50 feet bgs, in soil samples from Borings B-1, B-2, and B-4. Based on our evaluation of the data and our knowledge of the Site, the source of these VOCs is not readily apparent. Before a building is constructed in the vicinity of these sampled locations, we recommend assessment of the potential for indoor air intrusion by performing a limited soil vapor survey.

Based on laboratory analytical results for the other analyzed constituents and areas of potential concern, no apparent significant impact has resulted from former Site operations in the other areas investigated.

Kleinfelder's scope of services did not include soil sampling within the railroad right of way on the Site or sampling of groundwater beneath the Site. To minimize risk, we therefore recommend performing soil sampling to assess for petroleum hydrocarbons, agricultural chemicals, heavy metals, and creosote in the vicinity of the railroad right of way, and performing groundwater sampling to assess for potential impact to groundwater beneath the Site resulting from upgradient off-Site facilities where releases are known to, or may, have impacted shallow groundwater.

If unanticipated suspect soil contamination is encountered during future Site redevelopment activities, Kleinfelder recommends stopping construction activity in the area, implementing appropriate health and safety procedures, and notifying Kleinfelder so that we may perform further assessment.

6 LIMITATIONS

This work was performed in a manner consistent with that level of care and skill ordinarily exercised by other members of Kleinfelder's profession practicing in the same locality, under similar conditions and at the date the services are provided. Our conclusions, opinions and recommendations are based on a limited number of observations and data. It is possible that conditions could vary between or beyond the data evaluated. Kleinfelder makes no other representation, guarantee or warranty, express or implied, regarding the services, communication (oral or written), report, opinion, or instrument of service provided.

This report may be used only by the Client and the registered design professional in responsible charge and only for the purposes stated for this specific engagement within a reasonable time from its issuance, but in no event later than 2 years from the date of the report.

The work performed was based on project information provided by the Client. If the Client does not retain Kleinfelder to review any plans and specifications, including any revisions or modifications to the plans and specifications, Kleinfelder assumes no responsibility for the suitability of our recommendations. In addition, if there are any changes in the field to the plans and specifications, Client must obtain written approval from Kleinfelder's engineer that such changes do not affect our recommendations. Failure to do so will vitiate Kleinfelder's recommendations.

Kleinfelder offers various levels of investigative and engineering services to suit the varying needs of different clients. It should be recognized that definition and evaluation of geologic and environmental conditions are a difficult and inexact science. Judgments leading to conclusions and recommendations are generally made with incomplete knowledge of the subsurface conditions present due to the limitations of data from field studies. Although risk can never be eliminated, more-detailed and extensive studies yield more information, which may help understand and manage the level of risk. Since detailed study and analysis involves greater expense, our clients participate in determining levels of service that provide adequate information for their purposes at

acceptable levels of risk. More extensive studies, including subsurface studies or field tests, should be performed to reduce uncertainties. Acceptance of this report will indicate that the Client has reviewed the document and determined that it does not need or want a greater level of service than provided.

During the course of the performance of Kleinfelder's services, hazardous materials may have been discovered. Kleinfelder assumes no responsibility or liability whatsoever for any claim, loss of property value, damage, or injury that results from preexisting hazardous materials being encountered or present on the project site, or from the discovery of such hazardous materials. Nothing contained in this report should be construed or interpreted as requiring Kleinfelder to assume the status of an owner, operator, or generator, or person who arranges for disposal, transport, storage or treatment of hazardous materials within the meaning of any governmental statute, regulation or order. The Client is solely responsible for directing notification of all governmental agencies, and the public at large, of the existence, release, treatment or disposal of any hazardous materials observed at the project site, either before or during performance of Kleinfelder's services. The Client is responsible for directing all arrangements to lawfully store, treat, recycle, dispose, or otherwise handle hazardous materials, including cuttings and samples resulting from Kleinfelder's services.

7 REFERENCES

- California Environmental Protection Agency (Cal/EPA), 2005, Use of California Human Health Screening Levels (CHHSLs) in Evaluation of Contaminated Properties, January.
- Kleinfelder, 2009, Draft Phase I Environmental Site Assessment, Proposed Anaheim Regional Transportation Intermodal Center (ARTIC) – Phase 1, Anaheim, California, July 17.
- United States Environmental Protection Agency (US EPA), 2009, *Regional Screening Level Table (RSL)*, April, available on US EPA's website at http://www.epa.gov/region09/superfund/prg/.

TABLES

TABLE 1 SOIL ANALYTICAL RESULTS FOR TPH-CCID, VOCS, OCPs, and PCBs

Proposed Anaheim Regional Transportation Intermodal Center (ARTIC) - Phase 1 Anaheim, California

ber	hber	g	e Depth	Isoline	ese	_	none (MEK)	۵	/OCs		
E L	L IN	aldr	hple	ő-	-qi +	io	utai	nen	er /	S	s
z ຄ	le	San	San	E E	E E	E E	2-B		oth	Ö	PCI
orin	d u	te	(foot)	8015B	8015B	8015B	8260B	8260B	8260B	8081A	8082
Bc	Sa	Da	(ieet)				Conc	entration in	mg/kg		
	B-1-1.5	24-Sep-09	1.5	<10	<10	<50	<0.020	0.005	<0.005-0.020	<0.001-0.020	<0.010
	B-1-5	24-Sep-09	5	<100	<100	<500	<0.020	0.010	<0.005-0.020	<0.010-0.200	<0.100
	B-1-10	24-Sep-09	10	<10	<10	<50	<0.020	< 0.005	<0.005-0.020	<0.001-0.020	<0.010
B-1	B-1-20	24-Sep-09	20	<10	<10	<50	<0.020	<0.005	<0.005-0.020	<0.001-0.020	<0.010
	B-1-30	24-Sep-09	30	<10	<10	<50	<0.020	<0.005	<0.005-0.020	<0.001-0.020	<0.010
	B-1-40	24-Sep-09	40	<10	<10	<50	<0.020	<0.005	<0.005-0.020	<0.001-0.020	<0.010
	B-1-50	24-Sep-09	50	<10	<10	<50	<0.020	0.007	<0.005-0.020	<0.001-0.020	<0.010
	B-2-1.5	24-Sep-09	1.5	<10	<10	<50	<0.020	0.010	<0.005-0.020	<0.001-0.020	<0.010
	B-2-5	24-Sep-09	5	<10	<10	<50	<0.020	< 0.005	<0.005-0.020	<0.001-0.020	<0.010
D 0	B-2-10	24-Sep-09	10	<10	<10	<50	< 0.020	0.008	<0.005-0.020	4,4'-DDT - 0.002	<0.010
B-2	B-2-20	24-Sep-09	20	<10	<10	<50	0.039	0.035	<0.005-0.020	<0.001-0.020	<0.010
	B-2-30	24-Sep-09	30	<10	<10	<50	<0.020	0.011	<0.005-0.020	<0.001-0.020	<0.010
	B-2-40	24-Sep-09	40	<10	<10	<50	<0.020	0.006	<0.005-0.020	<0.001-0.020	<0.010
	B-2-50	24-Sep-09	50	<10	<10	<50	<0.020	0.013	<0.005-0.020	<0.001-0.020	<0.010
	B-3-1.5	22-Sep-09	1.5	<10	<10	<50	<0.020	< 0.005	<0.005-0.020	<0.001-0.020	< 0.010
	B-3-5	22-Sep-09	5	<10	<10	<50	<0.020	< 0.005	<0.005-0.020	<0.001-0.020	<0.010
	B-3-10	22-Sep-09	10	<10	<10	<50	<0.020	< 0.005	<0.005-0.020	<0.001-0.020	<0.010
В-3	B-3-20	22-Sep-09	20	<10	<10	<50	<0.020	< 0.005	<0.005-0.020	<0.001-0.020	<0.010
	B-3-30	22-Sep-09	30	<10	<10	<50	<0.020	<0.005	<0.005-0.020	<0.001-0.020	<0.010
	B-3-40	22-Sep-09	40	<10	<10	<50	<0.020	<0.005	<0.005-0.020	<0.001-0.020	<0.010
	B-3-30	22-Sep-09	50	<10	<10	<50	<0.020	<0.005	<0.005-0.020	<0.001-0.020	<0.010
	D-4-1	23-Sep-09	F	<10	<10	<50	<0.020	0.005	<0.005-0.020	<0.001-0.020	<0.010
	D-4-0 P 4 10	23-Sep-09	5	<10	<10	<50	<0.020	0.011	<0.005-0.020	<0.001-0.020	<0.010
B_4	B-4-10	23-Sep-09	20	<10	<10	<50	<0.020	0.024	<0.005-0.020	<0.001-0.020	<0.010
D-4	B-4-20	23-Sep-09	20	<10	<10	<50	<0.020	0.005	<0.005-0.020	<0.001-0.020	<0.010
	B-4-30	23-Sep-09	40	<10	<10	<50	<0.020	0.020	<0.005-0.020	<0.001-0.020	<0.010
	B-4-40	23-Sep-09	40 50	<10	<10	<50	<0.020	0.023	<0.005-0.020	<0.001-0.020	<0.010
	B-5-1 5	22-Sep-09	15	<10	<10	<50	<0.020	<0.005	<0.005-0.020	<0.001-0.020	<0.010
	B-5-5	22-Sep-09	5	<10	<10	<50	<0.020	<0.005	<0.005-0.020	<0.001-0.020	<0.010
	B-5-10	22-Sep-09	10	<10	<10	<50	<0.020	<0.005	<0.005-0.020	<0.001-0.020	<0.010
B-5	B-5-20	22-Sep-09	20	<10	<10	<50	<0.020	<0.005	<0.005-0.020	<0.001-0.020	<0.010
20	B-5-30	22-Sep-09	30	<10	<10	<50	<0.020	<0.005	<0.005-0.020	<0.001-0.020	<0.010
	B-5-40	22-Sep-09	40	<10	<10	<50	<0.020	<0.005	<0.005-0.020	<0.001-0.020	<0.010
	B-5-50	22-Sep-09	50	<10	<10	<50	<0.020	<0.005	<0.005-0.020	<0.001-0.020	<0.010
	W-1-1.5	25-Sep-09	1.5	<10	<10	<50	<0.020	< 0.005	<0.005-0.020	<0.001-0.020	<0.010
	W-1-5	25-Sep-09	5	<10	<10	<50	< 0.020	< 0.005	<0.005-0.020	<0.001-0.020	< 0.010
	W-1-10	25-Sep-09	10	<10	<10	<50	<0.020	< 0.005	<0.005-0.020	<0.001-0.020	< 0.010
W-1	W-1-20	25-Sep-09	20	<10	<10	<50	< 0.020	< 0.005	< 0.005-0.020	<0.001-0.020	< 0.010
	W-1-30	25-Sep-09	30	<10	<10	<50	< 0.020	< 0.005	< 0.005-0.020	<0.001-0.020	< 0.010
	W-1-40	25-Sep-09	40	<10	<10	<50	< 0.020	< 0.005	< 0.005-0.020	<0.001-0.020	< 0.010
	W-1-50	25-Sep-09	50	<10	<10	<50	<0.020	<0.005	<0.005-0.020	<0.001-0.020	<0.010
TABLE 1 SOIL ANALYTICAL RESULTS FOR TPH-CCID, VOCS, OCPs, and PCBs

Proposed Anaheim Regional Transportation Intermodal Center (ARTIC) - Phase 1 Anaheim, California

ng Number	ple Number	Sampled	Sample Depth	TPH-gasoline	TPH-diesel	TPH-oil	2-Butanone (MEK)	Toluene	Other VOCs	OCPs	PCBs
Bori	Sam	Date	(feet)	8015B	8015B	8015B	8260B Conc	8260B entration in	8260B mg/kg	8081A	8082
	KA-1-1	15-Oct-09	1	<10	<10	<50	< 0.020	< 0.005			
	KA-1-5	15-Oct-09	5	<10	<10	<50	<0.020	< 0.005			
KA-1	KA-1-10	15-Oct-09	10	<10	<10	<50	<0.020	< 0.005			
	KA-1-15	15-Oct-09	15	<10	<10	<50	<0.020	< 0.005			
	KA-2-1	15-Oct-09	1	<10	<10	<50	<0.020	<0.005			
KA 2	KA-2-5	15-Oct-09	5	<10	<10	<50	<0.020	< 0.005			
KA-2	KA-2-10	15-Oct-09	10	<10	<10	<50	<0.020	< 0.005			
	KA-2-15	15-Oct-09	15	<10	<10	<50	<0.020	< 0.005			
KA 2	KA-3-1	15-Oct-09	1	<10	<10	<50	<0.020	< 0.005	<0.005-0.020	<0.001-0.020	<0.010
KA-3	KA-3-6	15-Oct-09	6	<10	<10	<50	<0.020	< 0.005	<0.005-0.020	<0.001-0.020	<0.010
KA-4	KA-4-2.5	15-Oct-09	2.5	<10	<10	<50	<0.020	< 0.005	<0.005-0.020	<0.001-0.020	<0.010
NA-4	KA-4-4.5	15-Oct-09	4.5	<10	<10	<50	<0.020	< 0.005	<0.005-0.020	<0.001-0.020	<0.010
	KA-5-5.5	15-Oct-09	5.5	<10	<10	<50	<0.020	< 0.005	<0.005-0.020	<0.001-0.020	<0.010
KA-5	KA-5-10	15-Oct-09	10	<10	<10	<50	<0.020	< 0.005	<0.005-0.020	<0.001-0.020	<0.010
	KA-5-15	15-Oct-09	15	<10	<10	<50	<0.020	< 0.005	<0.005-0.020	<0.001-0.020	<0.010
KV-6	KA-6-3	15-Oct-09	3	<10	<10	<50	<0.020	< 0.005	<0.005-0.020	<0.001-0.020	<0.010
INA-0	KA-6-5	15-Oct-09	5	<10	<10	<50	<0.020	< 0.005	<0.005-0.020	<0.001-0.020	<0.010
K۸-7	KA-7-15	15-Oct-09	15	<10	<10	<50	<0.020	< 0.005	<0.005-0.020	<0.001-0.020	<0.010
NA-7	KA-7-20	15-Oct-09	20	<10	15.4*	109^	<0.020	< 0.005	<0.005-0.020	<0.001-0.020	<0.010
KA-8	KA-8-5	15-Oct-09	5	<10	<10	<50	<0.020	<0.005	<0.005-0.020	<0.001-0.020	<0.010
	KA-9-2.5	16-Oct-09	2.5	<10	<10	<50	<0.020	<0.005	<0.005-0.020	<0.001-0.020	<0.01
KA-9	KA-9-5	16-Oct-09	5	<10	<10	<50	<0.020	< 0.005	<0.005-0.020	<0.001-0.020	<0.01
	KA-9-10	16-Oct-09	10	<10	<10	<50	<0.020	< 0.005	<0.005-0.020	<0.001-0.020	<0.01
KA-10	KA-10-15	16-Oct-09	15	<10	<10	<50	<0.020	< 0.005			
10110	KA-10-20	16-Oct-09	20	<10	<10	<50	<0.020	< 0.005			
KA-11	KA-11-15	16-Oct-09	15	<10	<10	<50	<0.020	<0.005			
KA-12	KA-12-15	16-Oct-09	15	<10	<10	<50	<0.020	<0.005			
10112	KA-12-19	16-Oct-09	19	<10	<10	<50	<0.020	< 0.005			
	KA-13-5	16-Oct-09	5	<10	<10	<50	<0.020	<0.005	<0.005-0.020	<0.001-0.020	<0.01
KA-13	KA-13-10	16-Oct-09	10	<10	<10	<50	<0.020	<0.005	<0.005-0.020	<0.001-0.020	<0.01
	KA-13-14.5	16-Oct-09	14.5	<10	<10	<50	<0.020	< 0.005	<0.005-0.020	<0.001-0.020	<0.01
	KA-14-5	16-Oct-09	5	<10	<10	<50	<0.020	<0.005			<0.01
KA-14	KA-14-10	16-Oct-09	10	<10	<10	<50	<0.020	<0.005			<0.01
	KA-14-13	16-Oct-09	13	<10	<10	<50	<0.020	< 0.005			<0.01
	KA-15-5	16-Oct-09	5	<10	<10	<50	<0.020	< 0.005			< 0.01
KA-15	KA-15-10	16-Oct-09	10	<10	<10	<50	<0.020	<0.005			<0.01
	KA-15-15	16-Oct-09	15	<10	<10	<50	<0.020	<0.005			<0.01
	KA-16-6.5	16-Oct-09	6.5	<10	<10	<50	<0.020	<0.005	<0.005-0.020	<0.001-0.020	<0.01
KA-16	KA-16-10	16-Oct-09	10	<10	<10	<50	<0.020	<0.005	<0.005-0.020	<0.001-0.020	<0.01
	KA-16-14	16-Oct-09	14	<10	<10	<50	<0.020	< 0.005	<0.005-0.020	<0.001-0.020	<0.01

TABLE 1 SOIL ANALYTICAL RESULTS FOR TPH-CCID, VOCs, OCPs, and PCBs

Proposed Anaheim Regional Transportation

Intermodal Center (ARTIC) - Phase 1

Anaheim, California

oring Number	mple Number	te Sampled	Sample Depth	801208 B12010e	8012B	іо- На 8015В	2-Butanone (MEK)	euene Toluene 8260B	Other VOCs 800B	а Э Э 8081А	s 8082
Bc	Sa	Da	(ieer)				Conc	entration in r	ng/kg		
	US EPA Industria	al Soil RSL		NL	NL	NL	195,000	46,000	Vary	4'4-DDT - 7.0	0.057
Co	mmercial/Industrial	CHHSL for Soil		NL	NL	NL	NL	NL	NL	4'4-DDT - 6.3	0.3

Notes: TPH-CCID = Total petroleum hydrocarbons with carbon chain identification

TPH = Total petroleum hydrocarbons

MEK = Methyl ethyl ketone

VOCs = Volatile organic compounds

OCPs = Organochlorine pesticides

PCBs = Polychlorinated biphenyls

8015B = United States Environmental Protection Agency (US EPA) Analytical Method Number

mg/kg = Milligrams per kilogram

<10 = Not detected above the indicated laboratory detection limit

-- = Not analyzed

* = Peaks in diesel range but chromatogram does not match that of diesel standard

^ = Peaks in motor oil range but chromatogram does not match that of motor oil standard

RSL = Regional Screening Level

CHHSL = California Human Health Screening Level

NL = No listed value

Bold value indicates detected concentration

TABLE 2 SOIL ANALYTICAL RESULTS FOR CCR TITLE 22 METALS Proposed Anaheim Regional Transportation Intermodal Center (ARTIC) - Phase 1

Anaheim, California

Number	Number	mpled	Sample Depth	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
oring	ample	ate Sa	(feet)	6010B	6010B	6010B	6010B	6010B	6010B	6010B	6010B	6010B	7471A	6010B	6010B	6010B	6010B	6010B	6010B	6010B
ě	Š	ä			1				1		Conc	entration in	mg/kg				1			
	B-1-1.5	24-Sep-09	1.5	<1.0	<0.3	30.6	<0.5	<0.5	6.16	<1.0	4.53	1.87	<0.01	<5.0	3.72	<1.0	<1.0	<1.0	13.5	25.2
	B-1-5	24-Sep-09	5	<1.0	<0.3	41.2	<0.5	<0.5	7.64	<1.0	5.50	2.80	<0.01	<5.0	4.78	<1.0	<1.0	<1.0	16.6	46.6
	B-1-10	24-Sep-09	10	<1.0	<0.3	27.5	<0.5	<0.5	4.07	<1.0	5.56	0.634	<0.01	<5.0	<2.5	<1.0	<1.0	<1.0	9.8	22.8
B-1	B-1-20	24-Sep-09	20	<1.0	<0.3	17.0	<0.5	<0.5	3.41	<1.0	2.29	<0.5	<0.01	<5.0	2.68	<1.0	<1.0	<1.0	8.72	11.7
	B-1-30	24-Sep-09	30	<1.0	<0.3	26.2	<0.5	<0.5	5.83	<1.0	7.63	0.668	<0.01	<5.0	3.31	<1.0	<1.0	<1.0	12.5	20.7
	B-1-40	24-Sep-09	40	<1.0	<0.3	14.8	<0.5	<0.5	2.69	<1.0	12.4	<0.5	<0.01	<5.0	<2.5	<1.0	<1.0	<1.0	6.74	12.7
	B-1-50	24-Sep-09	50	<1.0	<0.3	136	<0.5	<0.5	17.8	<1.0	23.4	7.83	<0.01	<5.0	18.1	<1.0	<1.0	<1.0	36.8	73.8
	B-2-1.5	24-Sep-09	1.5	<1.0	<0.3	24.0	<0.5	<0.5	3.88	<1.0	2.87	1.07	<0.01	<5.0	2.19	<1.0	<1.0	<1.0	11.0	16.1
	B-2-5	24-Sep-09	5	<1.0	<0.3	17.9	<0.5	<0.5	3.03	<1.0	2.94	0.760	<0.01	<5.0	<2.5	<1.0	<1.0	<1.0	8.01	12.9
	B-2-10	24-Sep-09	10	<1.0	<0.3	33.4	<0.5	<0.5	5.40	<1.0	6.54	14.3	<0.01	<5.0	3.63	<1.0	<1.0	<1.0	10.4	54.8
B-2	B-2-20	24-Sep-09	20	<1.0	<0.3	112	<0.5	<0.5	22.7	<1.0	23.8	16.5	<0.01	<5.0	14.7	<1.0	<1.0	<1.0	43.8	73.1
	B-2-30	24-Sep-09	30	<1.0	<0.3	66.5	<0.5	<0.5	17.9	<1.0	14.4	2.86	<0.01	<5.0	11.7	<1.0	<1.0	<1.0	32.4	51.2
	B-2-40	24-Sep-09	40	<1.0	<0.3	51.0	<0.5	<0.5	11.6	<1.0	57.1	4.47	<0.01	<5.0	11.1	<1.0	<1.0	<1.0	22.6	52.0
	B-2-50	24-Sep-09	50	<1.0	<0.3	122	<0.5	<0.5	14.1	<1.0	21.6	7.93	<0.01	<5.0	15.4	<1.0	<1.0	<1.0	29.0	73.4
	B-3-1.5	22-Sep-09	1.5	<1.0	<0.3	20.7	<0.5	<0.5	3.68	<1.0	3.27	1.24	<0.01	<5.0	2.53	<1.0	<1.0	<1.0	8.67	14.4
	B-3-5	22-Sep-09	5	<1.0	<0.3	27.7	<0.5	<0.5	5.30	<1.0	26.9	1.92	<0.01	<5.0	3.74	<1.0	<1.0	<1.0	11.4	26.4
	B-3-10	22-Sep-09	10	<1.0	<0.3	33.9	<0.5	<0.5	6.27	<1.0	23.2	3.32	<0.01	<5.0	4.04	<1.0	<1.0	<1.0	14.0	31.1
B-3	B-3-20	22-Sep-09	20	<1.0	<0.3	17.7	<0.5	<0.5	3.52	<1.0	22.2	<0.5	<0.01	<5.0	<2.5	<1.0	<1.0	<1.0	9.19	18.6
	B-3-30	22-Sep-09	30	<1.0	<0.3	79.7	<0.5	<0.5	19.6	<1.0	17.7	3.12	<0.01	<5.0	13.3	<1.0	<1.0	<1.0	33.6	52.3
	B-3-40	22-Sep-09	40	<1.0	<0.3	94.3	<0.5	<0.5	10.9	<1.0	17.9	6.13	<0.01	<5.0	13.0	<1.0	<1.0	<1.0	25.9	62.5
	B-3-50	22-Sep-09	50	<1.0	<0.3	101	<0.5	<0.5	11.7	<1.0	20.2	6.45	<0.01	<5.0	11.5	<1.0	<1.0	<1.0	28.0	62.2
	B-4-1	23-Sep-09	1	<1.0	<0.3	24.0	<0.5	<0.5	4.20	<1.0	4.56	1.36	<0.01	<5.0	2.65	<1.0	<1.0	<1.0	10.3	16.6
	B-4-5	23-Sep-09	5	<1.0	<0.3	42.6	<0.5	<0.5	8.23	<1.0	7.27	2.07	<0.01	<5.0	5.49	<1.0	<1.0	<1.0	17.6	27.2
	B-4-10	23-Sep-09	10	<1.0	<0.3	22.3	<0.5	<0.5	3.57	<1.0	3.56	2.97	<0.01	<5.0	<2.5	<1.0	<1.0	<1.0	9.63	16.1
B-4	B-4-20	23-Sep-09	20	<1.0	<0.3	15.9	<0.5	<0.5	2.29	<1.0	22.9	<0.5	<0.01	<5.0	<2.5	<1.0	<1.0	<1.0	6.75	10.4
	B-4-30	23-Sep-09	30	<1.0	<0.3	65.1	<0.5	<0.5	15.4	<1.0	9.91	1.45	<0.01	<5.0	10.3	<1.0	<1.0	<1.0	28.3	44.0
	B-4-40	23-Sep-09	40	<1.0	<0.3	9.73	<0.5	<0.5	0.664	<1.0	<1.0	<0.5	<0.01	<5.0	<2.5	<1.0	<1.0	<1.0	<5.0	5.95
	B-4-50	23-Sep-09	50	<1.0	<0.3	119	<0.5	<0.5	14.6	<1.0	18.6	7.34	<0.01	<5.0	14.4	<1.0	<1.0	<1.0	32.1	62.5

IF.

TABLE 2 SOIL ANALYTICAL RESULTS FOR CCR TITLE 22 METALS Proposed Anaheim Regional Transportation Intermodal Center (ARTIC) - Phase 1

Anaheim, California

umber	lumber	pled	Sample Depth	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
ring Nu	mple N	te Sam	(feet)	6010B	6010B	6010B	6010B	6010B	6010B	6010B	6010B	6010B	7471A	6010B	6010B	6010B	6010B	6010B	6010B	6010B
Bo	Sa	Da									Conce	entration in	mg/kg							
	B-5-1.5	22-Sep-09	1.5	<1.0	<0.3	24.8	<0.5	<0.5	3.75	<1.0	4.33	5.54	<0.01	<5.0	2.86	<1.0	<1.0	<1.0	8.81	18.3
	B-5-5	22-Sep-09	5	<1.0	<0.3	23.0	<0.5	<0.5	4.23	<1.0	5.73	1.47	<0.01	<5.0	3.01	<1.0	<1.0	<1.0	14.7	18.0
	B-5-10	22-Sep-09	10	<1.0	<0.3	17.5	<0.5	<0.5	3.35	<1.0	4.11	0.873	<0.01	<5.0	<2.5	<1.0	<1.0	<1.0	7.97	14.3
B-5	B-5-20	22-Sep-09	20	<1.0	<0.3	157	<0.5	<0.5	27.6	<1.0	33.0	20.3	<0.01	<5.0	18.8	<1.0	<1.0	<1.0	55.4	97.8
	B-5-30	22-Sep-09	30	<1.0	<0.3	68.3	<0.5	<0.5	15.8	<1.0	23.9	2.20	<0.01	<5.0	10.6	<1.0	<1.0	<1.0	28.1	51.1
	B-5-40	22-Sep-09	40	<1.0	<0.3	70.1	<0.5	<0.5	11.5	<1.0	28.7	4.18	<0.01	<0.5	12.6	<1.0	<1.0	<1.0	22.8	54.2
	B-5-50	22-Sep-09	50	<1.0	<0.3	51.3	<0.5	<0.5	6.99	<1.0	16.6	3.68	<0.01	<5.0	9.07	<1.0	<1.0	<1.0	18.8	41.1
	W-1-1.5	25-Sep-09	1.5	<1.0	<0.3	8.61	<0.5	<0.5	0.711	<1.0	<1.0	<0.5	<0.01	<5.0	<2.5	<1.0	<1.0	<1.0	<5.0	5.11
	W-1-5	25-Sep-09	5	<1.0	<0.3	40.6	<0.5	<0.5	6.95	<1.0	35.0	3.94	<0.01	<5.0	5.11	<1.0	<1.0	<1.0	15.7	37.3
	W-1-10	25-Sep-09	10	<1.0	<0.3	18.7	<0.5	<0.5	2.91	<1.0	2.56	0.655	<0.01	<5.0	<2.5	<1.0	<1.0	<1.0	6.84	13.3
W-1	W-1-20	25-Sep-09	20	<1.0	<0.3	10.4	<0.5	<0.5	1.78	<1.0	<1.0	<0.5	<0.01	<5.0	<2.5	<1.0	<1.0	<1.0	<5.0	7.09
	W-1-30	25-Sep-09	30	<1.0	<0.3	72.7	<0.5	<0.5	11.6	<1.0	18.3	3.96	<0.01	<5.0	9.51	<1.0	<1.0	<1.0	25.4	50.6
	W-1-40	25-Sep-09	40	<1.0	<0.3	26.7	<0.5	<0.5	5.18	<1.0	31.6	2.27	<0.01	<5.0	6.54	<1.0	<1.0	<1.0	9.10	34.4
	W-1-50	25-Sep-09	50	<1.0	<0.3	93.7	<0.5	<0.5	9.27	<1.0	13.5	4.83	<0.01	<5.0	10.2	<1.0	<1.0	<1.0	20.4	50.2
	KA-1-1	15-Oct-09	1	<1.0	<0.3	56.8	<0.5	0.669	7.46	3.78	5.61	22.4	<0.01	<5.0	4.52	<1.0	<1.0	<1.0	26.8	22.2
KA 1	KA-1-5	15-Oct-09	5	<1.0	<0.3	11.1	<0.5	<0.5	1.92	1.12	1.82	5.50	<0.01	<5.0	<2.5	<1.0	<1.0	<1.0	7.88	6.27
NA-1	KA-1-10	15-Oct-09	10	<1.0	<0.3	9.52	<0.5	<0.5	2.14	1.14	1.71	5.15	<0.01	<5.0	<2.5	<1.0	<1.0	<1.0	8.34	6.57
	KA-1-15	15-Oct-09	15	<1.0	<0.3	24.3	<0.5	<0.5	2.66	<1.0	1.72	5.97	<0.01	<5.0	<2.5	<1.0	<1.0	<1.0	9.61	7.62
	KA-2-1	15-Oct-09	1	<1.0	<0.3	41.2	<0.5	<0.5	8.10	4.05	4.29	16.7	<0.01	<5.0	3.50	<1.0	<1.0	<1.0	27.3	21.7
KA 2	KA-2-5	15-Oct-09	5	<1.0	<0.3	93.2	<0.5	<0.5	12.9	4.69	11.1	33.8	<0.01	<5.0	6.01	<1.0	<1.0	<1.0	49.8	30.3
NA-2	KA-2-10	15-Oct-09	10	<1.0	<0.3	36.8	<0.5	<0.5	2.81	1.60	2.34	7.34	<0.01	<5.0	<2.5	<1.0	<1.0	<1.0	11.8	8.91
	KA-2-15	15-Oct-09	15	<1.0	<0.3	<5.0	<0.5	<0.5	0.507	<1.0	<1.0	1.42	<0.01	<5.0	<2.5	<1.0	<1.0	<1.0	<5.0	1.75
KV-3	KA-3-1	15-Oct-09	1	<1.0	<0.3	22.1	<0.5	<0.5	3.47	2.10	3.14	1.65	<0.01	<5.0	<2.5	<1.0	<1.0	<1.0	14.7	10.4
NA-3	KA-3-6	15-Oct-09	6	<1.0	<0.3	44.1	<0.5	<0.5	4.31	1.70	2.76	11.5	<0.01	<5.0	3.42	<1.0	<1.0	<1.0	16.0	13.2
KA-4	KA-4-2.5	15-Oct-09	2.5	<1.0	<0.3	25.6	<0.5	0.585	4.43	2.14	3.96	10.4	<0.01	<5.0	2.97	<1.0	<1.0	<1.0	17.1	16.7
NA-4	KA-4-4.5	15-Oct-09	4.5	<1.0	<0.3	28.8	<0.5	<0.5	5.88	3.52	4.50	12.0	<0.01	<5.0	3.48	<1.0	<1.0	<1.0	20.8	22.0

1E

DRAFT

TABLE 2 SOIL ANALYTICAL RESULTS FOR CCR TITLE 22 METALS Proposed Anaheim Regional Transportation Intermodal Center (ARTIC) - Phase 1

Anaheim, California

3oring Number	Sample Number	Date Sampled	Sample Depth (teet)	Antimony 6010B	Arsenic 6010B	Earin 6010B	Beryllium 6010B	Cadmiu Cadmiu B0109	Chromiu Chromiu 6010B	Copalt Copalt B0108	6010B	6010B	Aino Jano Jano Jano Jano Jano Jano Jano Ja	unuapqAjow 6010B	Nicke Nicke 6010B	un Selenie 6010B	້ອ >	E Hallin Hallin 6010B	Aanadiu Aanadiu B010B	2
	KA-5-5 5	15-Oct-09	5.5																	
KA-5	KA-5-10	15-Oct-09	10																	
	KA-5-15	15-Oct-09	15																	
	KA-6-3	15-Oct-09	3	<1.0	<0.3	34.9	<0.5	<0.5	6.53	3.64	5.36	13.1	<0.01	<5.0	3.41	<1.0	<1.0	<1.0	23.2	23.1
KA-6	KA-6-5	15-Oct-09	5	<1.0	<0.3	26.6	<0.5	<0.5	5.64	3.40	4.43	11.1	<0.01	<5.0	3.34	<1.0	<1.0	<1.0	19.5	21.0
	KA-7-15	15-Oct-09	15																	
NA-7	KA-7-20	15-Oct-09	20																	
KA-8	KA-8-5	15-Oct-09	5																	
	KA-9-2.5	16-Oct-09	2.5	<1.0	<0.3	22.9	<0.5	0.639	5.17	3.02	5.18	15.6	<0.01	<5.0	3.13	<1.0	<1.0	<1.0	11.2	23.7
KA-9	KA-9-5	16-Oct-09	5	<1.0	<0.3	20.0	<0.5	<0.5	3.90	2.50	3.71	7.71	<0.01	<5.0	2.22	<1.0	<1.0	<1.0	14.7	15.1
	KA-9-10	16-Oct-09	10	<1.0	<0.3	31.5	<0.5	<0.5	8.98	2.76	5.00	11.6	<0.01	<5.0	6.86	<1.0	<1.0	<1.0	13.3	22.7
KA-10	KA-10-15	16-Oct-09	15																	
10-10	KA-10-20	16-Oct-09	20																	
KA-11	KA-11-15	16-Oct-09	15																	
KA-12	KA-12-15	16-Oct-09	15																	
10112	KA-12-19	16-Oct-09	19																	
	KA-13-5	16-Oct-09	5																	
KA-13	KA-13-10	16-Oct-09	10																	
	KA-13-14.5	16-Oct-09	14.5																	
	KA-14-5	16-Oct-09	5																	
KA-14	KA-14-10	16-Oct-09	10																	
	KA-14-13	16-Oct-09	13																	
	KA-15-5	16-Oct-09	5																	
KA-15	KA-15-10	16-Oct-09	10																	
	KA-15-15	16-Oct-09	15																	
	KA-16-6.5	16-Oct-09	6.5																	
KA-16	KA-16-10	16-Oct-09	10																	
	KA-16-14	16-Oct-09	14																	

1E

DRAFT

TABLE 2 SOIL ANALYTICAL RESULTS FOR CCR TITLE 22 METALS Proposed Anaheim Regional Transportation

Intermodal Center (ARTIC) - Phase 1

Anaheim, California

umber	umber	pled	Sample Depth	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
ring Nu	nple N	ie Sam	(feet)	6010B	6010B	6010B	6010B	6010B	6010B	6010B	6010B	6010B	7471A	6010B	6010B	6010B	6010B	6010B	6010B	6010B
Boi	Jate (Conc	entration in	mg/kg							
	TTLC			500	500	10,000	75	100	2,500	8,000	2,500	1,000	20	3,500	2,000	100	500	700	2,400	5,000
	STLC			15	5.0	100	0.75	1.0	560/5*	80	25	5.0	0.2	350	20	1.0	5.0	7.0	24	250
	STLC TCLP			NL	5.0	100	NL	1.0	5.0	NL	NL	5.0	0.2	NL	NL	1.0	5.0	NL	NL	NL
	US EPA Industri	al Soil RSL		410	1.6	190,000	2,000	810	1,400	300	41,000	800	28	5,100	20,000	5,100	5,100	66	5,200	310,000
С	ommercial/Industria	CHHSL for So	oil	380	0.24	63,000	1,700	7.5	100,000**	3,200	38,000	3,500	180	4,800	16,000	4,800	4,800	63	6,700	100,000

Notes: 6010B = United States Environmental Protection Agency (US EPA) Analytical Method Number

mg/kg = milligrams per kilogram

<1.0 = Not detected above the indicated laboratory detection limit

-- = Not analyzed

TTLC = Total Threshold Limit Concentration

STLC = Soluble Threshold Limit Concentration; units in milligrams per liter (mg/L)

TCLP = Toxicity Characteristic Leaching Procedure; units in mg/L

RSL = Regional Screening Level

CHHSL = California Human Health Screening Level

NL = No listed value

* = Must meet both the STLC Limit of 560 and US EPA TCLP Limit of 5

** = Chrome III value

Bold value indicates detected concentration

PLATES

22 Oct 2009, 12.47pm, MGriffin PLOTTED

LAYOUT CAD FILE: L:\2009\CADD\103567\07-15-09 ENV\

Images: Topo-plate1_1.JPG Images: Topo-plate1_2.JPG

ATTACHED IMAGES: ATTACHED XREFS: DIAMOND BAR, CA

APPENDIX A LOGS OF BORINGS

		Date Dril Dril Log	e Drill led By ling M ged By	ed: 7: ethod 7:	:	Wat Dat Refe Dat	er Depth: e Measured: erence Eleva um:	ation:			
Elevation (feet) Depth	Sample	Sample No.	Blow Count (Blows/ft.)	Graphic Log	GEOT	ECHNICAL DESC AND CLASSIFICATIO	RIPTION N		Dry Density (pcf)	Moisture Content (%)	Additional Tests
-		1	6						108	10	DS, SE
		2	12								GS
	(1)	(2)	(3)	(4)		(5)			(6)	(6)	(7)
					NOTES O	N FIELD INVESTI	GATION				
1.	SAMP	LE	- Gr	aphical re	presentation of sample type	as shown below.					
	Drive	Spoon Samp		anaara Pe Ilifornia So	ample (Cal)						
	Tube	Samp	e – 01. Ie – Sh	elby/Pitch	ner Tube Sample —						
2.	SAMP	LE NO	. — Sam	ple Num	ber						
3.	BLOWS Sampl Drive When	5/FT — ers in sample a SPT	Number o general wo s collected sampler is	of blows ere driven I in bucke s used th	required to advance sampler into the soil at the bottom et auger borings may be ob le blow count conforms to A	 1 foot (unless a lesse n of the hole with a stored tained by dropping non- ASTM D-1586. 	r distance is specifi Indard (140 lb) han -standard weight fro	ed). nmer dropping om variable he	a stand eights.	lard 30	inches.
	SCR/F percer are no	RQD — ntage c ot cons	Sample Co of core in sidered.	ore Recov each run	very (SCR) in percent (%) ar which the spacing between	nd Rock Quality Designat natural fractures is gre	tion (RQD) in percer ater than 4 inches.	nt (%). RQD is Mechanical bi	a defined reaks of	as the the core	e
4.	GRAPI	HIC LO	DG — Sta	ndard sy	ymbols for soil and rock	types, as shown on	plate A—1b.				
5.	GEOTE	CHNICA	l descrip	TION							
	<u>Soil</u> – color <u>Roc</u> k the m where Descri	Soil of and ot – Rocl echanic approp ption c	classificatio her modifi < classifico cal propert oriate. of soil orig	ns are b ers. Field itions gen ies of the in or roc	ased on the United Soil Clas descriptions have been mod erally include a rock type, a e rock. Fabric, lineations, be k formation is placed in bra	ssification System per A dified to reflect results of color, moisture, mineral adding spacing, foliations ackets at the beginning	STM D-2987, and d of laboratory analyse constituents, degree , and degree of cer of the description w	lesignations indes where deen of weathering mentation are where applicabl	clude con ned appr g, alterat also pre le, for ex	nsistency opriate. ion, and esented kample,	, moisture, Residual Soil.
6.	DRY I	DENSI	Y, MOIST	URE CON	NTENT: As estimated by l	aboratory or field tes	ting.				
7.	ADDIT MA G S E CHE CHE U	IONAL IX - M IS - G IE - S II - E M - S M - F IU - U	TESTS — daximum D arain Size and Equive xpansion I sulfate and Permeability Inconsolida	(Indicat ry Density Distributio alent ndex Chloride ted Undro	tes sample tested for pro y n Content, pH, Resistivity pined Triaxial	operties other than the SG - Specific Gravity HA - Hydrometer Anal AL - Atterberg Limits RV - R-Value CN - Consolidation CU - Consolidation Un CD - Consolidated Dro	ne above): ysis drained Triaxial iined Triaxial	PP – Poo WA – Was DS – Dire CP – Col UC – Una T – Tor	cket Pend sh Analys ect Shea lapse Po confined vane	etromete sis r tential Compres	r
8.	ATTITU respec	DES – tively, B: Be	Orientation preceeded dding Plan	n of rock by a on e	: discontinuity observed in b e-letter symbol denoting nat J: Jointing C: Conta	ucket auger boring or ra ture of discontinuity as ct F: Fault	ock core, expressed shown below. S: Shear	in strike/dip	and dip	angle,	
										Р	LATE
										ľ	
(k		` E/I			DER Solutions	EXPLA		OF LOG	S		A-1a
		Brig	ynt reopi www.l	e. rugnt kleinfelde	solutions. er.com						

	UNIF	IED SOIL	CL	4SS	IFICATIO	N SYSTE	ЕМ (,	ASTM	D-2487)	
PRI	MARY DIVISIONS		GR	OUP	SYMBOLS			SEC	CONDARY DIVISI	ONS
	N N SE	CLEAN GRAVELS		GW		WELL GRADE	D GRAVE	ELS, GRAVEI	-SAND MIXTURES,	LITTLE OR NO FINES
N HAN	ELS COURS I THAN IEVE	(LESS THAN) 5% FINES		GP		POORLY GRA	DED GR	AVELS OR (GRAVEL-SAND MIXTU	JRES, LITTLE OR NO FINES
E OF	GRAV ORE COF RACTI RGER #4 S	GRAVEL		GM	0 0 0 0 0 0 0 0 0 2 0 2 0	SILTY GRAVE	LS, GRA	VEL-SAND-	SILT MIXTURES	
AINED A HAI LARG	N H H H	FINES		GC		CLAYEY GRAV	VELS, GF	RAVEL-SAND	-CLAY MIXTURES	
	AN	CLEAN SANDS		SW		WELL GRADE	D SAND	S, GRAVELL	Y SANDS, LITTLE OR	R NO FINES
DURSE HORE #20	NDS THAI THAI TON IC SIEVE	(LESS THAN) 5% FINES		SP		POORLY GRA	DED SA	NDS OR GR	AVELLY SANDS, LITT	LE OR NO FINES
MATIN	SAI FACE ALLE #41	SANDS WITH		SM		SILTY SANDS	, SAND-	-SILT MIXTU	RES	
	AHL	FINES		SC		CLAYEY SAN	DS, SAN	D-CLAY MIX		0
HAN		20 20 L		ML		INORGANIC S CLAYEY FINE	SANDS	RY FINE SA	ANDS, ROCK FLOUR,	, SILTY OR
OILS ZE JF ZE JF	CLAY			CL		SANDY CLAY	S, SILTY	CLAYS, LE	AN CLAYS	GRAVELLY CLAYS,
ED S MALL	<u>0</u>	F		OL		ORGANIC SIL	TS AND	ORGANIC S	ILT-CLAYS OF LOW	
RAIN IS S SIE	AND SY DI	50 50		мн		SILTS, ELAST	IC SILTS	S S S	IN DIATOMACEOUS F	INE SANDS OR
ORE , #200 #200	CLA	CREA: IS THAN		СН		INORGANIC C	LAYS O	F HIGH PLA	STICITY, FAT CLAYS	
AATER F						ORGANIC CLA	AYS OF		HIGH PLASTICITY, (DRGANIC SILIS
	SANDSTO	NES		SS	 EZZ	PEAT, MUCK	AND U		T URGAINIC SUILS	
N TR.	SILTSTON	IES		SH						
FICAL	CLAYSTON	NES		cs						
FORM MAT	LIMESTON	IES		LS		c				
	SHALE	:		SL						
	C	CONSISTEN	ICY	CF	RITERIA	BASED C	DN F	IELD T	ESTS	
				col	ISISTENCY_		то	RVANE	POCKET **	
RELATIVE D	ENSITY – COARSE –	GRAIN SOIL		FIN	E-GRAIN SOIL				PENEIROMETER	* NUMBER OF BLOWS OF 140 POUND HAMMER
RELATIVE DENSITY	SPT * (# blows/ft)	RELATIVE DENSITY (%)		c	ONSISTENCY	SPT (# blows/ft)	UNE S STREN	DRAINED HEAR IGTH (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	FALLING 30 INCHES TO DRIVE A 2 INCH O.D. (1 3/8 INCH I.D.) SPLIT BARREL SAMPLER
Very Loose	<4	0 - 15			Very Soft	<2	<	:0.13	<0.25	(ASTM-1586 STANDARD PENETRATION TEST)
Loose	4 - 10	15 - 35			Soft	2 - 4	0.13	- 0.25	0.25 - 0.5	** UNCONFINED
Medium Dense	10 - 30	35 - 65		м	edium Stiff	4 - 8	0.25	i – 0.5	0.5 - 1.0	COMPRESSIVE STRENGTH IN
Dense	30 - 50	65 - 85			Stiff Verv Stiff	8 - 15	0.5	- 1.0	1.0 - 2.0	READ FROM POCKET
Very Dense	>50	85 - 100			Hard	>30	1.0	>2.0	>4.0	
	1			L						1
	MOISTURE	CONTENT						С	EMENTATION	N
DESCRIPTION		FIELD TEST				DESCRIPT	ION		FIELD) TEST
Dry	Absence of moistu	re, dusty, dry t	o the	e tou	ch	Weakly	/	Crumbles	or breaks with har	ndling or slight finger pressure
Moist	Damp but no visib	le water				Moderat	ely	Crumbles	or breaks with con	siderable finger pressure
Wet	Visible free water,	usually soil is	below	wate	er table	Strong	у	Will not	crumble or break	with finger pressure
L	1									

PLATE

A-1b

EXPLANATION OF LOGS

Bright People. Right Solutions. www.kleinfelder.com

KLEINFELDER

	Chemical	Analyses)er	ot	lodn		SOIL DESCRIPTION	
Comments		Field		ype	r Foe	y Syr	ion	AND	
Comments	Lab.	PID	- -	ple T	vs pe	ology	C.S. gnati	CLASSIFICATION	
		(ppm)	Dept (feet	Sam	Blov	Lithe	U.S. Desi		
Sample Numbers:	See							ASPHALT: approximately 3 inches thick.	
D 1 1 5	report	2.0	-					BASE: approximately 17 inches thick.	
D-1-1.3	uoles.	2.0	-	-			SP	SAND (SP): light brown, slightly moist, fine medium-grained.	- to -
B-1-5		2.0	5	-	38		SP- SM	SAND WITH SILT (SP-SM): olive brown, moist, fine- to coarse-grained.	slightly -
			-					fine- to medium-grained, trace fine gravel.	
B-1-10		0.0	- 10		5		SP	medium-grained, pocket of sandy clay, layers with silt.	of sand
			- 15 -				ML	SANDY SILT (ML): olive gray to light brogray, fine- to medium-grained.	wnish -
			-	-			SP	SAND (SP): pink, olive yellow, slightly mois fine-grained.	 st,
B-1-20		0.0	20	-	26			light brown, fine- to medium-grained.	-
B-1-30		0.0	25 		30		SP- SM	SAND WITH SILT (SP-SM): light gray, sl moist, fine- to medium-grained.	- - - - - - - - - -
			-	-					-
SURFACE ELE TOTAL DEPTH DATE DRILLE	VATION I (feet): { D: 9-24-(V (feet): 81.5)9	N/A]]]	LOGGED BY: PD DIAMETER OF BORING (inches): 6 DEPTH TO STATIC WATER (feet): Not encou	untered.
		ELDEF	2		Pr In Pr	opo tern oiec	sed A noda rt No	Anaheim Regional Transportation I Center, Anaheim, CA . 103567/ENV2	
) DG	OF	BORING B-1	A-2a

Comments	Chemical Lab.	Analyses Field PID (ppm)	Depth (feet)	Sample Type	Sample Number	Blows per Foot	Lithology Symbol	U.S.C.S. Designation	SOIL DESCRIPTION AND CLASSIFICATION (Continued From Previous Page	2)
			-	_					 SAND (SP): olive brown, slightly moist, fine medium-grained. <i>(continued)</i> increase coarse sand. 	e- to - -
B-1-40		0.0	40			20		SP	 fine- to coarse-grained, some gravel. olive yellow, with silt and gravel.	- - - -
			45	-				GP	GRAVEL (GP): brown, fine- to coarse-grai broken. CLAY (CL): yellowish brown, slightly mois	 ined, - it, lean
B-1-50		0.0	50-			32		CL		- - -
		0.5				9				- - -
			- 60-						GRAVEL WITH SAND (GP): fine to med grained.	ium -
		0.5				18		CL	CLAY (CL): yellowish brown, slighly moist SILTY SAND (SM): yellowish brown, sligh	t, lean. - - - - - - - - -
SURFACE ELE TOTAL DEPTH DATE DRILLE	VATION (feet): { D: 9-24-(I (feet): 31.5)9						IML- SM I I I	moist, fine-grained. LOGGED BY: PD DIAMETER OF BORING (inches): 6 DEPTH TO STATIC WATER (feet): Not encou	untered.
	KLEINF Bright Peo	PELDER	?			Pro Int Pro	opos tern ojec	sed A 10dal t No.	Anaheim Regional Transportation Center, Anaheim, CA . 103567/ENV2	A-2b
						LC) G	OF	BORING B-1	

Comments	Chemical Lab.	Analyses Field PID (ppm)	Depth (feet)	Sample Type Sample Number	Blows per Foot	Lithology Symbol	U.S.C.S. Designation	SOIL DESCRIPTION AND CLASSIFICATION (Continued From Previous Page	2)
		1.0			9		ML	 (Continued From Previous Page SILTY SAND (SM): yellowish brown, slight moist, fine-grained. (continued) SANDY SILT (ML): yellow brown, slightly SILTY SAND (SM): olive brown, slightly m fine- to medium-grained. Total depth: 81.5 feet. Free water encountered on geotechnical samp approximately 51 feet. Boring backfilled with bentonite slurry and ca with quick-set concrete. 	2) itly moist.
SURFACE ELE TOTAL DEPTH DATE DRILLEI	VATION [(feet): 8 D: 9-24-(V (feet): 81.5 99	N/A				I I I	LOGGED BY: PD DIAMETER OF BORING (inches): 6 DEPTH TO STATIC WATER (feet): Not encou	- - - untered.
		ELDEF ple. Right Solution:	2		Pr Int Pr L(opos tern ojec DG	sed A nodal at No. OF	Anaheim Regional Transportation l Center, Anaheim, CA . 103567/ENV2 BORING B-1	A-2c

	Chemical	Analyses			ber	ot	mbol		SOIL DESCRIPTION	
Comments		Field		Type	Num	er Fo	y Sy	tion	AND	
	Lab.	PID	the first second	nple '	nple	d sw	golot	.C.S signar	CLASSIFICATION	
		(ppm)	Dep (fee	San	San	Blo	Lith	U.S Des		
Sample Numbers:			_						ASPHALT: approximately 5 inches thick.	
B-2-1.5	See	2.8	_					SP	BASE: approximately 5 inches thick.	/ _
	report tables.		-	-					coarse grained.	- 10 -
B-2-5		4.6	5-		-	26			olive yellow, fine- to medium-grained.	-
				-					pink, fine- to medium-grained, trace fine g	ravel.
B-2-10		1.2	-			18			olive brown.	-
				-					pink, fine- to medium-grained.	-
				-						- - -
В-2-20		1.6	20-		-	7		CL	CLAY (CL): greenish black, slightly moist,	lean -
			- - 25 -	-					SILTY SAND (SM): brown, slightly moist.	 - -
			-	-					SANDY SILT (ML): yellowish brown, sligh moist, fine-grained sand.	ntly
B-2-30		2.6	30-		-	21		ML		-
			-	-				CL		
SUBEACE ELE		(feet)	N/A	_			[////			
TOTAL DEPTH DATE DRILLE	I (feet):	101.5)9	1 1/ 23]	DIAMETER OF BORING (inches): 6 DEPTH TO STATIC WATER (feet):	
Ć	KLEINF Bright Peo	ELDER ople. Right Solutions	2			Pr In Pr	opos tern ojec	sed A 10da t No	Anaheim Regional Transportation l Center, Anaheim, CA . 103567/ENV2	A-3a
						L	COR	OF	BORING B-2	11 Ju

	Chemical	Analyses		'pe	umber	Foot	Symbol	ų	SOIL DESCRIPTION					
Comments	Lab.	PID	년 년	ple Ty	iple Nu	ws per	ology	.C.S. ignatio	AND CLASSIFICATION					
		(ppm)	Dep (feel	Sam	Sam	Blov	Lith	U.S. Desi	(Continued From Previous Page	2)				
D 2 40		1.1	- - - 40-	-		74		CD	SANDY CLAY (CL): yellowish brown, slig moist. <i>(continued)</i> GRAVEL WITH SAND (GP): olive gray, moist.	slightly				
B-2-40		1.1	 45	-	-	/4		Gr	CLAY WITH SAND (CL): yellowish brow					
В-2-50		2.7	 50 		-	15		CL	singitity moist, ican, some graver.	- - - -				
		2.4				11		ML	SANDY SILT (ML): yellowish brown, slig moist.	ntly				
			- 60 <i>-</i> -	-				CL	CLAY WITH SAND (CL): yellowish brow slightly moist.					
		1.6				13	-	ML	SANDY SILT (ML): yellowish brown, slig moist.	ntly - - - -				
SURFACE ELE TOTAL DEPTH DATE DRILLE	SURFACE ELEVATION (feet): N/A FOTAL DEPTH (feet): 101.5 DATE DRILLED: 9-24-09								LOGGED BY: PD DIAMETER OF BORING (inches): 6 DEPTH TO STATIC WATER (feet):					
(KLEINF Bright Peo	ELDER pple. Right Solution:	?			Pr Int Pr	opo tern ojec	sed A noda et No	Anaheim Regional Transportation l Center, Anaheim, CA . 103567/ENV2	A-3b				
									LOG OF BORING B-2					

	Chemical	Analyses			ber	ot	mbol		SOIL DESCRIPTION						
Comments		Field		Type	Mum	er Fc	y Sy	ion	AND						
	Lab.	PID	th th	ple [iple]	vs po	olog	C.S.	CLASSIFICATION						
		(ppm)	Dep (feet	Sam	Sam	Blov	Lith	U.S. Desi	(Continued From Previous Page	2)					
			-	-					CLAY WITH SAND (CL): yellowish brow slightly moist, layers of sandy silt. <i>(continued)</i>	/n, /) - -					
		2.0	75 — - -			19		ML	SANDY SILT (ML): yellowish brown, sligh moist.	ntly -					
			 80 -	-				CL	SANDY CLAY (CL): yellowish brown, slig moist, layers of sandy silt and silty sand.	ghtly –					
									SAND WITH SILT (SP): yellowish brown, fine- to medium-grained, trace gravel.	wet,					
		2.0	85 — - - - 90 —			3		SP		- - - -					
			- - - 05	-				SP	SAND WITH SILT AND GRAVEL (SP-Stories of the second	 M): - -					
		2.0				3		GP	GRAVEL WITH SAND (GP): olive brown fine- to coarse-grained.	n, wet, -					
			- 100	-					SAND WITH GRAVEL (SP): olive brown Total depth: 101.5 feet. Groundwater encountered at approximately & Boring backfilled with bentonite slurry and ca with quick-set concrete.	, wet. 33 feet.					
SURFACE ELE TOTAL DEPTH DATE DRILLE	SURFACE ELEVATION (feet): N/A TOTAL DEPTH (feet): 101.5 DATE DRILLED: 9-24-09								LOGGED BY: PD DIAMETER OF BORING (inches): 6 DEPTH TO STATIC WATER (feet):						
	KLEINF Bright Peo	ELDER ple. Right Solutions	2			Pr In Pr	opos tern ojec	sed A 10da t No	Anaheim Regional Transportation I Center, Anaheim, CA . 103567/ENV2	A-3c					
									LOG OF BORING B-2						

Note: The boundaries between soil types shown on the logs are approximate as the transition between different soil layers may be gradual.

	Chemical	Analyses			ber	ot	nbol		SOIL DESCRIPTION	
Comments		Field		Type	Mumb	ar Foo	y Syr	ion	AND	
	Lab.	PID	l 41 (c)	ple J	ple	vs pe	olog	C.S. gnat	CLASSIFICATION	
		(ppm)	Dep (feet	Sam	Sam	Blov	Lith	U.S. Desi		
Sample Numbers:	See						2		ASPHALT: approximately 3 inches thick.	
	report tables.								BASE: approximately 7 inches thick.	
B-3-1.5		1.9	_		-			SP	to medium-gravel, layers of sand with silt.	ce fine-
B-3-5		2.3	5-			36				-
			-						brown, small clay pockets.	-
B-3-10		0.0				70			brown with light brown inclusions, fine- to medium-grained.	- - -
			-					SM	SILTY SAND (SM): olive brown, fine- to coarse-grained	
			15-					SP-	SAND WITH SILT (SP-SM): light browning slightly moist, moderate iron oxide discolorate	sh gray, - ion
			-					SM	SAND (SP): light brown sand, slightly moist to medium-grained.	, fine-
В-3-20		0.0	20-			28		SP		-
			-	-						-
			25-					SM	SILTY SAND (SM): olive brown to yellow brown, very moist, fine-grained.	 ish
			_					ML	SANDY SILT (ML):	
В-3-30		0.5	30-			6		SM	SILTY SAND (SM): olive brown to yellow brown, moist, fine-grained.	 ish
			-	-				CL	SANDY CLAY (CL): yellowish brown, mo layers of clayey sand.	 ist,
SURFACE ELE	VATION	(feet):	N/A	1			////		LOGGED BY: PD	
TOTAL DEPTH DATE DRILLE	[(feet): 8 D: 9-22-0	81.5)9						-	DIAMETER OF BORING (inches): 6 DEPTH TO STATIC WATER (feet):	
	KLEINF Bright Peo	ELDER ple. Right Solution	2			Pr Int Pr	opos term ojec	sed A 10da t No	Anaheim Regional Transportation l Center, Anaheim, CA . 103567/ENV2	Δ-42
						L	COG	OF	BORING B-3	1 1 -70

Comments	Chemical	Analyses Field		ype	Jumber	r Foot	/ Symbol	uo	SOIL DESCRIPTION						
Comments	Lab.	PID (ppm)	lepth (eet)	ample T	ample N	lows per	ithology	I.S.C.S. esignati	CLASSIFICATION						
В-3-40		0.0	40-			11		CL	 SANDY CLAY (CL): yellowish brown, molayers of clayey sand. <i>(continued)</i> lens of yellowish brown silty sand, trace fir gravel. 						
			45 — 						CLAY (CL): yellowish brown, slightly mois	- - - - - - - - - - - - - - - - - - -					
B-3-50		0.0	50 55			9		CL		-					
			 ⊻ 60					SM	SILTY SAND WITH GRAVEL (SM): yel brown, fine- to coarse-grained. SAND WITH GRAVEL (SP): gray, wet, fi coarse-grained.	lowish -					
		0.7	- 65 - - -			11		CL	CLAY WITH SAND (CL): yellowish brow moist, lean.	 /n, - - - - -					
SURFACE ELE TOTAL DEPTH DATE DRILLE	SURFACE ELEVATION (feet): N/A TOTAL DEPTH (feet): 81.5 DATE DRILLED: 9-22-09								LOGGED BY: PD DIAMETER OF BORING (inches): 6 DEPTH TO STATIC WATER (feet):						
(KLEINF Bright Peo	ELDER	2			Pro Int Pro	opos tern ojec	sed A 10dal t No.	Anaheim Regional Transportation Center, Anaheim, CA 103567/ENV2	A-4b					
									LOG OF BORING B-3						

Note: The boundaries between soil types shown on the logs are approximate as the transition between different soil layers may be gradual.

Comments	Chemical Lab.	Analyses Field PID	4	ole Type	ole Number	's per Foot	ology Symbol	C.S. gnation	SOIL DESCRIPTION AND CLASSIFICATION	
	Lab.	PID (ppm) 0.7		Sample	Sample	13		SC SW	CLASSIFICATION (Continued From Previous Page CLAY WITH SAND (CL): yellowish brown moist, lean. (continued) CLAYEY SAND (SC): yellowish brown, ver moist, fine-grained. SILTY SAND (SM): yellowish brown, moi very moist, trace gravel. Total depth: 81.5 feet. Groundwater encountered at approximately 5 Boring backfilled with bentonite slurry and ca with quick-set concrete.	e) vn, ery st to 58 feet. apped - - - - - - - - - - - - -
SURFACE ELE TOTAL DEPTH DATE DRILLE	VATION [(feet): { D: 9-22-(V (feet): 81.5 99	N/A					I I I	LOGGED BY: PD DIAMETER OF BORING (inches): 6 DEPTH TO STATIC WATER (feet):	
	KLEINF Bright Peo	ELDER ple. Right Solution:	2			Pro Int Pro	opos tern ojec	sed A nodal at No.	Anaheim Regional Transportation Center, Anaheim, CA 103567/ENV2 ROBING B 3	A-4c

	Chemical	Analyses			Jer	ot	nbol		SOIL DESCRIPTION				
Comments		Field		Type	Num	er Fo	y Sy	tion	AND				
	Lab.	PID	ft ft	nple	nple	ws p	lolog	S.C.S signar	CLASSIFICATION				
		(ppm)	Del (fec	San	San	Blo	Lit	U.S Des					
Sample Numbers:	See	0.4	_					CD	ASPHALT: approximately 3 inches thick.				
B-4-1	tables.	0.4	_	_X				SP	SAND (SP): vellowish brown slightly moist				
			-	-					to medium-grained, layers of sand with silt, la silty sand.	iyers of -			
B-4-5		0.0	5-			41		SP- SM	SAND WITH SILT (SP-SM): yellowish broken slightly moist, fine- to medium-grained, layer	own, - s of silty , _			
			_						\sand. SAND (SP): vellowish brown slightly moist	$-\underline{-}-\underline{-}'_{-}$			
			-						to medium-grained, trace silty sand.				
B-4-10		0.7	10-			38		SÞ		-			
D10		0.7	_			50		51		-			
			-							-			
			_	-					SILTY SAND (SM): olive brown, slightly n	noist, -			
			15-	-				SM	line- to medium-grained.	-			
			_						<u></u>	/			
			_					~	SAND WITH SILT (SP): brown, moist, fin	e- to			
			_					SP	olive brown sandy	-			
B-4-20		0.0	20-			25			poorly graded sand.	-			
			_						light brown, fine- to coarse grained.	-			
			_						SILTY SAND (SM): brown, slightly moist.				
			25							-			
				-						-			
			_							-			
			_							-			
B-4-30		2.1	30-			13		SM		-			
			_						SANDY CLAY (CL): yellowish brown, we	t, trace			
			_						gravel.	-			
			_	-						-			
SURFACE ELE	VATION	(feet):	N/A	_	_	_	_]	LOGGED BY: PD				
TOTAL DEPTH	I (feet): $(1 + 0) = 22$	101.5				DIAMETER OF BORING (inches): 6							
	D. 7-23-(לל]	DEFINITO STATIC WATER (Reel):				
(Proposed Anaheim Regional Transportation								
		ELDER pple. Right Solutions	?			In Pr	tern ojec	10da t No	l Center, Anaheim, CA . 103567/ENV2	Δ-59			
						L	ĴG	OF	BORING B-4	л-Ja			

	Chemical	Analyses		0	ıber	oot	/mbol		SOIL DESCRIPTION						
Comments	ts Lab. (Field		Type	Nun	per F	gy Sy	S. ation	AND						
	Lab.	PID	et)	mple	mple	ows]	holo	S.C.S sign:	CLASSIFICATION						
		(ppm)	De (fe	Sai	Sa	Ble	Lit	U.S De	(Continued From Previous Page	<u>e)</u>					
			-	_					SANDY CLAY (CL): yellowish brown, we gravel. <i>(continued)</i>	t, trace					
B-4-40		1.4	- - 40			22		SW-	SAND WITH SILT AND GRAVEL (SW-S olive brown, slightly moist, fine- to coarse-gr moderate iron oxide discoloration.	SM): ained,					
			-	-		43 50/5"	<u>\$</u> 45\$\$40\$\$40\$\$	SM		-					
			-	_					GRAVEL WITH SAND (GP): brown, slig moist, medium- to coarse-grained sand.	htly - -					
B-4-50		3.6	- 50 —			17		CL	CLAY WITH SAND (CL): yellowish brow	 /n,					
			- - - 55 -	-		8			Signity moloc	-					
			- - 60 -					SM	SILTY SAND (SM): yellowish brown, sligh moist, fine- to medium-grained.						
		0.0	65 — 			8		CL	CLAY WITH SAND (CL): yellowish brow slightly moist, fine-grained sand.						
			_	_				SM	SILTY SAND (SM): yellowish brown, sligh moist.	ntly					
SURFACE ELE TOTAL DEPTH DATE DRILLE	VATION I (feet): D: 9-23-(l (feet): 1 101.5)9	N/A					I I I	LOGGED BY: PD DIAMETER OF BORING (inches): 6 DEPTH TO STATIC WATER (feet):						
(KLEINF Bright Peo	ELDER ple. Right Solutions	?			Pr In Pr	opo: tern ojec	sed A 10dal t No.	Anaheim Regional Transportation l Center, Anaheim, CA . 103567/ENV2	Δ_5h					
									LOG OF BORING B-4						

	Chemical	Analyses		Per	ot	lodm		SOIL DESCRIPTION	
Comments		Field		Type	er Fo	gy Syı	tion	AND	
	Lab.	PID	pth et)	mple	d smc	holog	S.C.S signa	CLASSIFICATION	
		(ppm)	(fe	Sar	Ble	E: T	De.	(Continued From Previous Page	<u>e)</u>
			-	$\left \right $				moist. (continued)	- Luy
			-						-
			-						-
			75-						-
		0.0	-		11		CL	SANDY CLAY (CL): yellowish brown, slig	ghtly -
			-					moist.	-
			-						-
			80-						
			-				SP- SM	SAND WITH SILT (SP-SM): yellowish br slightly moist, fine- to coarse-grained.	own,
			-					decrease silt.	-
			_						-
			85-	$\frac{1}{2}$	42				-
					12			wet, with gravel.	-
			¥ -						-
			_						-
			90-						_
			-	$\left \right $				SAND WITH CRAVEL (SW): grav wet	
			-	$\left \right $				coarse-grained, trace yellowish brown silty sa	and and
			-				SW	sandy clay.	-
			95-				511		-
		1.4	-						
								medium-grained gravel, fine- to coarse-grain	ed sand.
			-					olive brown	-
						6			-
			- 100			•			
								Total depth: 101 5 feet	-
								Groundwater encountered at approximately 8	87 feet. ⁻
								with quick-set concrete.	apped -
SURFACE ELE	VATION	(feet):	N/A]	LOGGED BY: PD	
TOTAL DEPTH	(feet):	101.5]	DIAMETER OF BORING (inches): 6	
DATE DRILLE	D: 9-23-()9]	DEPTH TO STATIC WATER (feet):	
					Pr	opo	sed A	Anaheim Regional Transportation	
		DELDER	?		In	tern	noda	l Center, Anaheim, CA	
					Pr	ojec	t No	. 103567/ENV2	A-5c
						OG	OF	BORING B-4	

Comments	Chemical	Analyses Field		e Type	e Number per Foot	ogy Symbol	.S. ation	SOIL DESCRIPTION AND	
	Lab.	(ppm)	Depth (feet)	Sampl	Blows	Lithole	U.S.C. Desigr	CLASSIFICATION	
Sample Number:	See		_					ASPHALT: approximately 4 inches thick.	
B-5-1.5 B-5-1.5	tables.	1.6	-				SP- SM	BASE: approximately 5 inches thick. SAND WITH SILT (SP-SM): brown, sligh moist, fine- to coarse-grained, trace gravel.	ttly -
B-5-5		0.9	5		34			fine- to medium-grained.	-
B-5-10		1.0			72			light brown, slightly moist.	-
			_					brown.	_
			- - 15- - -				SM	SILTY SAND (SM): dark olive brown, slig moist, fine- to coarse-grained, traces fine gra pockets of lean clay. dark brown with light brown inclusion.	htly - vel, _ - -
			20-				CL	SANDY CLAY (CL): dark brown slightly	
B-5-20		0.0			20		1	SAND (SP): light brown.	
			-				SP		-
			- 25-				SM	SILTY SAND (SM): brown, slightly moist, fine-grained.	
				-				fine- to medium-grained, trace fine gravel, oxide discoloration.	iron - - -
B-5-30		0.9	-						- -
SURFACE ELE TOTAL DEPTH DATE DRILLEI	VATION [(feet): 8 D: 9-27-0	l (feet): 31.5)9	N/A]]]	LOGGED BY: PD DIAMETER OF BORING (inches): 8 DEPTH TO STATIC WATER (feet): Not encor	untered.
		ELDEF ple. Right Solutions	?		Pr In Pr	opo tern ojec	sed A noda ct No	Anaheim Regional Transportation l Center, Anaheim, CA . 103567/ENV2	A-6a
						OG	OF	BORING B-5	11.04

	Chemical	Analyses			ber	ot	mbol		SOIL DESCRIPTION			
Comments		Field		Type	Num	ter Fo	gy Sy	tion.	AND			
	Lab.	PID	et)	mple	mple	d swo	holo	S.C.S signa	CLASSIFICATION			
		(ppm)	De	Sa	Sa	Ble	Fi	D. D	(Continued From Previous Page	<u>e)</u>		
			-	_					SAND WITH GRAVEL (SP): brown, slig moist, fine- to medium-grained gravel, fine- to coarse-grained sand. <i>(continued)</i>	to -		
B-5-40		1.0	40-		-	64		SW	SAND WITH GRAVEL (SW): brown, well-graded, slightly moist, fine- to coarse-gr gravel.	ained		
			- 45 — -	-				SP	SAND WITH GRAVEL (SP): olive brown graded, slightly moist, fine- to medium graine layers of gravel.	, poorly ed, - -		
B-5-50		0.0				34			brown, well graded, slightly moist, fine- to coarse-grained, silty sand and sandy silt inclu	- - sion -		
		1.7				18		SP- SM	 layer of sandy lean clay. SAND WITH SILT (SP-SM): yellowish br slightly moist, fine- to medium-grained. 			
				-				GP	CLAY (CL): yellowish brown, moist, lean.	- - - -		
		3.1	65			8		CL		- - -		
SURFACE ELE TOTAL DEPTH DATE DRILLE	SURFACE ELEVATION (feet): N/A TOTAL DEPTH (feet): 81.5 DATE DRILLED: 9-27-09							1	LOGGED BY: PD DIAMETER OF BORING (inches): 8 DEPTH TO STATIC WATER (feet): Not encou	untered.		
	KLEINF Bright Peo	ELDER ple. Right Solutions	2			Pr Int Pr	opos tern ojec	sed A 10dal t No.	Anaheim Regional Transportation I Center, Anaheim, CA . 103567/ENV2	A-6b		
							LOG OF BORING B-5					

Comments	Chemical Lab.	Analyses Field PID	tth tt	aple Type	aple Number	ws per Foot	ology Symbol	.C.S. ignation	SOIL DESCRIPTION AND CLASSIFICATION	
		(ppm) 2.3		Sam	Sam	18		SM SP-SM SM	(Continued From Previous Page) SILTY SAND (SM): yellowish brown, slightly moist. SAND WITH SILT (SP-SM): olive yellow, slightly moist, fine- to medium-grained, some fine gravel. Total depth: 81.5 feet. Groundwater not encountered. Boring backfilled with bentonite slurry and capped with quick-set concrete.	
SURFACE ELE TOTAL DEPTH DATE DRILLEI	 VATION [(feet): { D: 9-27-(V (feet): 81.5 99	 N/A					 	LOGGED BY: PD DIAMETER OF BORING (inches): 8 DEPTH TO STATIC WATER (feet): Not encountered.	
	ELDEF ple. Right Solution:	2			Pro Int Pro L.C	opos tern ojec)G	sed A nodal t No. OF	Anaheim Regional Transportation Center, Anaheim, CA . 103567/ENV2 A-6c BORING B-5	:	

Comments	Chemical Lab.	Analyses Field PID (ppm)	Depth (feet)	Sample Type	Sample Number	Lithology Symbol	U.S.C.S. Designation	SOIL DESCRIPTION AND CLASSIFICATION	
Sample Number:	See							CONCRETE: approximately 6 inches thick.	
KA-1-1	report tables.	0.0			-		SP	SAND (SP): gray brown, slightly moist, fine-graine	:d
KA-1-3		0.0		-				light brown.	- - -
KA-1-10		0.0						fine- to medium-grained.	- - - -
KA-1-15		0.0	15-					Total depth: 15 feet. Groundwater not encountered. Boring backfilled with hydrated bentonite granules a finished to surface with quick-set concrete.	- Ind - - - - - - - - - - - - - - - - - - -
SURFACE ELE TOTAL DEPTH DATE DRILLE	VATION I (feet): 1 D: 10-15-	I (feet): 15.0 -09	N/A					LOGGED BY: PD DIAMETER OF BORING (inches): 1 DEPTH TO STATIC WATER (feet): Not encou	- - -
	<u> </u>	-07				P	rono	sed Anaheim Regional Transportation	
		FELDER ple. Right Solutions	?			I P	nterr Proje	nodal Center, Anaheim, CA ct No. 103567/ENV2	A-7
						L	ωG	OF BORING KA-1	

	Chemical	Analyses			ber	mbol		SOIL DESCRIPTION	
Comments		Field]	Lype	Num	y Sy	ion	AND	
	Lab.	PID	t t	ple	Iple]	olog	C.S.	CLASSIFICATION	
		(ppm)	Dep (feet	Sam	Sam	Lith	U.S. Desi		
Sample Number:	See							CONCRETE: approximately 6 inches of concrete.	
KA-2-1	report tables.	0.0	_	\mathbb{M}			SP	SAND (SP): light brown, slightly moist, fine-graine	ed.
KA-2-5		0.0	5	-				olive gray.	- - - - -
K-2-10		0.0		-				light brown, fine- to medium-grained.	- - -
K-2-15		0.0	15-					Total depth: 15 feet. Groundwater not encountered. Boring backfilled with hydrated bentonite granules a finished to surface with quick-set concrete.	and -
TOTAL DEPTH DATE DRILLE	I (feet): 2 D: 10-15	15.0 -09				Р	ropo	DIAMETER OF BORING (inches): 1 DEPTH TO STATIC WATER (feet): Not encomposed Anaheim Regional Transportation	untered.
	KLEINF Bright Peo	FELDEF	?			I P	nterr Proje	nodal Center, Anaheim, CA ct No. 103567/ENV2	A-8
						L	٥G	OF BORING KA-2	

Comments	Chemical	Analyses Field PID		de Type	de Number	logy Symbol	C.S. mation	SOIL DESCRIPTION AND CLASSIFICATION					
	Lau.	(ppm)	Depth (feet)	Samp	Samp	Lithol	U.S.C Desig	CLASSIFICATION					
Sample Number:	See		_					CONCRETE: approximately 5 inches thick.					
KA-3-1	tables.	0.0	_	×			SP	SAND (SP): gray brown, slightly moist, fine- to medium-grained.	-				
			_	-				licht brown	-				
								light brown.	-				
			5-						-				
KA-3-6		0.0				·· · ·							
								Total depth: 6.5 feet due to refusal. Groundwater not encountered. Boring backfilled with hydrated bentonite granules a finished to surface with quick-set concrete.	- ind - - - - - - - - - - - - - - - - - - -				
									- - -				
									-				
									-				
									-				
									-				
									-				
									-				
SURFACE ELEVATION (feet): N/A TOTAL DEPTH (feet): 6.5 DATE DRILLED: 10-15-09							LOGGED BY: PD DIAMETER OF BORING (inches): 1 DEPTH TO STATIC WATER (feet): Not encountered.						
KLEINFELDER Bright People. Right Solutions.						P In P	Propo nterr Projec	osed Anaheim Regional Transportation nodal Center, Anaheim, CA ct No. 103567/ENV2	A-9				
						L	٥G	OF BORING KA-3					

Comments	Chemical Lab.	Analyses Field PID (ppm)	Depth feet)	Jample Type	Sample Number	ithology Symbol	J.S.C.S. Designation	SOIL DESCRIPTION AND CLASSIFICATION		
Sample Number:	See report tables.		-					CONCRETE: approximately 4 inches thick. SAND (SP): light brown, slightly moist, fine- to medium-grained.		
K-4-2.5		0.0	-				SP	fine- to coarse-grained.	-	
КА-4-4.5		0.0						Total depth: 4.5 feet due to refusal. Groundwater not encountered. Boring backfilled with hydrated bentonite granules a finished to surface with quick-set concrete.	ind	
SURFACE ELE TOTAL DEPTH DATE DRILLE	VATION [(feet): 4 D: 10-15-	l (feet): 4.5 -09	N/A					LOGGED BY: PD DIAMETER OF BORING (inches): 1 DEPTH TO STATIC WATER (feet): Not encou	intered.	
KLEINFELDER Bright People. Right Solutions.						Proposed Anaheim Regional TransportationIntermodal Center, Anaheim, CAProject No. 103567/ENV2A-10				
						L	OG	OF BORING KA-4		

Comments	Chemical Lab.	Analyses Field PID (ppm)	Depth (feet)	Sample Type	Sample Number	Lithology Symbol	U.S.C.S. Designation	SOIL DESCRIPTION AND CLASSIFICATION	
Sample Number:	See report tables.			-				GRAVEL: approximately 5.5 feet thick.	- - -
KA-5-5.5		0.0					SP	SAND (SP): gray brown, slightly moist, fine- to medium-grained.	
KA-5-10		0.0						light brown, fine-grained.	
KA-5-15		0.0	- 15	_			SP- SM	SAND WITH SILT (SP-SM): light brown to red g slightly moist, fine-grained.	gray, -
								Total depth: 15 feet. Groundwater not encountered. Boring backfilled with hydrated bentonite granules.	- - - - -
									- - - - -
									- - - -
SURFACE ELE TOTAL DEPTH DATE DRILLEI	VATION [(feet): 1 D: 10-15-	l (feet): 15.0 -09	N/A					LOGGED BY: PD DIAMETER OF BORING (inches): 1 DEPTH TO STATIC WATER (feet): Not encou	intered.
	KLEINF Bright Peo	ELDER ple. Right Solution	2		_	P I P	Propo nterr Proje	osed Anaheim Regional Transportation nodal Center, Anaheim, CA ct No. 103567/ENV2	A_11
						I	Ĵ	OF BORING KA-5	1 1 1 1

Comments	Chemical Lab.	l Analyses Field PID (ppm)	Depth (feet)	Sample Type	Sample Number	Lithology Symbol	U.S.C.S. Designation	SOIL DESCRIPTION AND CLASSIFICATION	
Sample Number:	See report tables.		-					GRAVEL: approximately 2.5 feet thick.	-
KA-6-3		0.0	-				SP	SAND (SP): light brown, slightly moist, fine-graine	ed
KA-6-5		0.0	5-	-				fine- to medium-grained.	
								Total depth: 6 feet due to refusal. Groundwater not encountered. Boring backfilled with hydrated bentonite granules.	- - -
									- - -
									- - -
									-
									-
									-
									-
SURFACE ELF TOTAL DEPTI DATE DRILLE	EVATION H (feet): (ED: 10-15	+ N (feet): 6.0 -09	I N/A	<u> </u>	I	1	<u> </u>	LOGGED BY: PD DIAMETER OF BORING (inches): 1 DEPTH TO STATIC WATER (feet): Not encou	untered.
(KLEINF Bright Pec	TELDEF ople. Right Solution:	₹			P I P	Propo nterr Projeo	osed Anaheim Regional Transportation nodal Center, Anaheim, CA ct No. 103567/ENV2	A-12
						L	JOG	OF BORING KA-6	

	Chemical Analyses			e	ıber	Symbol	u	SOIL DESCRIPTION	
Comments		Field		e Typ	e Nun	ogy S.	.S. nation	AND	
	Lab.	(ppm)	Jepth feet)	ampl	ampl	ithold	J.S.C. Desigr	CLASSIFICATION	
Sample Number:	See					ı ∴≓		CONCRETE: approximately 5 inches thick.	
	report tables.		_					Not sampled.	-
			-						-
									-
			-						-
			-						-
			-						-
			10-	_					_
			-						-
			-						-
KA_7_15		0.0	1.5				SP		-
KA-7-13		0.0	- 15				51	SAND (SP): gray, slightly moist, fine- to coarse-gra	ined.
			-						-
			-				CL		-
KA-7-20		0.0	20-			;;;]]]		CLAY (CL): red gray, slightly moist.	
								Total depth: 20 feet.	-
								Groundwater not encountered. Boring backfilled with hydrated bentonite granules a	ind -
								finished to surface with quick-set concrete.	-
									-
									-
									-
									-
									-
									-
									-
SURFACE ELE	VATION	(feet)	N/A	1	L	1	I	LOGGED BY · PD	
TOTAL DEPTH	I (feet): 2	20.0						DIAMETER OF BORING (inches): 1	
DATE DRILLE	D: 10-15	-09						DEPTH TO STATIC WATER (feet): Not encou	untered.
C	KLEINF	ELDEF	7			P T	ropo nterr	osed Anaheim Regional Transportation	
	Bright Peo	ple. Right Solution	5.			P	Proje	ct No. 103567/ENV2	A-13
						I	JOG	OF BORING KA-7	1115

Comments	Chemical Lab.	Analyses Field PID (ppm)	Depth (feet)	Sample Type	Sample Number	Lithology Symbol	U.S.C.S. Designation	SOIL DESCRIPTION AND CLASSIFICATION	
Sample Number:	See report tables.	0.0		-			SD	GRAVEL: approximately 4 feet thick. SAND (SP): light brown, slightly moist, fine- to	-
КА-8-5		0.0	5				SP	coarse-grained. Total depth: 6 feet due to refusal. Groundwater not encountered. Boring backfilled with hydrated bentonite granules.	
SURFACE ELE TOTAL DEPTH DATE DRILLE	VATION I (feet): (D: 10-15	l (feet): 5.0 -09	N/A					LOGGED BY: PD DIAMETER OF BORING (inches): 1 DEPTH TO STATIC WATER (feet): Not encou	untered.
		ELDEF ple. Right Solution	2			P I P	Propo nteri Proje	osed Anaheim Regional Transportation nodal Center, Anaheim, CA ct No. 103567/ENV2	A-14
						L	NG	UF BUKING KA-8	

Commente	Chemical	Analyses	nalyses	ype	umber	Symbol	ion	SOIL DESCRIPTION	
Comments	Lab.	PID (ppm)	Depth (feet)	Sample Ty	Sample Ni	Lithology	U.S.C.S. Designatic	AND CLASSIFICATION	
Sample Number:	See							CONCRETE: approximately 6 inches thick.	
-	report tables.		_					SAND (SP): gray grown, slightly moist, fine- to	
KA-9-2.5		0.0	-				SP	medium-grained.	-
KA-9-5		0.0	5					some clay.	-
			-	-					-
KA-9-10			10-			<u></u>		sand.	
								Total depth: 10 feet. Groundwater not encountered. Boring backfilled with hydrated bentonite granules a finished to surface with quick-set cement and origina tile.	nd - al floor _ -
									-
									-
									-
									-
									-
									-
									-
SURFACE ELEVATION (feet): N/A TOTAL DEPTH (feet): 10.0 DATE DRILLED: 10-16-09								LOGGED BY: PD DIAMETER OF BORING (inches): 1 DEPTH TO STATIC WATER (feet): Not encou	intered.
KLEINFELDER Bright People. Right Solutions.						P I P	Propo nterr Proje	osed Anaheim Regional Transportation nodal Center, Anaheim, CA ct No. 103567/ENV2	A-15
						Ι	OG	OF BORING KA-9	
Comments Field AND Lab. PID Image: Solution of the second o									
---	----								
Lab. PID (ppm) Image: Pid (1) of (1)									
Image: system Image: system<									
Sample Number: See report tables. ASPHALT: approximately 5 inches thick. GRAVEL: approximately 6 inches thick. Not sampled.									
Itables. GRAVEL: approximately 6 inches thick. Not sampled.									
Inot sampled.									
	-								
	-								
KA-10-15 0.0 15 SP SAND (SP): red gray, slightly moist, fine- to									
medium-grained, trace silt.									
KA-10-20 0.0 20 CL CLAY (CL): dark brown, slight moist.									
Total denth: 20 feet									
Groundwater not encountered.									
Boring backfilled with hydrated bentonite granules and finished at surface with asphalt cold patch									
	-								
SURFACE ELEVATION (feet): N/A LOGGED BY: PD									
TOTAL DEPTH (feet): 20.0DIAMETER OF BORING (inches): 1									
DATE DRILLED: 10-16-09 DEPTH TO STATIC WATER (feet): Not encountere	d.								
Proposed Anaheim Regional Transportation									
KLEINFELDER Intermodal Center, Anaheim, CA									
Project No. 103567/ENV2	16								
LOG OF BORING KA-10	10								

	Chemical	Analyses			ber	mbol		SOIL DESCRIPTION	
Comments		Field		Type	Num	y Sy	tion	AND	
	Lab.	PID	t) th	nple	nple	lolog	S.C.S signa	CLASSIFICATION	
		(ppm)	Del (fee	San	San	Lit	U.S Des		
Sample Number:	See report		_					ASPHALT: approximately 5 inches thick.	
	tables.		_					GRAVEL: greater than 4.3 reet.	-
			-						-
			-						-
			5-					Not sampled.	
			_						-
			_						-
			_						-
			10-						-
			_						-
			_						-
			_						-
KA-11-15		0.0	15-				SP		
			-					SAND (SP): red brown, slightly moist, fine- to medium-grained	_
								Total depth: 16 feet due to refusal	/ -
								Groundwater not encountered.	-
								Boring backfilled with hydrated bentonite granules a finished at surface with asphalt cold natch	ind -
									-
									-
									-
									-
									-
									-
									-
									-
									-
									-
									-
									-
									-
SURFACE FLF	VATION	(feet)	N/A		•	•		LOGGED BY: PD	
TOTAL DEPTH	[(feet):]	16.0	± 1/ 2 1					DIAMETER OF BORING (inches): 1	
DATE DRILLEI	D: 10-16	-09						DEPTH TO STATIC WATER (feet): Not encou	untered.
						Г	Pron	and Anahaim Ragional Transnartation	
(F	KLEINF	ELDER	7			I I	nteri	modal Center, Anaheim, CA	
	Bright Peo	ple. Right Solutions	ξ.			P	roje	ct No. 103567/ENV2	Δ 17
						T	٩ مر	OF BORING KA-11	A- 1 /

	Chemical	l Analyses			ber	lodm		SOIL DESCRIPTION	
Comments		Field		Type	Num	sy Sy.	tion	AND	
	Lab.	PID	at) pth	nple	nple	holog	S.C.S signa	CLASSIFICATION	
		(ppm)	De]	Sar	Sar	Lit	U.S Des		
Sample Number:	See report		_	$\left \right $		• • •		- ASPHALT: approximately 5 inches thick.	
	tables.		_	$\left \right $				Not sampled.	/ -
			_						-
			-						-
			5-						-
			_						-
			-	$\left \right $					-
			-	$\left \right $					-
			10-						-
			_						-
			_						-
			_	$\left \right $					-
KA-12-15		0.0	15-				SP	SAND (SP): dark brown, slightly moist, fine- to	
			-					medium-grained, some clay, hydrocarbon odor.	-
			_						-
KA-12-19		0.0	_				CL	CLAY (CL): dark brown, slightly moist, hydrocart	00n ~
								odor. Total depth: 10 feet due to refuge!	
								Groundwater not encountered.	-
								Boring backfilled with hydrated bentonite granules a finished at surface with asphalt cold natch	ind -
								ministred at surface whit asphalt cold pater.	-
									-
									-
									-
									-
									-
									-
									-
									-
									-
SUDEACEELT		L (foot)	N/A			I		LOCCED BV: DD	
TOTAL DEPTH	H (feet)	19 ()	1N/A					DIAMETER OF BORING (inches) ⁻¹	
DATE DRILLE	ED: 10-16	-09						DEPTH TO STATIC WATER (feet): Not encou	untered.
						P	Prope	sed Anaheim Regional Transportation	
(KLEINF		7				nterr	nodal Center, Anaheim, CA	
	Singht Peo	nne, night solutions				P	Proje	ct No. 103567/ENV2	A-18
						L	JOG	OF BORING KA-12	0

	Chemical	Analyses		ype	umber	Symbol	u	SOIL DESCRIPTION	
Comments	Lab.	PID (ppm)	Depth (feet)	Sample Ty	Sample N	Lithology	U.S.C.S. Designatic	AND CLASSIFICATION	
Sample Number:	See report tables.		-					GRAVEL: approximately 4.5 feet thick.	
KA-13-5		0.0	5	-			SP	SAND (SP): gray brown, slightly moist, fine- to medium-grained.	
KA-13-10		0.0						yellow brown, fine- to coarse-grained.	- - - -
KA-13-14.5		0.0						Total depth: 14.5 feet due to refusal. Groundwater not encountered. Boring backfilled with hydrated bentonite granules.	- - - - - -
									-
									- - - -
									- - -
SURFACE ELE TOTAL DEPTH DATE DRILLEI	SURFACE ELEVATION (feet): N/A TOTAL DEPTH (feet): 14.5 DATE DRILLED: 10-16-09							LOGGED BY: PD DIAMETER OF BORING (inches): 1 DEPTH TO STATIC WATER (feet): Not encou	untered.
Right People. Right Solutions.						P I P	Propo nterr Proje	osed Anaheim Regional Transportation nodal Center, Anaheim, CA ct No. 103567/ENV2	A-19
							OG	OF BORING KA-13	

Note: The boundaries between soil types shown on the logs are approximate as the transition between different soil layers may be gradual.

Comments	Chemical	Analyses Field		Type	Number	y Symbol	ion	SOIL DESCRIPTION AND	
	Lab.	PID (ppm)	Depth (feet)	Sample 7	Sample N	Litholog	U.S.C.S. Designat	CLASSIFICATION	
Sample Number:	See report		-					CONCRETE: approximately 1 foot thick. Not sampled.	
KA-14-5	tables.	0.0	5				SP	SAND (SP): gray brown, slightly moist, fine- to coarse-grained.	- - - - - - - -
KA-14-10		0.0	10-					light brown, fine- to medium-grained.	-
KA-14-13		0.0	-					\ fine-grained.	_
								Total depth: 13 feet due to refusal. Groundwater not encountered. Boring backfilled with hydrated bentonite granules a finished at surface with quick-set concrete.	- ind
									- - - - -
SURFACE ELEVATION (feet): N/A TOTAL DEPTH (feet): 13.0 DATE DRILLED: 10-16-09								LOGGED BY: PD DIAMETER OF BORING (inches): 1 DEPTH TO STATIC WATER (feet): Not encou	intered.
KLEINFELDER Bright People. Right Solutions.					P I P	ropo nteri roje	osed Anaheim Regional Transportation nodal Center, Anaheim, CA ct No. 103567/ENV2	A-20	
						L	.OG	OF BORING KA-14	11-20

Note: The boundaries between soil types shown on the logs are approximate as the transition between different soil layers may be gradual.

	Chemical	Analyses)er	lodu		SOIL DESCRIPTION	
Comments		Field		ype	Jumb	/ Syr	uo	AND	
Confinents	Lab.	PID	- - -	ple T	ple N	ology	C.S. gnati	CLASSIFICATION	
		(ppm)	Dept	SamJ	SamJ	Lithc	U.S.(Desi		
Sample Number:	See							ASPHALT: approximately 5 inches thick.	_
	report		_	1				SAND (SP): brown, slightly moist, fine- to	
								medium-grained.	-
			_						_
KA-15-5		0.0	5-				SP		-
			_						-
			_	-					-
			_	-					-
			-						-
KA-15-10		0.2	10-					poor recovery	_
			_	-					-
			_	1					-
			-	1					-
KA-15-15		0.4	15					vellow brown	-
		0.1	13-						
								Total depth: 15 feet.	-
								Boring backfilled with hydrated bentonite granules a	ınd -
								finished at surface with asphalt cold patch.	-
									_
									-
									-
									-
									-
									-
									-
									_
									-
									-
									-
									-
									-
	<u> </u>		l						
SURFACE ELE	VATION	(feet):	N/A					LOGGED BY: PD	
TOTAL DEPTH	l (feet):	15.0						DIAMETER OF BORING (inches): 1	. 1
DATE DRILLE	D: 10-16	-09						DEPTH TO STATIC WATER (feet): Not encou	untered.
						P	ropo	sed Anaheim Regional Transportation	
(KLEINF	ELDEF	7			I	nterr	nodal Center, Anaheim, CA	
	enght Peo	pre. night solution				P	roje	ct No. 103567/ENV2	A-21
						T	O G	OF BORING KA-15	

Comments	Chemical	Analyses Field		ype	Number	y Symbol	ion	SOIL DESCRIPTION	
Comments	Lab.	PID (ppm)	Depth (feet)	Sample T	Sample N	Lithology	U.S.C.S. Designati	CLASSIFICATION	
Sample Number: KA-16-6.5 KA-16-10 SURFACE ELE TOTAL DEPTH	See report tables.	0.0 0.2	5					GRAVEL: approximately 6 feet thick. SAND (SP): brown, slightly moist, fine- to coarse-g light brown. Total depth: 14 feet due to refusal. Groundwater not encountered. Boring backfilled with hydrated bentonite granules. LOGGED BY: PD DIAMETER OF BORING (inches): 1	grained.
DATE DRILLE	D: 10-10-	-09				1		DEPTH TO STATIC WATER (feet): Not encou	intered.
	Right People. Right Solutions.					P I P	ropo nterr roje	osed Anaheim Regional Transportation nodal Center, Anaheim, CA ct No. 103567/ENV2	Δ_22
						L	OG	OF BORING KA-16	Π- 22

	Chemical	Analyses			Jer	ot	nbol		SOIL DESCRIPTION	
Well Construction		Field		Type	Numl	er Fo	y Syı	tion	AND	
	Lab.	PID	pth et)	nple `	nple]	id sm	holog	S.C.S signat	CLASSIFICATION	
		(ppm)	Dej (fec	Sar	Sar	Blo	Litl	U.S Des		. 1
box set in concrete	See report		_						ASPHALT: approximately 3 inches the BASE: approximately 5 inches thick	nick.
	_ tables.	0.0	_	Ŵ	-1-1	.5		SP	SAND (SP): light brown, slightly moi	st, fine-
Bentonite seal	-		_						to coarse-grained.	-
			5							-
2-inch diameter	_	0.0	5		V-1-	58			laver of sand with silt, mottled brow	m, -
casing Bentonite grout	-		_						lumps of lean clay.	-
	-		_							-
	-		- 10							-
		0.0	10-	IINA	-1-1	0 31			layer of lean clay with sand	_
	_		_						layer of sand with silt, mottled brow	'n, -
\mathbb{R} Bentonite seal	-		_						moist, fine- to coarse-sand.	-
	-		_							-
	-		15—							-
			_							-
	_		_							-
	-		_							-
	-	0.0	20-	IIN	-1-2	20 27		SM		
2-inch diameter	-		_						SILTY SAND (SM): brown, slightly fine- to medium-grained.	moist, -
casing			_							-
	_		-						SANDY SILT (ML): olive brown, we	et,
	-		₹25-						layers of lean clay.	-
	-		_							-
			_							-
	-		_							-
	_	0.0	30-	II NA	′-1-3	0 14		SC		
	-	0.0	_				, , , , , , , , , , , , , , , , , , ,	20	CLAYEY SAND WITH GRAVEL ((SC): -
	-		_						coarse-grained sand, lenses and layers	of lean
			_						GRAVEL WITH SAND (GP): olive	e brown.
							2.		moist.	,
SURFACE ELEVAT	: N/A					L	OGGI	ED BY: PD		
TOTAL DEPTH (fee	et): 61.5						D	IAME	TER OF BORING (inches): 6	
DATE DRILLED: 9-						D	EPTH	10 S1A11C WA1EK (teet): 56.0		
									·	
KIF		R		l	rr(nt	pose ermo	a A dəl	nahe Cont	Im Regional Transportation	
	Bright People. Right Solu	tions.			Pro	ject	No.	1035	67/ENV2	A 220
				I	ſ	, C ()F 1	RUD	ING W-1	H-23a
							/1'			

	Chemical Analyses			nber	ot	lodu		SOIL DESCRIPTION				
Well Construction		Field		Lype	Numl	ar Foo	y Syr	ion	AND			
	Lab.	PID	th (ple T	ple	vs pe	olog	C.S. gnat	CLASSIFICATION			
		(ppm)	Dep ¹ (feet	Sam	Sam	Blov	Lith	U.S. Desi	(Continued From Previous Page)			
									GRAVEL WITH SAND (GP): olive	e brown,		
]								moist. (continued)	-		
	_		_							-		
			_							-		
	_		40-			0.56		CD		-		
	_	0.0	-		-1-4	0 56		SP	SAND (SP): olive brown, moist, trac	e iron -		
	-		_						oxide discoloration.	-		
	_		_				1					
	-		_						CLAY WITH SAND (CL): yellowis	sh -		
	-		45-						brown, moist.	-		
	-		_							-		
	-		_						layer of silty sand, gray to olive gray fine- to coarse-grained	, moist, -		
	-		_	1						-		
			50-							-		
		0.0		Ш М У-	-1-5	0 14		ML	SANDY SILT (ML): vellowish brow	 /n		
	_		_						slightly moist.			
	_		_				h+L			-		
	_		_							-		
	-		55-			15	μĘ			-		
	-		_ ⊻ _			10			wet, trace gravel.	-		
	-		_							-		
	-		_							-		
	-		-							-		
Bottom cap	_		60-						moist some fine sand	_		
]		_				.L.IŦ		moist, some mie sand.			
	_								Total depth: 61.5 feet.	-		
	_								Perched water zone encountered at	-		
	_								2-inch diameter well casing installed to	o 60 -		
	-								feet.			
	-									-		
	-									-		
	-									-		
		NT/ A	1									
SUKFACE ELEVATIO	JN (feet)	: IN/A					L D	UGGE	TED OF DODING (inchas):			
$\begin{bmatrix} 101AL DEPTH (left) \\ 0.07E DATE DEPTH (l$	5_00						ע ת	EDTU	T = T = T = T = T = T = T = T = T = T =			
$\begin{bmatrix} DATE DRIEDED, 9-2 \end{bmatrix}$	5-07						D		TO STATIC WATER (Ref). 30.0			
\frown				P	ro	pose	d A	nahe	im Regional Transportation			
KLEIN	VFELDE	tions.		I	nte	ermo	odal	Cent	ter, Anaheim, CA			
					Project No. 103567/ENV2 A-231							
)F I	BOR	RING W-1			

APPENDIX B

LABORATORY REPORTS AND CHAIN-OF-CUSTODY RECORDS

Enviro – Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

Date: September 30, 2009

Mr. Bert Vogler
Kleinfelder
620 W. 16th Street, Unit #F
Long Beach, CA 90813
Tel(562)432-1696 Fax(562)432-1796

Project: Artic Project No.: 103567/Env 2 Lab I.D.: 090923-3 through -16

Dear Mr. Vogler:

The **analytical results** for the soil samples, received by our lab on September 22, 2009, are attached. The samples were received chilled, intact and accompanying chain of custody.

Enviro-Chem appreciates the opportunity to provide you and your company this and other services. Please do not hesitate to call us if you have any questions.

Sincerely,

Curtis Desilets Vice President/Program Manager

Andy Wang Laboratory Manager

Eric Lu, Ph.D. Chief Chemist

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: Artic PROJECT No.: 103567/Env 2 D

PROJECT No.: 103567/Env 2DATE RECEIVED: 09/22/09MATRIX:SOILDATE EXTRACTED: 09/23/09DATE SAMPLED: 09/22/09DATE ANALYZED: 09/23/09REPORT TO:Mr. BERT VOGLERDATE REPORTED: 09/30/09

TOTAL PETROLEUM HYDROCARBONS (TPH) - CARBON CHAIN ANALYSIS

METHOD: EPA 8015B

UNIT: MG/KG = MILLIGRAM PER KILOGRAM = PPM

SAMPLE I.D.	LAB I.D.	C4-C10	C11-C22	C23-C35	DF
B-5-1.5	090923-3	ND	ND	ND	1
B-5-5	090923-4	ND	ND	ND	1
B-5-10	090923-5	ND	ND	ND	1
B-5-20	090923-6	ND	ND	ND	1
B-5-30	090923-7	ND	ND	ND	1
B-5-40	090923-8	ND	ND	ND	1
B-5-50	090923-9	ND	ND	ND	1
B-3-1.5	090923-10	ND	ND	ND	1
B-3-5	090923-11	ND	ND	ND	1
B-3-10	090923-12	ND	ND	ND	1
B-3-20	090923-13	ND	ND	ND	1
B-3-30	090923-14	ND	ND	ND	1
B-3-40	090923-15	ND	ND	ND	1
B-3-50	090923-16	ND	ND	ND	1
ETHOD BLANK		ND	ND	ND	1

10 10

PQL

50

COMMENTS C4-C10 = GASOLINE RANGE C11-C22 = DIESEL RANGE C23-C35 = MOTOR OIL RANGE DF = DILUTION FACTOR PQL = PRACTICAL QUANTITATION LIMIT ACTUAL DETECTION LIMIT = DF X PQL ND = NON-DETECTED OR BELOW THE ACTUAL DETECTION LIMIT

Data Reviewed and Approved by: ____ CAL-DHS ELAP CERTIFICATE No.: 1555

			E	nviro Ch	em, Inc				
1214 E. Le	xington	Avenue,	Pomona,	CA 9176	36 Tel	(909)590	-5905 F	ax (909)59	0-5907
			8015E	3 Soil	/Solid	QC			
Date Analyzed	d:	9/23/20	09				Units:	<u>mg/Kg (P</u>	PM)
Matrix:	Matrix: Solid/Sludge								
Matrix Spike (MS)/Matr	ix Spike I	Duplicate	(MSD)					
Spiked Sampl	e Lab I.D		09092	22-82 M	NS/MS	D			
Analyte	SR	spk conc	MS	%MS	MSD	%MSD	%RPD	ACP %MS	ACP RPD
C11-C22 Range	0	2500	2816	113%	2961	118%	5%	75-125	0-20%
Analyte C11~C22 Range	spk conc 200	LCS 175	% REC 88%	ACP 75-125					
Surrogate Recovery	ACP%	%REC	%REC	%REC	%REC	%REC	%REC	%REC	%REC
Sample I.D.		MB	090923-3	090923-4	090923-5	090923-6	090923-7	090923-8	090923-9
O-Terphenyl	60-140%	93%	76%	87%	61%	68%	73%	68%	63%
Octacosane	60-140%	94%	91%	96%	96%	89%	94%	94%	89%
Surrogate Recovery	ACP%	%REC	%REC	%REC	%REC	%REC	%REC	%REC	%REC
Sample I.D.		090923-10	090923-11	090923-12	090923-13	090923-14	090923-15	090923-16	
O-Terphenyl	60-140%	105%	97%	65%	66%	71%	95%	61%	
Octacosane	60-140%	115%	107%	87%	88%	89%	112%	89%	
Surrogate Recovery	ACP%	%REC	%REC	%REC	%RFC	%REC			
Sample I.D.		1							
O-Terohenyl	60-140%								
Octacosane	60-140%								
Analyzed and	Reviewe	ed By: _	X	- Surroga	te fail due to	matrix interfe	rence		
Final Reviewe	er:	1-		Note: LCS,	MS, MSD ar	e in control i	inerefore res	ults are in co	introl.

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: Artic PROJECT No.: 103567/Env 2 MATRIX:SOIL DATE SAMPLED:09/22/09 REPORT TO:Mr. BERT VOGLER SAMPLE I.D.: B-5-1.5 LAB

DATE RECEIVED:<u>09/22/09</u> DATE ANALYZED:<u>09/23/09</u> DATE REPORTED:<u>09/30/09</u> LAB I.D.: 090923-3

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2 - CHLOROTOLUENE	ND	0.005
4 - CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1, 1-DICHLOROETHENE	ND	0.005
CIS-1, 2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

---- TO BE CONTINUED ON PAGE #2 -----

DATA REVIEWED AND APPROVED BY:_

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: Artic PROJECT No.: 103567/Env 2

MATRIX:<u>SOIL</u> DATE SAMPLED:<u>09/22/09</u> REPORT TO:<u>Mr. BERT VOGLER</u> SAMPLE I.D.: B-5-1.5

DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555 DATE RECEIVED: 09/22/09 DATE ANALYZED: 09/23/09 DATE REPORTED: 09/30/09 LAB I.D.: 090923-3

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1, 3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4 - ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1, 1, 1, 2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1, 1, 1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: Artic PROJECT No.: 103567/Env 2

MATRIX:<u>SOIL</u> DATE SAMPLED:<u>09/22/09</u> REPORT TO:<u>Mr. BERT VOGLER</u> SAMPLE I.D.: **B-5-5** DATE RECEIVED: 09/22/09 DATE ANALYZED: 09/23/09 DATE REPORTED: 09/30/09 LAB I.D.: 090923-4

...........

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4 - CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0,005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0,005
CIS-1, 2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

---- TO BE CONTINUED ON PAGE #2 ----

DATA REVIEWED AND APPROVED BY:_

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER:	Kleinfelder	
	620 W. 16th Street, Unit	#F
	Long Beach, CA 90813	
	Tel(562)432-1696 Fax(562)	432-1796
PROJECT: 7	Artic	
PROJECT NO	.: 103567/Env 2	
MATRIX: SOI	L	DA
DATE SAMPI	ED: 09/22/09	DA
REPORT TO:	Mr. BERT VOGLER	DA
CAMDLE T T	P-5-5	TA

SAMPLE 1.D.: **B-3-5**

DATE RECEIVED:<u>09/22/09</u> DATE ANALYZED:<u>09/23/09</u> DATE REPORTED:<u>09/30/09</u> LAB I.D.: 090923-4

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2

UNIT:	mg/Kg	=	MILLIGRAM	PER	KILOGRAM	=	PPM	
-------	-------	---	-----------	-----	----------	---	-----	--

PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	0.005
2, 2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL

DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER :	Kleinfelder	
	620 W. 16th Street, Unit	#F
	Long Beach, CA 90813	
	Tel(562)432-1696 Fax(562)	432-1796
PROJECT: F	Artic	
PROJECT NO	5.: 103567/Env 2	
MATRIX: SOI	<u>L</u>	DATE
DATE SAMPI	LED: 09/22/09	DATE
REPORT TO:	Mr. BERT VOGLER	DATE
SAMPLE I.I	D.: B-5-10	LAB

DATE RECEIVED:<u>09/22/09</u> DATE ANALYZED:<u>09/23/09</u> DATE REPORTED:<u>09/30/09</u> LAB I.D.: 090923-5

WATE HELENER EDGEWIGE BET VERHAR FORF OF COLOR

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	POL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4 - CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1.2-DICHLOROPROPANE	ND	0.005

---- TO BE CONTINUED ON PAGE #2 -----

DATA REVIEWED AND APPROVED BY: ____

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER:	Kleinfelder	
	620 W. 16th Street, Unit	. #F
	Long Beach, CA 90813	
	Tel(562)432-1696 Fax(562) 432-1796
PROJECT: A	rtic	
PROJECT No	.: 103567/Env 2	
MATRIX: SOI	L	DA
DATE SAMPL	ED: 09/22/09	DA
REPORT TO:	Mr. BERT VOGLER	DA
SAMPLE I.I	D.: B-5-10	LAI

TE RECEIVED: 09/22/09 TE ANALYZED: 09/23/09 TE REPORTED: 09/30/09 B I.D.: 090923-5

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	0.005
2, 2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1,3-DICHLOROPROPENE	ND	0.005
TRANS-1,3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4 - ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL h

DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: Artic PROJECT No.: 103567/Env 2 MATRIX: SOIL DATE SAMPLED:09/22/09 REPORT TO:Mr. BERT VOGLER SAMPLE I.D.: B-5-20

DATE RECEIVED:09/22/09 DATE ANALYZED:09/23/09 DATE REPORTED: 09/30/09 LAB I.D.: 090923-6 _____

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4 - CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1, 2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1, 2-DICHLOROBENZENE	ND	0.005
1, 3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1, 2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1.2-DICHLOROPROPANE	ND	0.005

----- TO BE CONTINUED ON PAGE #2 -----

DATA REVIEWED AND APPROVED BY:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: Artic PROJECT No.: 103567/Env 2

MATRIX:<u>SOIL</u> DATE SAMPLED:<u>09/22/09</u> REPORT TO:<u>Mr. BERT VOGLER</u> SAMPLE I.D.: **B-5-20** DATE RECEIVED:<u>09/22/09</u> DATE ANALYZED:<u>09/23/09</u> DATE REPORTED:<u>09/30/09</u> LAB I.D.: 090923-6

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	POL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1,3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4 - ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1, 1, 1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005
COMMENTS POL - PRACTICAL OUANT	TTATION LIMIT	

COMMENTS PQL = PRACTICAL QUANTITATION LIMI

ND = NON-DETECTED OR BELOW THE PQL

DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

5 _____

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: Artic PROJECT No.: 103567/Env 2 MATRIX: SOIL DATE SAMPLED:09/22/09 REPORT TO:Mr. BERT VOGLER

SAMPLE I.D.: B-5-30

DATE RECEIVED: 09/22/09 DATE ANALYZED:09/23/09 DATE REPORTED: 09/30/09 LAB I.D.: 090923-7

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2

mirm.		10-	1000	WITT T TODAW	DED	VILOCOAN	-	DOM
UNTL:	mq/	V.C.		MIDLIGRAM	PER	KI LOGRAM	-	PPP

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2 - CHLOROTOLUENE	ND	0.005
4 - CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1, 3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1, 2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1, 2-DICHLOROPROPANE	ND	0.005

----- TO BE CONTINUED, ON PAGE #2 ----pin

DATA REVIEWED AND APPROVED BY:_

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder	
620 W. 16th Street,	Unit #F
Long Beach, CA 9081	3
Tel(562)432-1696 Fa	x (562) 432-1796
PROJECT: Artic	
PROJECT No.: 103567/Env 2	
MATRIX: SOIL	D/
DATE SAMPLED: 09/22/09	D/
REPORT TO:Mr. BERT VOGLER	D
SAMPLE T. D. B-5-30	1.7

DATE RECEIVED:<u>09/22/09</u> DATE ANALYZED:<u>09/23/09</u> DATE REPORTED:<u>09/30/09</u> LAB I.D.: 090923-7

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

..........

PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	0,005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4 - ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL

DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER :	Kleinfelder	
	620 W. 16th Street, Unit	#F
	Long Beach, CA 90813	
	Tel(562)432-1696 Fax(562) 432-1796
PROJECT: A	artic	
PROJECT No	.: 103567/Env 2	
MATRIX: SOI	L	DAT
DATE SAMPL	ED:09/22/09	DAT
REPORT TO:	Mr. BERT VOGLER	DAT
SAMPLE T. C.	· B-5-40	T.A.

DATE RECEIVED: 09/22/09 DATE ANALYZED: 09/23/09 DATE REPORTED: 09/30/09 LAB I.D.: 090923-8

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	POL X1
ACETONE	ND	0 020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4 - CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1, 2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1, 2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1.2-DICHLOROPROPANE	ND	0.005

---- TO BE CONTINUED OF PAGE #2 -----

DATA REVIEWED AND APPROVED BY:___

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER:	Kleinfelder	
	620 W. 16th Street, Unit #F	
	Long Beach, CA 90813	
	Tel (562) 432-1696 Fax (562) 432-1	1796
PROJECT : A	Artic	
PROJECT No	5.: 103567/Env 2	
MATRIX: SOI	<u>IL</u>	DZ
DATE SAMPI	LED:09/22/09	DA

ATE RECEIVED:09/22/09 ATE ANALYZED: 09/23/09 DATE REPORTED: 09/30/09 LAB I.D.: 090923-8

SAMPLE I.D.: B-5-40

REPORT TO:Mr. BERT VOGLER

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	0.005
2, 2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1, 1, 1, 2-TETRACHLOROETHANE	ND	0.005
1, 1, 2, 2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005
COMMENTS PQL = PRACTICAL QUANT ND = NON-DETECTED OR BELOW THU	PITATION LIMIT	
CAL-DHS CERTIFICATE # 1555	U	

CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: Artic PROJECT No.: 103567/Env 2 MATRIX: SOIL DATE SAMPLED:09/22/09 REPORT TO: Mr. BERT VOGLER SAMPLE I.D.: 8-5-50

DATE RECEIVED:09/22/09 DATE ANALYZED: 09/23/09 DATE REPORTED: 09/30/09 LAB I.D.: 090923-9

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2

UNIT:	mg/Kg	=	MILLIGRAM	PER	KILOGRAM	=	PPM	
-------	-------	---	-----------	-----	----------	---	-----	--

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2 - CHLOROTOLUENE	ND	0.005
4 - CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1, 2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

----- TO BE CONTINUED ON PAGE #2 -----

DATA REVIEWED AND APPROVED BY:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER:	Kleinfelder	
	620 W. 16th Street, Unit #F	
	Long Beach, CA 90813	
	Tel (562) 432-1696 Fax (562) 432-1	796
PROJECT: A	rtic	
PROJECT No	.: 103567/Env 2	
MATRIX: SOI	L	DA
DATE SAMPL	ED: 09/22/09	DA
REPORT TO:	Mr. BERT VOGLER	DA

DATE RECEIVED: 09/22/09 DATE ANALYZED: 09/23/09 DATE REPORTED: 09/30/09 LAB I.D.: 090923-9

SAMPLE I.D.: B-5-50

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1, 3-DICHLOROPROPANE	ND	0.005
2, 2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1, 1, 1, 2-TETRACHLOROETHANE	ND	0.005
1, 1, 2, 2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

D

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER : Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: Artic PROJECT No.: 103567/Env 2 MATRIX: SOIL DATE SAMPLED: 09/22/09 REPORT TO:Mr. BERT VOGLER

SAMPLE I.D.: 8-3-1.5

DATE RECEIVED:09/22/09 DATE ANALYZED:09/23/09 DATE REPORTED: 09/30/09 LAB I.D.: 090923-10

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2 - CHLOROTOLUENE	ND	0.005
4 - CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1, 2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

---- TO BE CONTINUED ON PAGE #2 -----

DATA REVIEWED AND APPROVED BY:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER :	Kleinfelder	
	620 W. 16th Street, Unit #F	
	Long Beach, CA 90813	
	Tel (562) 432-1696 Fax (562) 432-1796	5
PROJECT: A	rtic	
PROJECT No	.: 103567/Env 2	
MATRIX: SOI	L	DA
DATE SAMPL	ED: 09/22/09	DA
REPORT TO:	Mr. BERT VOGLER	DA

DATE	RECEIVED: 09/22/09	
DATE	ANALYZED: 09/23/09	
DATE	REPORTED: 09/30/09	
LAB 1	L.D.: 090923-10	

SAMPLE I.D.: B-3-1.5

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	POL X1
1, 3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0,005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4 - ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1, 1, 1, 2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1, 1, 1 - TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005
COMMENTS POL = PRACTICAL OUAN	FITATION LIMIT	

11 ND = NON-DETECTED OR BELOW THE PQL DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER :	Kleinfelder	
	620 W. 16th Street, Unit #F	
	Long Beach, CA 90813	
	Tel(562)432-1696 Fax(562)432-179	16
PROJECT: A	rtic	
PROJECT No	.: 103567/Env 2	
MATRIX: SOI	L	D
DATE SAMPL	ED: 09/22/09	D
REPORT TO:	Mr. BERT VOGLER	D

SAMPLE I.D.: B-3-5

.......

DATE RECEIVED: 09/22/09 DATE ANALYZED: 09/23/09 DATE REPORTED: 09/30/09 LAB I.D.: 090923-11

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2

FT1 1 T /T1 -			TTTTTODELL	T	WTT CODAL	-	TO POL 4
	marka	N	I LL CARAM	PER	K LLUSSAM	_	PPM
VIII	ILCO / AVG	-	TTTTTTTTTT		TIT TOOLUTIN	_	

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2 - CHLOROTOLUENE	ND	0.005
4 - CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1, 2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1, 2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1.2-DICHLOROPROPANE	ND .	0.005

----- TO BE CONTINUED ON PAGE #2 -----

DATA REVIEWED AND APPROVED BY:____

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: Artic PROJECT No.: 103567/Env 2

MATRIX: <u>SOIL</u> DATE SAMPLED: <u>09/22/09</u> REPORT TO: <u>Mr. BERT VOGLER</u> SAMPLE I.D.: **B-3-5** DATE RECEIVED: 09/22/09 DATE ANALYZED: 09/23/09 DATE REPORTED: 09/30/09 LAB I.D.: 090923-11

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

1,3-DICHLOROPROPANE ND 0.005 2,2-DICHLOROPROPANE ND 0.005 1,1-DICHLOROPROPENE ND 0.005 1,1-DICHLOROPROPENE ND 0.005 TRANS-1,3-DICHLOROPROPENE ND 0.005 TRANS-1,3-DICHLOROPROPENE ND 0.005 TRANS-1,3-DICHLOROPROPENE ND 0.005 Z-HEXANONE ND 0.005 2-HEXANONE ND 0.005 2-HEXANONE ND 0.005 1SOPROPYLBENZENE ND 0.005 4-ISOPROPYLDUUENE ND 0.005 4-METHYL-2-PENTANONE (MIBK) ND 0.0020 METHYL Lert -BUTYL ETHER (MTBE) ND 0.005 METHYLENE CHLORIDE ND 0.005 METHYLENE ND 0.005 0.005 STYRENE ND 0.005 0.005 1,1,2,2-TETRACHLOROETHANE ND 0.005 0.005 1,1,1,2,2-TETRACHLOROETHANE ND 0.005 0.005 1,2,3-TRICHLOROBENZENE	PARAMETER	SAMPLE RESULT	PQL X1
2,2-DICHLOROPROPANE ND 0.005 1,1-DICHLOROPROPENE ND 0.005 CIS-1,3-DICHLOROPROPENE ND 0.005 TRANS-1,3-DICHLOROPROPENE ND 0.005 ETHYLBENZENE ND 0.005 2-HEXANONE ND 0.005 2-HEXACHLOROBUTADIENE ND 0.005 1SOPROPYLBENZENE ND 0.005 4-ISOPROPYLBENZENE ND 0.005 METHYL ert - BUTYL ETHER (MTBE) ND 0.005 METHYLENE CHLORIDE ND 0.005 NPROPYLBENZENE ND 0.005 STYRENE ND 0.005 1,1,2-TETRACHLOROETHANE ND 0.005 1,1,2-TETRACHLOROETHANE ND 0.005 1,2,3-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND	1, 3-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE ND 0.005 CIS-1,3-DICHLOROPROPENE ND 0.005 TRANS-1,3-DICHLOROPROPENE ND 0.005 TRANS-1,3-DICHLOROPROPENE ND 0.005 ETHYLBENZENE ND 0.005 2-HEXANONE ND 0.005 2-HEXANONE ND 0.005 4-HEXACHLOROBUTADIENE ND 0.005 4-SOPROPYLBENZENE ND 0.005 4-ISOPROPYLDOLUENE ND 0.005 4-METHYL-2-PENTANONE (MIBK) ND 0.005 METHYLENE CHLORIDE ND 0.005 METHYLENE CHLORIDE ND 0.005 NPROPYLBENZENE ND 0.005 NPROPYLBENZENE ND 0.005 STYRENE ND 0.005 1,1,2-ZTETRACHLOROETHANE ND 0.005 1,1,2,2-TETRACHLOROETHANE ND 0.005 TOLUENE ND 0.005 1,2,3-TRICHLOROBENZENE ND 0.005 1,2,4-TRICHLOROBENZENE ND 0.005 </td <td>2, 2-DICHLOROPROPANE</td> <td>ND</td> <td>0.005</td>	2, 2-DICHLOROPROPANE	ND	0.005
CIS-1,3-DICHLOROPROPENE ND 0.005 TRANS-1,3-DICHLOROPROPENE ND 0.005 ETHYLBENZENE ND 0.005 ETHYLBENZENE ND 0.005 2-HEXANONE ND 0.005 HEXACHLOROBUTADIENE ND 0.005 ISOPROPYLBENZENE ND 0.005 4-ISOPROPYLDULUENE ND 0.005 4-METHYL-2-PENTANONE (MIBK) ND 0.020 METHYL tert-BUTYL ETHER (MTBE) ND 0.005 METHYLENE CHLORIDE ND 0.005 METHYLENE CHLORIDE ND 0.005 STYRENE ND 0.005 STYRENE ND 0.005 1,1,2-TETRACHLOROETHANE ND 0.005 1,1,2,2-TETRACHLOROETHANE ND 0.005 1,2,3-TRICHLOROBENZENE ND 0.005 1,2,3-TRICHLOROBENZENE ND 0.005 1,2,4-TRICHLOROETHANE ND 0.005 1,1,1-TRICHLOROETHANE ND 0.005 1,1,1-TRICHLOROETHANE ND	1,1-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE ND 0.005 ETHYLBENZENE ND 0.005 2-HEXANONE ND 0.020 HEXACHLOROBUTADIENE ND 0.005 ISOPROPYLBENZENE ND 0.005 4-ISOPROPYLBENZENE ND 0.005 4-METHYL-2-PENTANONE (MIBK) ND 0.020 METHYLLET-BUTYL ETHER (MTBE) ND 0.005 METHYLENE CHLORIDE ND 0.005 METHYLENE CHLORIDE ND 0.005 NPROPYLBENZENE ND 0.005 STYRENE ND 0.005 STYRENE ND 0.005 1,1,2-TETRACHLOROETHANE ND 0.005 1,1,2,2-TETRACHLOROETHANE ND 0.005 1,2,3-TRICHLOROETHANE ND 0.005 1,2,3-TRICHLOROENZENE ND 0.005 1,1,1-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 1,1,1-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND	CIS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE ND 0.005 2-HEXANONE ND 0.020 HEXACHLOROBUTADIENE ND 0.005 ISOPROPYLBENZENE ND 0.005 4-ISOPROPYLBENZENE ND 0.005 4-ISOPROPYLBENZENE ND 0.005 4-METHYL-2-PENTANONE (MIBK) ND 0.020 METHYL Lert-BUTYL ETHER (MTBE) ND 0.005 METHYLENE CHLORIDE ND 0.005 METHYLENE ND 0.005 METHYLENE ND 0.005 NPROPYLBENZENE ND 0.005 STYRENE ND 0.005 1,1,2-TETRACHLOROETHANE ND 0.005 1,1,1,2-TETRACHLOROETHANE ND 0.005 1,2,3-TRICHLOROETHANE ND 0.005 1,2,3-TRICHLOROBENZENE ND 0.005 1,1,1-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.0	TRANS-1, 3-DICHLOROPROPENE	ND	0.005
2-HEXANONE ND 0.020 HEXACHLOROBUTADIENE ND 0.005 ISOPROPYLBENZENE ND 0.005 4-ISOPROPYLDENZENE ND 0.005 4-METHYL-2-PENTANONE (MIBK) ND 0.020 METHYL tert-BUTYL ETHER (MTBE) ND 0.005 METHYL LETLE ND 0.005 METHYL LETLE ND 0.005 METHYLENE CHLORIDE ND 0.005 MAPHTHALENE ND 0.005 STYRENE ND 0.005 STYRENE ND 0.005 1,1,2-TETRACHLOROETHANE ND 0.005 1,1,2,2-TETRACHLOROETHANE ND 0.005 TETRACHLOROETHENE (PCE) ND 0.005 TOLUENE ND 0.005 1,2,3-TRICHLOROBENZENE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 1,1,2,4-TRICHLOROETHANE ND 0.005 1,1,2,3-TRICHLOROETHANE ND 0.005 1,1,2,3-TRICHLOROETHANE ND 0.005 <td>ETHYLBENZENE</td> <td>ND</td> <td>0.005</td>	ETHYLBENZENE	ND	0.005
HEXACHLOROBUTADIENEND0.005ISOPROPYLBENZENEND0.0054-ISOPROPYLDENEND0.0054-METHYL-2-PENTANONE (MIBK)ND0.020METHYL tert-BUTYL ETHER (MTBE)ND0.005METHYL LENE CHLORIDEND0.005METHYLENE CHLORIDEND0.005NPROPYLBENZENEND0.005STYRENEND0.0051,1,2-TETRACHLOROETHANEND0.005TETRACHLOROETHANEND0.005TOLUENEND0.0051,2,3-TRICHLOROBENZENEND0.0051,1,2-TETRICHLOROBENZENEND0.0051,2,3-TRICHLOROBENZENEND0.0051,1,1-TRICHLOROETHANEND0.0051,1,2-TRICHLOROETHANEND0.0051,1,2-TRICHLOROETHANEND0.0051,1,2-TRICHLOROBENZENEND0.0051,1,2-TRICHLOROETHANEND0.0051,1,2-TRICHLOROETHANEND0.0051,1,2-TRICHLOROETHANEND0.0051,1,2-TRICHLOROETHANEND0.0051,1,2-TRICHLOROETHANEND0.0051,1,2-TRICHLOROPROPANEND0.0051,2,3-TRICHLOROPROPANEND0.0051,2,3-TRICHLOROPROPANEND0.0051,2,3-TRICHLOROPROPANEND0.0051,3,5-TRIMETHYLBENZENEND0.0051,3,5-TRIMETHYLBENZENEND0.0051,3,5-TRIMETHYLBENZENEND0.0051,2,4-TRIMETHYLBENZENEND0.0051,2,4-T	2-HEXANONE	ND	0.020
ISOPROPYLBENZENE ND 0.005 4-ISOPROPYLTOLUENE ND 0.005 4-METHYL-2-PENTANONE (MIBK) ND 0.020 METHYL tert-BUTYL ETHER (MTBE) ND 0.005 METHYL ETHER (MTBE) ND 0.005 METHYLENE CHLORIDE ND 0.010 NAPHTHALENE ND 0.005 N-PROPYLBENZENE ND 0.005 STYRENE ND 0.005 1,1,2,2-TETRACHLOROETHANE ND 0.005 1,2,3-TRICHLOROBENZENE ND 0.005 1,2,4-TRICHLOROBENZENE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 1,2,3-TRI	HEXACHLOROBUTADIENE	ND	0.005
4-ISOPROPYLTOLUENE ND 0.005 4-METHYL-2-PENTANONE (MIBK) ND 0.020 METHYL tert-BUTYL ETHER (MTBE) ND 0.005 METHYL tert-BUTYL ETHER (MTBE) ND 0.005 METHYLENE CHLORIDE ND 0.010 NAPHTHALENE ND 0.005 N-PROPYLBENZENE ND 0.005 STYRENE ND 0.005 1,1,2-TETRACHLOROETHANE ND 0.005 1,1,2,2-TETRACHLOROETHANE ND 0.005 TETRACHLOROETHENE (PCE) ND 0.005 TOLUENE ND 0.005 1,2,3-TRICHLOROBENZENE ND 0.005 1,2,4-TRICHLOROETHANE ND 0.005 1,1,1-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 1,2,4-TRICHLOROETHANE ND 0.005 1,2,3-TRICHLOROPENANE ND 0.005 TRICHLOROFLUOROMETHA	ISOPROPYLBENZENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK) ND 0.020 METHYL tert-BUTYL ETHER (MTBE) ND 0.005 METHYLENE CHLORIDE ND 0.010 NAPHTHALENE ND 0.005 NPROPYLBENZENE ND 0.005 STYRENE ND 0.005 1,1,2.7ETRACHLOROETHANE ND 0.005 1,1,2.7ETRACHLOROETHANE ND 0.005 1,1,2.7ETRACHLOROETHANE ND 0.005 TETRACHLOROETHENE (PCB) ND 0.005 TOLUENE ND 0.005 1,2,3-TRICHLOROBENZENE ND 0.005 1,2,4-TRICHLOROBENZENE ND 0.005 1,1,1.2-TRICHLOROETHANE ND 0.005 1,1,1.7ENCHLOROETHANE ND 0.005 1,1,2.7RICHLOROETHANE ND 0.005 1,1,2.7RICHLOROETHANE ND 0.005 1,1,2.7RICHLOROETHANE ND 0.005 1,2,3-TRICHLOROFTHANE ND 0.005 1,2,3-TRICHLOROFTHENE (TCE) ND 0.005 1,2,4-TRIMETHYLBEN	4-ISOPROPYLTOLUENE	ND	0.005
METHYL tert-BUTYL ETHER (MTBE) ND 0.005 METHYLENE CHLORIDE ND 0.010 NAPHTHALENE ND 0.005 N-PROPYLBENZENE ND 0.005 STYRENE ND 0.005 1,1,2.7-TETRACHLOROETHANE ND 0.005 1,1,2.2-TETRACHLOROETHANE ND 0.005 1,1,2.2-TETRACHLOROETHANE ND 0.005 TETRACHLOROETHENE (PCE) ND 0.005 TOLUENE ND 0.005 1,2,3-TRICHLOROBENZENE ND 0.005 1,2,4-TRICHLOROBENZENE ND 0.005 1,1,1-TRICHLOROETHANE ND 0.005 1,1,1-TRICHLOROETHANE ND 0.005 1,1,1-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 1,2,3-TRICHLOROETHANE ND 0.005 1,2,3-TRICHLOROPROPANE ND 0.005 1,2,3-TRICHLOROPROPANE ND 0.005 1,3,5-TRIMETHYLBENZENE<	4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYLENE CHLORIDE ND 0.010 NAPHTHALENE ND 0.005 N-PROPYLBENZENE ND 0.005 STYRENE ND 0.005 1,1,2-TETRACHLOROETHANE ND 0.005 1,1,2-TETRACHLOROETHANE ND 0.005 1,1,2,2-TETRACHLOROETHANE ND 0.005 TETRACHLOROETHENE (PCE) ND 0.005 TOLUENE ND 0.005 1,2,3-TRICHLOROBENZENE ND 0.005 1,2,4-TRICHLOROBENZENE ND 0.005 1,1,1-TRICHLOROETHANE ND 0.005 1,1,1-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 1,2,3-TRICHLOROETHANE ND 0.005 1,2,3-TRICHLOROPROPANE ND 0.005 1,2,3-TRICHLOROPROPANE ND 0.005 1,2,3-TRICHLOROPROPANE ND 0.005 1,3,5-TRIMETHYLBENZENE	METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
NAPHTHALENE ND 0.005 N-PROPYLBENZENE ND 0.005 STYRENE ND 0.005 1,1,2-TETRACHLOROETHANE ND 0.005 1,1,2.2-TETRACHLOROETHANE ND 0.005 TETRACHLOROETHANE ND 0.005 TETRACHLOROETHANE ND 0.005 TETRACHLOROETHANE ND 0.005 TOLUENE ND 0.005 1,2,3-TRICHLOROBENZENE ND 0.005 1,2,4-TRICHLOROBENZENE ND 0.005 1,1,1-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 1,2,3-TRICHLOROETHANE ND 0.005 1,2,3-TRICHLOROPROPANE ND 0.005 1,2,4-TRIMETHYLBENZENE ND 0.005 1,3,5-TRIMETHYLBENZENE ND 0.005 1,3,5-TRIMETHYLBENZENE ND 0.005 VINYL CHLORIDE ND	METHYLENE CHLORIDE	ND	0.010
N-PROPYLBENZENE ND 0.005 STYRENE ND 0.005 1,1,1,2-TETRACHLOROETHANE ND 0.005 1,1,2,2-TETRACHLOROETHANE ND 0.005 TETRACHLOROETHANE ND 0.005 TETRACHLOROETHANE ND 0.005 TETRACHLOROETHENE (PCE) ND 0.005 TOLUENE ND 0.005 1,2,3-TRICHLOROBENZENE ND 0.005 1,2,4-TRICHLOROBENZENE ND 0.005 1,1,1-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 1,2,3-TRICHLOROETHANE ND 0.005 TRICHLOROFLUOROMETHANE ND 0.005 1,2,3-TRICHLOROPROPANE ND 0.005 1,2,4-TRIMETHYLBENZENE ND 0.005 1,3,5-TRIMETHYLBENZENE ND 0.005 VINYL CHLORIDE ND 0.005 M/P-XYLENE ND	NAPHTHALENE	ND	0.005
STYRENE ND 0.005 1, 1, 1, 2-TETRACHLOROETHANE ND 0.005 1, 1, 2, 2-TETRACHLOROETHANE ND 0.005 TETRACHLOROETHENE (PCE) ND 0.005 TOLUENE ND 0.005 1, 2, 3-TRICHLOROBENZENE ND 0.005 1, 2, 4-TRICHLOROBENZENE ND 0.005 1, 1, 1-TRICHLOROBENZENE ND 0.005 1, 1, 1-TRICHLOROETHANE ND 0.005 1, 1, 2-TRICHLOROETHANE ND 0.005 1, 1, 2-TRICHLOROETHANE ND 0.005 1, 1, 2-TRICHLOROETHANE ND 0.005 TRICHLOROETHENE (TCE) ND 0.005 TRICHLOROFLUOROMETHANE ND 0.005 1, 2, 3-TRICHLOROPROPANE ND 0.005 1, 2, 4-TRIMETHYLBENZENE ND 0.005 1, 3, 5-TRIMETHYLBENZENE ND 0.005 1, 3, 5-TRIMETHYLBENZENE ND 0.005 VINYL CHLORIDE ND 0.005 M/P-XYLENE ND 0.005	N-PROPYLBENZENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE ND 0.005 1,1,2,2-TETRACHLOROETHANE ND 0.005 TETRACHLOROETHENE (PCE) ND 0.005 TOLUENE ND 0.005 1,2,3-TRICHLOROBENZENE ND 0.005 1,2,4-TRICHLOROBENZENE ND 0.005 1,1,1-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 TRICHLOROETHENE (TCE) ND 0.005 TRICHLOROFLUOROMETHANE ND 0.005 1,2,3-TRICHLOROPROPANE ND 0.005 1,2,4-TRIMETHYLBENZENE ND 0.005 1,3,5-TRIMETHYLBENZENE ND 0.005 VINYL CHLORIDE ND 0.005 M/P-XYLENE ND 0.005 M/P-XYLENE ND 0.005	STYRENE	ND	0.005
1,1,2,2-TETRACHLOROETHANE ND 0.005 TETRACHLOROETHENE (PCE) ND 0.005 TOLUENE ND 0.005 1,2,3-TRICHLOROBENZENE ND 0.005 1,2,4-TRICHLOROBENZENE ND 0.005 1,1,1-TRICHLOROBENZENE ND 0.005 1,1,1-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 TRICHLOROETHENE (TCE) ND 0.005 TRICHLOROFLUOROMETHANE ND 0.005 1,2,3-TRICHLOROPROPANE ND 0.005 1,2,4-TRIMETHYLBENZENE ND 0.005 1,3,5-TRIMETHYLBENZENE ND 0.005 VINYL CHLORIDE ND 0.005 M/P-XYLENE ND 0.010 O-XYLENE ND 0.005	1, 1, 1, 2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE) ND 0.005 TOLUENE ND 0.005 1,2,3-TRICHLOROBENZENE ND 0.005 1,2,4-TRICHLOROBENZENE ND 0.005 1,1,1-TRICHLOROBENZENE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 TRICHLOROETHENE (TCE) ND 0.005 TRICHLOROFLUOROMETHANE ND 0.005 1,2,3-TRICHLOROPROPANE ND 0.005 1,2,4-TRIMETHYLBENZENE ND 0.005 1,3,5-TRIMETHYLBENZENE ND 0.005 VINYL CHLORIDE ND 0.005 M/P-XYLENE ND 0.010 O-XYLENE ND 0.005	1,1,2,2-TETRACHLOROETHANE	ND	0.005
TOLUENE ND 0.005 1,2,3-TRICHLOROBENZENE ND 0.005 1,2,4-TRICHLOROBENZENE ND 0.005 1,1,1-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 TRICHLOROETHENE (TCE) ND 0.005 TRICHLOROFLUOROMETHANE ND 0.005 1,2,3-TRICHLOROPROPANE ND 0.005 1,2,4-TRIMETHYLBENZENE ND 0.005 1,3,5-TRIMETHYLBENZENE ND 0.005 VINYL CHLORIDE ND 0.005 M/P-XYLENE ND 0.005 M/P-XYLENE ND 0.005	TETRACHLOROETHENE (PCE)	ND	0.005
1,2,3-TRICHLOROBENZENE ND 0.005 1,2,4-TRICHLOROBENZENE ND 0.005 1,1,1-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 TRICHLOROETHANE ND 0.005 TRICHLOROETHANE ND 0.005 TRICHLOROETHENE (TCE) ND 0.005 TRICHLOROFLUOROMETHANE ND 0.005 1,2,3-TRICHLOROPROPANE ND 0.005 1,2,4-TRIMETHYLBENZENE ND 0.005 1,3,5-TRIMETHYLBENZENE ND 0.005 VINYL CHLORIDE ND 0.005 M/P-XYLENE ND 0.005 M/P-XYLENE ND 0.010	TOLUENE	ND	0.005
1,2,4-TRICHLOROBENZENE ND 0.005 1,1,1-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 TRICHLOROETHENE (TCE) ND 0.005 TRICHLOROFLUOROMETHANE ND 0.005 1,2,3-TRICHLOROPROPANE ND 0.005 1,2,4-TRIMETHYLBENZENE ND 0.005 1,3,5-TRIMETHYLBENZENE ND 0.005 VINYL CHLORIDE ND 0.005 M/P-XYLENE ND 0.005 0-XYLENE ND 0.005	1,2,3-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 TRICHLOROETHENE (TCE) ND 0.005 TRICHLOROFLUOROMETHANE ND 0.005 1,2,3-TRICHLOROPROPANE ND 0.005 1,2,4-TRIMETHYLBENZENE ND 0.005 1,3,5-TRIMETHYLBENZENE ND 0.005 VINYL CHLORIDE ND 0.005 M/P-XYLENE ND 0.010 0-XYLENE ND 0.005	1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,2-TRICHLOROETHANE ND 0.005 TRICHLOROETHENE (TCE) ND 0.005 TRICHLOROFLUOROMETHANE ND 0.005 1,2,3-TRICHLOROPROPANE ND 0.005 1,2,4-TRIMETHYLBENZENE ND 0.005 1,3,5-TRIMETHYLBENZENE ND 0.005 VINYL CHLORIDE ND 0.005 M/P-XYLENE ND 0.010 O-XYLENE ND 0.005	1,1,1-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE) ND 0.005 TRICHLOROFLUOROMETHANE ND 0.005 1,2,3-TRICHLOROPROPANE ND 0.005 1,2,4-TRIMETHYLBENZENE ND 0.005 1,3,5-TRIMETHYLBENZENE ND 0.005 VINYL CHLORIDE ND 0.005 M/P-XYLENE ND 0.010 O-XYLENE ND 0.005	1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROFLUOROMETHANE ND 0.005 1,2,3-TRICHLOROPROPANE ND 0.005 1,2,4-TRIMETHYLBENZENE ND 0.005 1,3,5-TRIMETHYLBENZENE ND 0.005 VINYL CHLORIDE ND 0.005 M/P-XYLENE ND 0.010 O-XYLENE ND 0.005	TRICHLOROETHENE (TCE)	ND	0.005
1,2,3-TRICHLOROPROPANE ND 0.005 1,2,4-TRIMETHYLBENZENE ND 0.005 1,3,5-TRIMETHYLBENZENE ND 0.005 VINYL CHLORIDE ND 0.005 M/P-XYLENE ND 0.010 O-XYLENE ND 0.005	TRICHLOROFLUOROMETHANE	ND	0.005
1.2.4-TRIMETHYLBENZENE ND 0.005 1.3.5-TRIMETHYLBENZENE ND 0.005 VINYL CHLORIDE ND 0.005 M/P-XYLENE ND 0.010 O-XYLENE ND 0.005	1,2,3-TRICHLOROPROPANE	ND	0.005
1,3,5-TRIMETHYLBENZENE ND 0.005 VINYL CHLORIDE ND 0.005 M/P-XYLENE ND 0.010 O-XYLENE ND 0.005	1,2,4-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE ND 0.005 M/P-XYLENE ND 0.010 O-XYLENE ND 0.005	1,3,5-TRIMETHYLBENZENE	ND	0.005
M/P-XYLENE ND 0.010 O-XYLENE ND 0.005	VINYL CHLORIDE	ND	0.005
O-XYLENE ND 0.005	M/P-XYLENE	ND	0.010
	O-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: Artic PROJECT No.: 103567/Env 2 MATRIX:SOIL DATE SAMPLED:09/22/09 REPORT TO:Mr. BERT VOGLER DATE

SAMPLE I.D.: B-3-10

DATE RECEIVED: <u>09/22/09</u> DATE ANALYZED: <u>09/23/09</u> DATE REPORTED: <u>09/30/09</u> LAB I.D.: 090923-12

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1, 2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND .	0.005

----- TO BE CONTINUED ON /PAGE #2 -----

1

DATA REVIEWED AND APPROVED BY:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: Artic PROJECT No.: 103567/Env 2

MATRIX: <u>SOIL</u> DATE SAMPLED: <u>09/22/09</u> REPORT TO:<u>Mr. BERT VOGLER</u> DATE RECEIVED:<u>09/22/09</u> DATE ANALYZED:<u>09/23/09</u> DATE REPORTED:<u>09/30/09</u> LAB I.D.: 090923-12

SAMPLE I.D.: B-3-10

ILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2

PARAMETER	SAMPLE RESULT	PQL X1
1, 3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1, 1, 1, 2-TETRACHLOROETHANE	ND	0.005
1, 1, 2, 2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

N

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: Artic

PROJECT No.: 103567/Env 2 MATRIX:SOIL DATE SAMPLED:09/22/09 REPORT TO:Mr. BERT VOGLER SAMPLE I.D.: B-3-20

DATE RECEIVED:<u>09/22/09</u> DATE ANALYZED:<u>09/23/09</u> DATE REPORTED:<u>09/30/09</u> LAB I.D.: 090923-13

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4 - CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1, 2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1, 2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

----- TO BE CONTINUED ON PAGE #2 -----

DATA REVIEWED AND APPROVED BY:_

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER:	Kleinfelder	
	620 W. 16th Street, Unit #F	
	Long Beach, CA 90813	
	Tel(562)432-1696 Fax(562)432-179	6
PROJECT: P	Artic	
PROJECT No	5.: 103567/Env 2	
MATRIX: SOI	L	DZ
DATE SAMPI	ED: 09/22/09	DZ

DATE RECEIVED:<u>09/22/09</u> DATE ANALYZED:<u>09/23/09</u> DATE REPORTED:<u>09/30/09</u> LAB I.D.: 090923-13

SAMPLE I.D.: B-3-20

REPORT TO:Mr. BERT VOGLER

.............................

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	POL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4 - ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1, 1, 1, 2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL

DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: Artic PROJECT No.: 103567/Env 2

MATRIX:<u>SOIL</u> DATE SAMPLED:<u>09/22/09</u> REPORT TO:<u>Mr. BERT VOGLER</u> SAMPLE I.D.: **B-3-30** DATE RECEIVED:<u>09/22/09</u> DATE ANALYZED:<u>09/23/09</u> DATE REPORTED:<u>09/30/09</u> LAB I.D.: 090923-14

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER ACETONE	SAMPLE RESULT ND	PQL X1 0.020
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4 - CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1, 2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1, 2-DICHLOROPROPANE	ND	0.005

---- TO BE CONTINUED ON PAGE #2 -----

DATA REVIEWED AND APPROVED BY:
1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: Artic PROJECT No.: 103567/Env 2 MATRIX: SOIL

DATE SAMPLED: 09/22/09 REPORT TO: Mr. BERT VOGLER SAMPLE I.D.: B-3-30

DATE RECEIVED: 09/22/09 DATE ANALYZED: 09/23/09 DATE REPORTED:09/30/09 LAB I.D.: 090923-14

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	POL X1
1, 3-DICHLOROPROPANE	D	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4 - ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1, 1, 1, 2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1, 1, 1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL

DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: Artic PROJECT No.: 103567/Env 2 MATRIX:SOIL

DATE SAMPLED: 09/22/09 REPORT TO: Mr. BERT VOGLER SAMPLE I.D.: B-3-40

DATE RECEIVED:<u>09/22/09</u> DATE ANALYZED:<u>09/23/09</u> DATE REPORTED:<u>09/30/09</u> LAB I.D.: 090923-15

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

SAMPLE RESULT	PQL X1
ND	0.020
ND	0.005
ND	0.020
ND	0.005
ND	0.005
ND	0.005
ND	0.010
ND	0.005
	SAMPLE RESULT ND ND ND

---- TO BE CONTINUED ON PAGE #2 -----

DATA REVIEWED AND APPROVED BY :_

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: Artic PROJECT No.: 103567/Env 2 MATRIX:SOIL DATE SAMPLED:09/22/09 REPORT TO:Mr. BERT VOGLER SAMPLE I.D.: B-3-40 LAE

DATE RECEIVED:<u>09/22/09</u> DATE ANALYZED:<u>09/23/09</u> DATE REPORTED:<u>09/30/09</u> LAB I.D.: 090923-15

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2

UNIT: mg/Kg = MILLIGRAM PE	R KILOGRAM = PPM
----------------------------	------------------

PARAMETER	SAMPLE RESULT	PQL X1
1, 3-DICHLOROPROPANE	ND	0.005
2, 2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4 - ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL

DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: Artic PROJECT No.: 103567/Env 2 MATRIX:SOIL D

DATE RECEIVED:<u>09/22/09</u> DATE ANALYZED:<u>09/23/09</u> DATE REPORTED:<u>09/30/09</u> LAB I.D.: 090923-16

SAMPLE I.D.: B-3-50 LAB I.D.: 090923-16

REPORT TO:Mr. BERT VOGLER

DATE SAMPLED: 09/22/09

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	POL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1, 3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0,005
1, 1-DICHLOROETHANE	ND	0.005
1, 2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1, 2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

---- TO BE CONTINUED ON PAGE #2 -----

DATA REVIEWED AND APPROVED BY:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: Artic PROJECT No.: 103567/Env 2 MATRIX: SOIL DATE SAMPLED: 09/22/09 REPORT TO: Mr. BERT VOGLER

SAMPLE I.D.: B-3-50

DATE RECEIVED: 09/22/09 DATE ANALYZED:09/23/09 DATE REPORTED: 09/30/09 LAB I.D.: 090923-16

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1, 1, 1, 2-TETRACHLOROETHANE	ND	0.005
1, 1, 2, 2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1, 1, 2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

ND = NON-DETECTED OR BELOW THE PQL

DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

METHOD BLANK REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: Artic PROJECT No.: 103567/Env 2

MATRIX: SOIL

DATE SAMPLED: 09/22/09 REPORT TO: Mr. BERT VOGLER DATE RECEIVED: 09/22/09 DATE ANALYZED: 09/23/09

DATE REPORTED: 09/30/09

METHOD BLANK FOR LAB I.D.: 090923-3 THROUGH -16

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4 - CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1, 2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1, 2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1, 2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

----- TO BE CONTINUED ON PAGE #2 -----

DATA REVIEWED AND APPROVED BY:____

Enviro – Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

METHOD BLANK REPORT

CUSTOMER: Kle	infelder					
620						
Lon	Long Beach, CA 90813					
Tel	(562)432-1696 Fax(562) 432-1796				
PROJECT: Artic						
PROJECT No.: 1	03567/Env 2		22			
MATRIX: SOIL	CONTRACTOR AND A CONTRACTOR	D	ATE RECEIVED: 09/22/09			
DATE SAMPLED:0	9/22/09	D	ATE ANALYZED: 09/23/09			
REPORT TO: Mr.	BERT VOGLER	D	ATE REPORTED: 09/30/09			
ME	THOD BLANK FOR LAB	I.D.: 090923	3-3 THROUGH -16			
ANALYSIS:	VOLATILE ORGANICS,	EPA METHOD	5035/8260B, PAGE 2 OF 2			
PARAMETER	UNIT: mg/kg = MIL	AMPLE PESHLT	POL X1			
1.3-DICHLOROPS	OPANE	ND	0 005			
2 2-DICHLOROPE	POPANE	ND	0.005			
1.1-DICHLOROPE	OPENE	ND	0.005			
CIS-1 3-DICHLO	POPPOPENE	ND	0.005			
TRANS-1 3-DICH	LOPOPPOPENE	ND	0.005			
ETHVI.BENZENE	LOROPROFENE	ND	0.005			
2-HEYAMONE		ND	0.005			
HEXACHLOROBUTA	DIENE	ND	0.020			
ISODRODVI.BENZE	NE	ND	0.005			
4 - TSOPPOPYLTOI	JIENE	ND	0.005			
4-METHYL-2-DEN	TANONE (MIRK)	ND	0.005			
METUVI, tert-BI	ITALONE (HIBK/	ND	0.020			
METHYLENE CHLC	PIDE	ND	0.005			
NAPHTHALENE	N102	ND	0.010			
N-DRODVI.BENZEN	IE	ND	0.005			
STYRENE	15	ND	0.005			
1 1 1 2-TETRA	HLOROETHANE	ND	0.005			
1.1.2.2-TETRAC	THLOROETHANE	ND	0.005			
TETRACHLOROETH	IENE (PCE)	ND	0.005			
TOLUENE		ND	0.005			
1.2.3-TRICHLOF	OBENZENE	ND	0.005			
1.2.4-TRICHLOF	OBENZENE	ND	0.005			
1.1.1-TRICHLOF	OETHANE	ND	0.005			
1.1.2-TRICHLO	ROETHANE	ND	0.005			
TRICHLOROETHEN	NE (TCE)	ND	0.005			
TRICHLOROFLUOR	ROMETHANE	ND	0.005			
1.2.3-TRICHLO	ROPROPANE	ND	0.005			
1.2.4-TRIMETHY	LBENZENE	ND	0,005			
1.3.5-TRIMETH	LBENZENE	ND	0.005			
VINYL CHLORIDI	3	ND	0,005			
M/P-XYLENE		ND	0,010			
O-XYLENE		ND	0.005			
COMMENTS POL	- PRACTICAL OUANTT	TATION LIMIT				

ND = NON-DETECTED OR BELOW THE PQL DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

10

			Enviro-Cha	em, Inc.					
1214 E. Lexington Av	enue, Pom	iona, CA 91	766 8260B QA	Tel (VQC Repo	(909)590-59 rt	05 Fa	ix (909)590	-5907	
Date Analyzed: Machine:	<u>9/23/2009</u> <u>C</u>						Matrix: Unit:	Solid/Soil/S mg/Kg (PP	<u>Sludge</u> M)
Matrix Spike (MS)/Matr	ix Spike Du	uplicate (MS	D)						
Spiked Sample Lab I.D	.:	090923-3 N	IS/MSD	NDC	MOD	0/00	0/000	ACD N DC	ACO DOD
Analyte	S.R.	Spk conc	M5	%RU	MSD	%RC	%RPU	ACP %RC	ACP RPD
Chlorehenzona	0	0.050	0.054	108%	0.058	110%	0%	75-120	0-20
1.1. Dichloroothona	0	0.050	0.050	11270	0.055	110%	270	70-120	0-20
Talvese	0	0.050	0.051	1160/	0.055	10.29/	070	75 120	0.20
Trichloroethene (TCE)	0	0.050	0.054	108%	0.051	116%	8%	75-125	0-20
Lab Control Spike (LC:	S):								
Analyte	spk conc	LCS	%RC	ACP %RC					
Benzene	0.050	0.057	114%	75-125					
Chlorobenzene	0.050	0.059	118%	75-125	<u>.</u>				
Chloroform	0.050	0.054	108%	75-125	0				
1,1-Dichlorolhene	0.050	0.048	96%	75-125	8				
Ethylbenzene	0.050	0.045	91%	75-125					
o-Xylene	0.050	0.051	102%	75-125	G				
m,p-Xylene	0.100	0.103	103%	75-125					
Toluene	0.050	0.059	118%	75-125	E				
1,1,1-Trichloroelhane	0.050	0.055	110%	75-125					
Trichloroethene (TCE)	0.050	0.059	118%	75-125					
Currente Deseures	l ant man	LACO N DC	MD N DO	0/00	8/00	0000		0100	0/00
Surrogate Recovery	spk conc	ACP %RC	MB %RC	%RC	%RC	%RC	%RC	%RC	%RC
Sample I.D.	60.0	70.400	M-BLK	090923-3	090923-4	090923-5	090923-0	090923-7	090923-8
Dibromotiuorometnane	50,0	70-130	105%	104%	105%	110%	108%	120%	103%
Toluene-do	50.0	70-130	102%	101%	101%	99%	98%	103%	101%
4-Bromotiuorobenzene	50.0	70-130	92%	90%	90%	90%	96%	89%	89%
Surrogate Recovery	sok conc	ACP %RC	%RC	%RC	%RC	%RC	%RC	%RC	%RC
Sample I.D.			090923-9	090923-10	090923-11	090923-12	090923-13	090923-14	090923-15
Dibromofluoromethane	50.0	70-130	103%	91%	106%	106%	116%	103%	103%
Toluene-d8	50.0	70-130	103%	101%	102%	104%	101%	99%	104%
4-Bromofluorobenzene	50.0	70-130	84%	86%	87%	90%	87%	100%	88%
	1								
Surrogate Recovery	spk conc	ACP %RC	%RC \	%RC	%RC	%RC	%RC	%RC	%RC
Sample I.D.			090923-16	090923-23		1	V		
Dibromofluoromethane	50.0	70-130	116%	84%		1- <u></u>		10	
Toluene-d8	50.0	70-130	105%	85%	1				
4-Bromofluorobenzene	50.0	70-130	89%	96%			-	2	
* = Surrogate fail due to S.R. = Sample Results spk conc = Spike Conce MS = Matrix Spike Analyzed/Reviewed By	matrix inter entration r:	rference; LO	CS, MS, MS	SD are in cor	Nrol therefor %RC = Per ACP %RC MSD = Mat	re the analy rcent Recov = Accepted trix Spike D	sis is in con rery I Percent Re uplicate	trol. covery	
Final Reviewer:	B								

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel (562) 432-1696 Fax (562) 432-1796 PROJECT: Artic

PROJECT No.: 103567/Env 2 MATRIX:SOIL

DATE SAMPLED:09/22/09 REPORT TO:Mr. BERT VOGLER

DATE RECEIVED:09/22/09 DATE ANALYZED: 09/23&24/09 DATE REPORTED: 09/30/09

SAMPLE I.D.: B-5-1.5

LAB I.D.: 090923-3

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony (Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	24.8	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	3.75	0.5	1	2,500	560/5@	6010B
Chromium VI (Cr6)		0.1	1	500	5.0	7196A
Cobalt (Co)	ND	1.0	1	8,000	80	6010B
Copper (Cu)	4.33	1.0	1	2,500	25	6010B
Lead (Pb)	5.54	0.5	1	1,000	5.0	6010B
Mercury (Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum (Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	2.86	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver (Ag)	ND	1.0	1	500	5.0	6010B
Thallium(T1)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	8.81	5.0	1	2,400	24	6010B
Zinc(Zn)	18.3	0.5	1	5,000	250	6010B

COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested Data Reviewed and Approved by:

CAL-DHS ELAP CERTIFICATE No.: 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER:	Kleinfelder		
	620 W. 16th Street,	Unit #F	
	Long Beach, CA 9081.	3	
	Tel(562)432-1696 Fa:	x (562) 432-1796	
PROJECT: A	rtic		
PROJECT No	.: 103567/Env 2		
MATRIX: SOI	L	DATE	RECEIVED: 09/22/09
DATE SAMPL	ED: 09/22/09	DATE	ANALYZED: 09/23&24/0
REPORT TO:	Mr. BERT VOGLER	DATE	REPORTED: 09/30/09
********	*********************		

TE RECEIVED:09/22/09 TE ANALYZED:09/23&24/09 TE REPORTED:09/30/09

SAMPLE I.D.: B-5-5

LAB I.D.: 090923-4

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

.................. TTLC STLC ELEMENT EPA SAMPLE ANALYZEDRESULTPQLDFLIMITLIMITAntimony(Sb)ND1.0150015Arsenic(As)ND0.315005.0Barium(Ba)23.05.0110,000100Beryllium(Be)ND0.51750.75Cadmium(Cd)ND0.511001.0Chromium Total(Cr)4.230.512,500560/5@Chromium VI (Cr6)--0.118,00080Copper(Cu)5.731.012,50025Lead (Pb)1.470.511,0005.0Mercury(Hg)ND0.01200.2Molybdenum(Mo)ND5.013,500350Nickel(Ni)3.012.512,00020Selenium(Se)ND1.01001.0Silver(Ag)ND1.017007.0Vanadium(V)14.75.012,40024Zinc(Zn)18.00.515,000250 LIMIT LIMIT METHOD RESULT ANALYZED PQL DF 6010B 6010B 6010B 0.75 6010B 6010B 6010B 7196A 6010B 6010B 6010B 7471A 6010B 6010B 6010B 6010B 6010B 6010B 18.0 0.5 1 5,000 250 Zinc(Zn) 6010B

COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal is recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested Data Reviewed and Approved by:

CAL-DHS ELAP CERTIFICATE No.: 1555

1214 E. Lexington Avenue, Pamona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER :	Kleinfelder						
	620 W. 16th Street, Unit #F						
	Long Beach, CA 90813						
	Tel (562) 432-169	6 Fax (562) 432-1796					
PROJECT: A	rtic						
PROJECT No	.: 103567/Env 2						
MATRIX: SOI	L	DATE	RECEIVED: 09/22/09				
DATE SAMPL	ED:09/22/09	DATE	ANALYZED: 09/23&24/09				
REPORT TO:	Mr. BERT VOGLER	DATE	REPORTED: 09/30/09				

SAMPLE I.D.: B-5-10

LAB I.D.: 090923-5

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony (Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	17.5	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	3.35	0.5	1	2,500	560/5@	6010B
Chromium VI (Cr6)	CLIPIC CLIPIC	0.1	1	500	5.0	7196A
Cobalt (Co)	ND	1.0	1	8,000	80	6010B
Copper(Cu)	4.11	1.0	1	2,500	25	6010B
Lead (Pb)	0.873	0.5	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum (Mo)	ND	5.0	1	3,500	350	6010B
Nickel (Ni)	ND	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(T1)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	7.97	5.0	1	2,400	24	6010B
Zinc(Zn)	14.3	0.5	1	5,000	250	6010B

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Below the Actual Detection Limit or non-detected

TTLC = Total Threshold Limit Concentration

STLC = Soluble Threshold Limit Concentration

@ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5

* = STLC analysis for the metal is recommended (if marked)

** = Additional Analysis required, please call to discuss (if marked)

*** = The concentration exceeds the TTLC Limit, and the sample is

defined as hazardous waste as per CCR-TITLE 22 (if marked)

-- = Not analyzed/not requested

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: Artic

PROJECT No.: 103567/Env 2

MATRIX: SOIL

DATE SAMPLED: 09/22/09 REPORT TO:Mr. BERT VOGLER DATE RECEIVED: 09/22/09 DATE ANALYZED: 09/23&24/09 DATE REPORTED: 09/30/09

SAMPLE I.D.: B-5-20

LAB I.D.: 090923-6

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	157	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	27.6	0.5	1	2,500	560/5@	6010B
Chromium VI (Cr6)		0.1	1	500	5.0	7196A
Cobalt (Co)	ND	1.0	1	8,000	80	6010B
Copper (Cu)	33.0	1.0	1	2,500	25	6010B
Lead (Pb)	20.3	0.5	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum (Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	18.8	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(T1)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	55.4	5.0	1	2,400	24	6010B
Zinc(Zn)	97.8	0.5	1	5,000	250	6010B

COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) *** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested Data Reviewed and Approved by: CAL-DHS ELAP CERTIFICATE No.: 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER :	Kleinfelder	
	620 W. 16th Street, Unit #F	
	Long Beach, CA 90813	
	Tel(562)432-1696 Fax(562)432-17	196
PROJECT: A	rtic	
PROJECT No	.: 103567/Env 2	
MATRIX: SOI	L	DA'
DATE SAMPL	ED:09/22/09	DA'
REPORT TO:	Mr. BERT VOGLER	DA

DATE RECEIVED: 09/22/09 DATE ANALYZED: 09/23&24/09 DATE REPORTED: 09/30/09

SAMPLE I.D.: 8-5-30

LAB I.D.: 090923-7

........

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony (Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	68.3	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	15.8	0.5	1	2,500	560/5@	6010B
Chromium VI (Cr6)		0.1	1	500	5.0	7196A
Cobalt(Co)	ND	1.0	1	8,000	80	6010B
Copper(Cu)	23.9	1.0	1	2,500	25	6010B
Lead (Pb)	2.20	0.5	1	1,000	5.0	6010B
Mercury (Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum (Mo)	ND	5.0	1	3,500	350	6010B
Nickel (Ni)	10.6	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(T1)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	28.1	5.0	1	2,400	24	6010B
Zinc(Zn)	51.1	0.5	1	5,000	250	6010B
Contraction of the second se						

COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: Artic

PROJECT No.: 103567/Env 2 MATRIX: SOIL

DATE SAMPLED:09/22/09 REPORT TO:Mr. BERT VOGLER

DATE RECEIVED: 09/22/09 DATE ANALYZED: 09/23&24/09 DATE REPORTED:09/30/09

SAMPLE I.D.: B-5-40

LAB I.D.: 090923-8

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	70.1	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	11.5	0.5	1	2,500	560/5@	6010B
Chromium VI (Cr6)	1111	0.1	1	500	5.0	7196A
Cobalt (Co)	ND	1.0	1	8,000	80	6010B
Copper(Cu)	28.7	1.0	1	2,500	25	6010B
Lead (Pb)	4.18	0.5	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	12.6	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(T1)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	22.8	5.0	1	2,400	24	6010B
Zinc(Zn)	54.2	0.5	1	5,000	250	6010B

COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal is recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested Data Reviewed and Approved by:_

CAL-DHS ELAP CERTIFICATE No.: 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER:	Kleinfelder		
	620 W. 16th Street, U	nit #F	
	Long Beach, CA 90813		
	Tel(562)432-1696 Fax(562) 432-1796	
PROJECT: A	rtic		
PROJECT No	.: 103567/Env 2		
MATRIX: SOI	L	DATE	RECEIVED: 09/22/09
DATE SAMPL	ED:09/22/09	DATE	ANALYZED: 09/23&24/09
REPORT TO:	Mr. BERT VOGLER	DATE	REPORTED: 09/30/09
		그는 것 같은 것 같	

SAMPLE I.D.: B-5-50

LAB I.D.: 090923-9

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony (Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	51.3	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	6.99	0.5	1	2,500	560/5@	6010B
Chromium VI (Cr6)	222	0.1	1	500	5.0	7196A
Cobalt (Co)	ND	1.0	1	8,000	80	6010B
Copper(Cu)	16.6	1.0	1	2,500	25	6010B
Lead (Pb)	3.68	0.5	1	1,000	5.0	6010B
Mercury (Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum (Mo)	ND	5.0	1	3,500	350	6010B
Nickel (Ni)	9.07	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(T1)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	18.8	5.0	1	2,400	24	6010B
Zinc(Zn)	41.1	0.5	1	5,000	250	6010B

COMMENTS

DF = Dilution Factor POL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal is recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR_TITLE 22 (if marked) -- = Not analyzed/not requested Data Reviewed and Approved by:

CAL-DHS ELAP CERTIFICATE No.: 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: Artic PROJECT No.: 103567/Env 2

MATRIX: <u>SOIL</u> DATE SAMPLED: <u>09/22/09</u> REPORT TO:Mr. BERT VOGLER

DATE RECEIVED: 09/22/09 DATE ANALYZED: 09/23&24/09 DATE REPORTED: 09/30/09

SAMPLE I.D.: 8-3-1.5

LAB I.D.: 090923-10

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony (Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	20.7	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	3.68	0.5	1	2,500	560/5@	6010B
Chromium VI (Cr6)	12.2	0.1	1	500	5.0	7196A
Cobalt (Co)	ND	1.0	1	8,000	80	6010B
Copper (Cu)	3.27	1.0	1	2,500	25	6010B
Lead (Pb)	1.24	0.5	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	2.53	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(T1)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	8.67	5.0	1	2,400	24	6010B
Zinc(Zn)	14.4	0.5	1	5,000	250	6010B

COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: Artic

PROJECT No.: 103567/Env 2 MATRIX:SOIL DATE SAMPLED:09/22/09 REPORT TO:Mr. BERT VOGLER

DATE RECEIVED:<u>09/22/09</u> DATE ANALYZED:<u>09/23&24/09</u> DATE REPORTED:<u>09/30/09</u>

SAMPLE I.D.: B-3-5

.

LAB I.D.: 090923-11

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ONIT. MG/NG - MIDDIGRAM PER KILOGRAM - PH

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony (Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	27.7	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	5.30	0.5	1	2,500	560/5®	6010B
Chromium VI (Cr6)		0.1	1	500	5.0	7196A
Cobalt (Co)	ND	1.0	1	8,000	80	6010B
Copper(Cu)	26.9	1.0	1	2,500	25	6010B
Lead (Pb)	1.92	0.5	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum (Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	3.74	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(Tl)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	11.4	5.0	1	2,400	24	6010B
Zinc(Zn)	26.4	0.5	1	5,000	250	6010B

COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested

Data Reviewed and Approved by: _____ CAL-DHS ELAP CERTIFICATE No.: 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER :	Kleinfelder	
	620 W. 16th Street, Unit #F	
	Long Beach, CA 90813	
	Tel (562) 432-1696 Fax (562) 432-179	6
PROJECT: A	artic	
PROJECT No	.: 103567/Env 2	
MATRIX: SOI	L	DA
DATE SAMPL	ED: 09/22/09	DA
REPORT TO:	Mr. BERT VOGLER	DA

DATE RECEIVED: 09/22/09 DATE ANALYZED: 09/23&24/09 DATE REPORTED: 09/30/09

SAMPLE I.D.: B-3-10

LAB I.D.: 090923-12

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

SAMPLE			TTLC	STLC	EPA
RESULT	PQL	DF	LIMIT	LIMIT	METHOD
ND	1.0	1	500	15	6010B
ND	0.3	1	500	5.0	6010B
33.9	5.0	1	10,000	100	6010B
ND	0.5	1	75	0.75	6010B
ND	0.5	1	100	1.0	6010B
6.27	0.5	1	2,500	560/5@	6010B
1.00	0.1	1	500	5.0	7196A
ND	1.0	1	8,000	80	6010B
23.2	1.0	1	2,500	25	6010B
3.32	0.5	1	1,000	5.0	6010B
ND	0.01	1	20	0.2	7471A
ND	5.0	1	3,500	350	6010B
4.04	2.5	1	2,000	20	6010B
ND	1.0	1	100	1.0	6010B
ND	1.0	1	500	5.0	6010B
ND	1.0	1	700	7.0	6010B
14.0	5.0	1	2,400	24	6010B
31.1	0.5	1	5,000	250	6010B
	SAMPLE RESULT ND 33.9 ND 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SAMPLE RESULT PQL ND 1.0 ND 0.3 33.9 5.0 ND 0.5 ND 0.5 ND 0.5 6.27 0.5 0.1 ND 1.0 23.2 1.0 3.32 0.5 ND 0.01 ND 5.0 4.04 2.5 ND 1.0 ND 1.0 <t< td=""><td>SAMPLE RESULT PQL DF ND 1.0 1 ND 0.3 1 33.9 5.0 1 ND 0.5 1 ND 0.5 1 ND 0.5 1 ND 0.5 1 0.1 1 ND 1.0 1 23.2 1.0 1 3.32 0.5 1 ND 0.01 1 ND 5.0 1 ND 1.0 1</td><td>SAMPLE TTLC RESULT PQL DF LIMIT ND 1.0 1 500 ND 0.3 1 500 33.9 5.0 1 10,000 ND 0.5 1 75 ND 0.5 1 100 6.27 0.5 1 2,500 0.1 1 500 ND 1.0 1 8,000 23.2 1.0 1 2,500 3.32 0.5 1 1,000 ND 0.01 1 20 ND 5.0 1 3,500 4.04 2.5 1 2,000 ND 1.0 1 100 ND 1.0 1 500 ND 1.0 1 00 ND 1.0 1 500 ND 1.0 1 500 ND 1.0</td><td>SAMPLE TTLC STLC RESULT PQL DF LIMIT LIMIT ND 1.0 1 500 15 ND 0.3 1 500 5.0 33.9 5.0 1 10,000 100 ND 0.5 1 75 0.75 ND 0.5 1 2,500 560/5@ 0.1 1 2,500 25 ND 1.0 1 8,000 80 23.2 1.0 1 2,500 25 3.32 0.5 1 1,000 5.0 ND 0.01 20 0.2 ND 5.0 3,500 350 MD 5.0 1 3,500 250 ND 5.0 1 2,000 20 ND 1.0 1 0.0 1.0 ND 1.0 1 500 5.0 ND</td></t<>	SAMPLE RESULT PQL DF ND 1.0 1 ND 0.3 1 33.9 5.0 1 ND 0.5 1 ND 0.5 1 ND 0.5 1 ND 0.5 1 0.1 1 ND 1.0 1 23.2 1.0 1 3.32 0.5 1 ND 0.01 1 ND 5.0 1 ND 1.0 1	SAMPLE TTLC RESULT PQL DF LIMIT ND 1.0 1 500 ND 0.3 1 500 33.9 5.0 1 10,000 ND 0.5 1 75 ND 0.5 1 100 6.27 0.5 1 2,500 0.1 1 500 ND 1.0 1 8,000 23.2 1.0 1 2,500 3.32 0.5 1 1,000 ND 0.01 1 20 ND 5.0 1 3,500 4.04 2.5 1 2,000 ND 1.0 1 100 ND 1.0 1 500 ND 1.0 1 00 ND 1.0 1 500 ND 1.0 1 500 ND 1.0	SAMPLE TTLC STLC RESULT PQL DF LIMIT LIMIT ND 1.0 1 500 15 ND 0.3 1 500 5.0 33.9 5.0 1 10,000 100 ND 0.5 1 75 0.75 ND 0.5 1 2,500 560/5@ 0.1 1 2,500 25 ND 1.0 1 8,000 80 23.2 1.0 1 2,500 25 3.32 0.5 1 1,000 5.0 ND 0.01 20 0.2 ND 5.0 3,500 350 MD 5.0 1 3,500 250 ND 5.0 1 2,000 20 ND 1.0 1 0.0 1.0 ND 1.0 1 500 5.0 ND

COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested

Data Reviewed and Approved by: _____ CAL-DHS ELAP CERTIFICATE No.: 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER :	Kleinfelder	
	620 W. 16th Street, Unit #F	
	Long Beach, CA 90813	
	Tel (562) 432-1696 Fax (562) 432-1796	5
PROJECT: A	rtic	
PROJECT No	.: 103567/Env 2	
MATRIX: SOI	L	I

DATE RECEIVED:09/22/09 DATE ANALYZED: 09/23&24/09 DATE REPORTED:09/30/09

SAMPLE I.D.: B-3-20

DATE SAMPLED: 09/22/09

REPORT TO:Mr. BERT VOGLER

LAB I.D.: 090923-13

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony (Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	17.7	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	3.52	0.5	1	2,500	560/5@	6010B
Chromium VI (Cr6)		0.1	1	500	5.0	7196A
Cobalt (Co)	ND	1.0	1	8,000	80	6010B
Copper (Cu)	22.2	1.0	1	2,500	25	6010B
Lead (Pb)	ND	0.5	1	1,000	5.0	6010B
Mercury (Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum (Mo)	ND	5.0	1	3,500	350	6010B
Nickel (Ni)	ND	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(T1)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	9.19	5.0	1	2,400	24	6010B
Zinc(Zn)	18.6	0.5	1	5,000	250	6010B

COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal is recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested Data Reviewed and Approved by:_

CAL-DHS ELAP CERTIFICATE No.: 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER:	Kleinfelder	
	620 W. 16th Street, Unit #F	
	Long Beach, CA 90813	
	Tel(562)432-1696 Fax(562)432-	1796
PROJECT: A	Artic	
PROJECT No	b.: 103567/Env 2	
MATRIX: SOI	IL.	DAT
DATE SAMPL	LED:09/22/09	DAT

TRIX: SOIL	DATE RECEIVED:09/22/09
TE SAMPLED: 09/22/09	DATE ANALYZED:09/23&24/09
PORT TO:Mr. BERT VOGLER	DATE REPORTED:09/30/09

SAMPLE I.D.: B-3-30

REPORT TO:Mr. BERT VOGLER

LAB I.D.: 090923-14

................................

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony (Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	79.7	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	19.6	0.5	1	2,500	560/5@	6010B
Chromium VI (Cr6)		0.1	1	500	5.0	7196A
Cobalt (Co)	ND	1.0	1	8,000	80	6010B
Copper(Cu)	17.7	1.0	1	2,500	25	6010B
Lead (Pb)	3.12	0.5	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum (Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	13.3	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(T1)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	33.6	5.0	1	2,400	24	6010B
Zinc(Zn)	52.3	0.5	1	5,000	250	6010B

COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected

TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal is recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER :	Kleinfelder	
	620 W. 16th Street, Unit #F	
	Long Beach, CA 90813	
	Tel(562)432-1696 Fax(562)432-1796	
PROJECT: A	rtic	
PROJECT No	.: 103567/Env 2	
MATRIX: SOI	L	DA

DATE	RECEIVED: 09/22/09
DATE	ANALYZED: 09/23&24/09
DATE	REPORTED:09/30/09

SAMPLE I.D.: B-3-40

......................

DATE SAMPLED: 09/22/09 REPORT TO:Mr. BERT VOGLER

LAB I.D.: 090923-15

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

UNIT: mg/kg = MILLIGRAM PER KILUGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony (Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	94.3	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	10.9	0.5	1	2,500	560/5@	6010B
Chromium VI (Cr6)	1.7.7.)	0.1	1	500	5.0	7196A
Cobalt (Co)	ND	1.0	1	8,000	80	6010B
Copper(Cu)	17.9	1.0	1	2,500	25	6010B
Lead (Pb)	6.13	0.5	1	1,000	5.0	6010B
Mercury (Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum (Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	13.0	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(T1)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	25.9	5.0	1	2,400	24	6010B
Zinc(Zn)	62.5	0.5	1	5,000	250	6010B

COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER:	Kleinfelder
	620 W. 16th Street, Unit #F
	Long Beach, CA 90813
	Tel(562)432-1696 Fax(562)432-1796
PROJECT: A	artic
PROJECT NO	.: 103567/Env 2

DATE RECEIVED: 09/22/09 DATE ANALYZED: 09/23&24/09 DATE REPORTED: 09/30/09

SAMPLE I.D.: B-3-50

DATE SAMPLED:09/22/09

REPORT TO:Mr. BERT VOGLER

MATRIX:SOIL

LAB I.D.: 090923-16

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony (Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	101	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium (Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	11.7	0.5	1	2,500	560/5@	6010B
Chromium VI (Cr6)		0.1	1	500	5.0	7196A
Cobalt (Co)	ND	1.0	1	8,000	80	6010B
Copper(Cu)	20.2	1.0	1	2,500	25	6010B
Lead(Pb)	6.45	0.5	1	1,000	5.0	6010B
Mercury (Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum (Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	11.5	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(T1)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	28.0	5.0	1	2,400	24	6010B
Zinc(Zn)	62.2	0.5	1	5,000	250	6010B

COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested

Data Reviewed and Approved by: _____ CAL-DHS ELAP CERTIFICATE No.: 1555

1214 E. Lexington Avenue; Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

METHOD BLANK REPORT

CUSTOMER:	Kleinfelder	
	620 W. 16th Street, Unit #F	
	Long Beach, CA 90813	
	Tel (562) 432-1696 Fax (562) 432-	1796
PROJECT: A	Irtic	
PROJECT No	.: 103567/Env 2	
MATRIX: SOI	L	DA
DATE SAMPL	ED: 09/22/09	DA
REPORT TO:	Mr. BERT VOGLER	DA

DATE RECEIVED: 09/22/09 DATE ANALYZED: 09/23&24/09

DATE REPORTED: 09/30/09

METHOD BLANK FOR LAB I.D.: 090923-3 THROUGH -16

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony (Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	ND	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	ND	0.5	1	2,500	560/5@	6010B
Chromium VI (Cr6)		0.1	1	500	5.0	7196A
Cobalt (Co)	ND	1.0	1	8,000	80	6010B
Copper(Cu)	ND	1.0	1	2,500	25	6010B
Lead (Pb)	ND	0.5	1	1,000	5.0	6010B
Mercury (Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum (Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	ND	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(T1)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	ND	5.0	1	2,400	24	6010B
Zinc(Zn)	ND	0.5	1	5,000	250	6010B

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Below the Actual Detection Limit or non-detected

TTLC = Total Threshold Limit Concentration

STLC = Soluble Threshold Limit Concentration

@ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5
* = STLC analysis for the metal <u>is</u> recommended (if marked)
** = Additional Analysis required, please call to discuss (if marked)
*** = The concentration exceeds the TTLC Limit, and the sample is
defined as hazardous waste as per CCR-TITLE 22 (if marked)
-- = Not analyzed/not requested

Data Reviewed and Approved by: _____ CAL-DHS ELAP CERTIFICATE No.: 1555

		(mc	% RPD	1%	2%	%0		% RPD	4%								Ĩ
		mg/Kg(p)	% Rec MSD	113%	105%	106%		% Rec MSD	%06							Ŧ	
XX		Unit	MSD	62.2	54.1	70.9		MSD	0.112								
OIL MATH			% Rec MS	114%	103%	106%		% Rec MS	86%								n.
OLID/SC			WS	62.7	53.2	71.0		WS	0.108						5	2	VER:
TLCS(Spike Conc.	50.0	50.0	50.0		Spike Conc.	0.125							VALYST:	NAL REVIEV
ysis T			Sample Result	5.73	1.47	18.0		Sample Result	0							A	Œ
s Anal			LCS STATUS	PASS	PASS	PASS		LCS STATUS	PASS		%RPD	PASS	PASS	PASS	PASS	0 ~ 20	
r Metal	/ FCS :		LCS %Rec.	108	104	106		LCS %Rec.	91.6		%CCS	PASS	PASS	PASS	PASS	85 ~ 115	
QC for	Duplicate	9/24/2009	LCS CONC.	1.00	1.00	1.00	123/2009	LCS CONC.	0.125		%WSD	PASS	PASS	PASS	PASS	75 - 125	
04/	trix Spike	'SIS DATE:	Spk.Sample ID	090923-4	090923-4	090923-4	SIS DATE. : 5	Spk.Sample ID	090923-88		SW%	PASS	PASS	PASS	PASS	75 ~ 125	
	Matrix Spike/ Ma	ANALI	Analysis	Copper (Cu)	Lead (Pb)	Zinc (Zn)	ANALY	Analysis	Mercury (Hg)	NS/MSD Status:	Analysis	Copper (Cu)	Lead (Pb)	Zinc (Zn)	Mercury (Hg)	Accepted Range	

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796

PROJECT: Artic PROJECT No.: 103567/Env 2 MATRIX:SOIL DATE SAMPLED: 09/22/09

REPORT TO:Mr. BERT VOGLER

DATE RECEIVED:09/22/09 DATE EXTRACTED:09/23/09 DATE ANALYZED: 09/23/09 DATE REPORTED: 09/30/09 -----

energia de la companya de la company

SAMPLE I.D.: B-5-1.5

LAB I.D.: 090923-3

Organochlorine Pesticides & PCBs Analysis Method: EPA 8081A/8082

Unit: Mg/Kg = Milligram per Kilogram = PPM

PARAMETER	SAMPLE RESULT	POL	DF
Aldrin	ND	0.001	1
alpha-BHC	ND	0.001	1
beta-BHC	ND	0.001	1
gamma-BHC (Lindane)	ND	0.001	1
delta-BHC	ND	0.001	1
alpha-Chlordane	ND	0.001	1
gamma-Chlordane	ND	0.001	1
Total Chlordane (Technical)	ND	0.005	1
4,4'-DDD	ND	0.001	1
4,4'-DDE	ND	0.001	1
4,4'-DDT	ND	0.001	1
Dieldrin	ND	0.001	1
Endosulfan I	ND	0.001	1
Endosulfan II	ND	0.001	1
Endosulfan Sulfate	ND	0.001	1
Endrin	ND	0.001	1
Endrin Aldehyde	ND	0.001	1
Endrin Ketone	ND	0.001	1
Heptachlor Epoxide	ND	0.001	1
Heptachlor	ND	0.001	1
Methoxyclor	ND	0.001	1
Toxaphene	ND	0.020	1
PCB-1016	ND	0.010	1
PCB-1221	ND	0.010	1
PCB-1232	ND	0.010	1
PCB-1242	ND	0.010	1
PCB-1248	ND	0.010	1
PCB-1254	ND	0.010	1
PCB-1260	ND	0.010	1

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Non detected or below the Actual Detection Limit

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796

PROJECT: Artic PROJECT No.: 103567/Env 2

MATRIX:SOIL DATE SAMPLED:09/22/09 REPORT TO:Mr. BERT VOGLER

DATE RECEIVED:09/22/09 DATE EXTRACTED: 09/23/09 DATE ANALYZED:09/24/09 DATE REPORTED:09/30/09

SAMPLE I.D.: B-5-5

LAB I.D.: 090923-4

Organochlorine Pesticides & PCBs Analysis Method: EPA 8081A/8082

Unit: Mg/Kg = Milligram per Kilogram = PPM

PARAMETER	SAMPLE RESULT	POL	DF
Aldrin	ND	0.001	1
alpha-BHC	ND	0.001	1
beta-BHC	ND	0.001	1
gamma-BHC (Lindane)	ND	0.001	1
delta-BHC	ND	0.001	1
alpha-Chlordane	ND	0.001	1
gamma-Chlordane	ND	0.001	1
Total Chlordane (Technical)	ND	0.005	1
4,4'-DDD	ND	0.001	1
4,4'-DDE	ND	0.001	1
4,4'-DDT	ND	0.001	1
Dieldrin	ND	0.001	1
Endosulfan I	ND	0.001	1
Endosulfan II	ND	0.001	1
Endosulfan Sulfate	ND	0.001	1
Endrin	ND	0.001	1
Endrin Aldehyde	ND	0.001	1
Endrin Ketone	ND	0.001	1
Heptachlor Epoxide	ND	0.001	1
Heptachlor	ND	0.001	1
Methoxyclor	ND	0.001	1
Toxaphene	ND	0.020	1
PCB-1016	ND	0.010	1
PCB-1221	ND	0.010	1
PCB-1232	ND	0.010	- 1
PCB-1242	ND	0.010	1
PCB-1248	ND	0.010	1
PCB-1254	ND	0.010	1
PCB-1260	ND	0.010	1

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF

ND = Non detected or below the Actual Detection Limit

il

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER	: Kleinfelder
	620 W. 16th Street, Unit #F
	Long Beach, CA 90813
	Tel(562)432-1696 Fax(562)432-1796
PROJECT:	Artic

PROJECT No.: 103567/Env 2 MATRIX: SOIL DATE SAMPLED:09/22/09

REPORT TO:Mr. BERT VOGLER

DATE RECEIVED:09/22/09 DATE EXTRACTED:09/23/09 DATE ANALYZED:09/24/09 DATE REPORTED: 09/30/09

SAMPLE I.D.: B-5-10

LAB I.D.: 090923-5

------Organochlorine Pesticides & PCBs Analysis

Method: EPA 8081A/8082

Unit: Mg/Kg = Milligram per Kilogram = PPM

PARAMETER SAMPLE RESULT POL DF 0.001 Aldrin ND 1 alpha-BHC 1____ ND 0.001 beta-BHC ND 0.001 1 gamma-BHC (Lindane) ND 0.001 1 delta-BHC 0.001 ND 1 alpha-Chlordane ND 0.001 1 0.001 gamma-Chlordane ND 1 Total Chlordane (Technical) ND 0.005 1 4,4'-DDD ND 0.001 1 4,4'-DDE ND 0.001 1 4,4'-DDT ND 0.001 1 Dieldrin ND 0.001 1 Endosulfan I ND 0.001 1 Endosulfan II ND 0.001 1 Endosulfan Sulfate ND 0.001 1 Endrin ND 0.001 1 Endrin Aldehvde ND 0.001 1 Endrin Ketone ND 0.001 1 Heptachlor Epoxide ND 0.001 1 Heptachlor ND 0.001 1 Methoxyclor ND 0.001 1 Toxaphene 1 ND 0.020 0.010 PCB-1016 ND 1 PCB-1221 ND 0.010 1 PCB-1232 ND 0.010 1 PCB-1242 ND 0.010 1 0.010 PCB-1248 ND 1 PCB-1254 ND 0.010 1 PCB-1260 ND 0.010 1 COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Non detected or below the Actual Detection Limit

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796

PROJECT: Artic PROJECT No.: 103567/Env 2

MATRIX:<u>SOIL</u> DATE SAMPLED:09/22/09

REPORT TO:Mr. BERT VOGLER

SAMPLE I.D.: B-5-20

LAB I.D.: 090923-6

DATE RECEIVED: 09/22/09

DATE ANALYZED:09/24/09

DATE REPORTED:09/30/09

...............................

DATE EXTRACTED:09/23/09

Organochlorine Pesticides & PCBs Analysis Method: EPA 8081A/8082

Unit: Mg/Kg = Milligram per Kilogram = PPM

PARAMETER DF SAMPLE RESULT POL Aldrin 0.001 1 ND alpha-BHC 0.001 ND 1 beta-BHC 1__ ND 0.001 gamma-BHC (Lindane) 1_ ND 0.001 delta-BHC ND 0.001 1___ alpha-Chlordane 0.001 1 ND gamma-Chlordane ND 0.001 1 Total Chlordane (Technical) ND 0.005 1 0.001 1_ 4,4'-DDD ND 4,4'-DDE 0.001 ND 1 4,4'-DDT ND 0.001 1 Dieldrin 0.001 1 ND Endosulfan I ND 0.001 1 Endosulfan II 1 ND 0.001 Endosulfan Sulfate ND 0.001 1 1 Endrin ND 0.001 Endrin Aldehvde ND 0.001 1 Endrin Ketone ND 0.001 1 Heptachlor Epoxide 0.001 ND 1 1 ND 0.001 Heptachlor ND 0.001 1_ Methoxyclor 0.020 1 Toxaphene ND PCB-1016 ND 0.010 1 PCB-1221 ND 0.010 1 ND 0.010 1 PCB-1232 0.010 1 PCB-1242 ND ND 0.010 1 PCB-1248 0.010 1 ND PCB-1254 PCB-1260 ND 0.010 1

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Non detected or below the Actual Detection Limit

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER	: Kleinfelder
	620 W. 16th Street, Unit #F
	Long Beach, CA 90813
	Tel(562)432-1696 Fax(562)432-1796
PROJECT:	Artic

PROJECT No.: 103567/Env 2 MATRIX:SOIL DATE SAMPLED:09/22/09

REPORT TO:Mr. BERT VOGLER

DATE RECEIVED: 09/22/09 DATE EXTRACTED: 09/23/09 DATE ANALYZED: 09/24/09 DATE REPORTED: 09/30/09

SAMPLE I.D.: B-5-30

LAB I.D.: 090923-7

Organochlorine Pesticides & PCBs Analysis

Method: EPA 8081A/8082

Unit: Mg/Kg = Milligram per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
Aldrin	ND	0.001	1
alpha-BHC	ND	0.001	1
beta-BHC	ND	0.001	1
gamma-BHC (Lindane)	ND	0.001	1
delta-BHC	ND	0.001	1
alpha-Chlordane	ND	0.001	1
gamma-Chlordane	ND	0.001	1
Total Chlordane (Technical)	ND	0.005	1
4,4'-DDD	ND	0.001	1
4,4'-DDE	ND	0.001	1
4,4'-DDT	ND	0.001	1
Dieldrin	ND	0.001	1
Endosulfan I	ND	0.001	1
Endosulfan II	ND	0.001	1
Endosulfan Sulfate	ND	0.001	1
Endrin	ND	0.001	1
Endrin Aldehyde	ND	0.001	1
Endrin Ketone	ND	0.001	1
Heptachlor Epoxide	ND	0.001	1
Heptachlor	ND	0.001	1
Methoxyclor	ND	0.001	1
Toxaphene	ND	0.020	1
PCB-1016	ND	0.010	1
PCB-1221	ND	0.010	1
PCB-1232	ND	0.010	1
PCB-1242	ND	0.010	1
PCB-1248	ND	0.010	1
PCB-1254	ND	0.010	1
PCB-1260	ND	0.010	1

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Non detected or below the Actual Detection Limit

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER	: Kleinfelder
	620 W. 16th Street, Unit #F
	Long Beach, CA 90813
	Tel(562)432-1696 Fax(562)432-1796
PROJECT:	Artic

PROJECT No.: 103567/Env 2 MATRIX:SOIL

REPORT TO: Mr. BERT VOGLER

DATE RECEIVED:<u>09/22/09</u> DATE EXTRACTED:<u>09/23/09</u> DATE ANALYZED:<u>09/24/09</u> DATE REPORTED:<u>09/30/09</u>

SAMPLE I.D.: 8-5-40

DATE SAMPLED:09/22/09

LAB I.D.: 090923-8

Organochlorine Pesticides & PCBs Analysis Method: EPA 8081A/8082

Unit: Mg/Kg = Milligram per Kilogram = PPM

PARAMETER SAMPLE RESULT PQL DF Aldrin ND 0.001 1 alpha-BHC 1 ND 0.001 beta-BHC ND 0.001 1 gamma-BHC (Lindane) ND 0.001 1 delta-BHC ND 0.001 1 alpha-Chlordane ND 0.001 1 gamma-Chlordane ND 0.001 1 Total Chlordane (Technical) ND 0.005 1 4,4'-DDD ND 0.001 1 4,4'-DDE ND 0.001 1 4,4'-DDT ND 0.001 1 Dieldrin ND 0.001 1 Endosulfan I ND 0.001 1 Endosulfan II ND 0.001 1 Endosulfan Sulfate ND 0.001 1 Endrin ND 0.001 1 Endrin Aldehvde ND 0.001 1 Endrin Ketone ND 0.001 1 Heptachlor Epoxide ND 0.001 1____ Heptachlor ND 0.001 1 Methoxyclor ND 0.001 1 Toxaphene ND 0.020 1 PCB-1016 ND 0.010 1 PCB-1221 ND 0.010 1 PCB-1232 ND 0.010 1 PCB-1242 ND 0.010 1 PCB-1248 ND 0.010 1 PCB-1254 ND 0.010 1 PCB-1260 ND 0.010 1

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Non detected or below the Actual Detection Limit

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796

PROJECT: Artic

PROJECT No.: 103567/Env 2DATE RECEIVED:09/22/09MATRIX:SOILDATE EXTRACTED:09/23/09DATE SAMPLED:09/22/09DATE ANALYZED:09/24/09REPORT TO:Mr. BERT VOGLERDATE REPORTED:09/30/09

SAMPLE I.D.: 8-5-50

LAB I.D.: 090923-9

Organochlorine Pesticides & PCBs Analysis

Method: EPA 8081A/8082

Unit: Mg/Kg = Milligram per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
Aldrin	ND	0.001	1
alpha-BHC	ND	0.001	1
beta-BHC	ND	0.001	1
gamma-BHC (Lindane)	ND	0.001	1
delta-BHC	ND	0.001	1
alpha-Chlordane	ND	0.001	1
gamma-Chlordane	ND	0.001	11
Total Chlordane (Technical)	ND	0.005	1
4,4'-DDD	ND	0.001	1
4,4'-DDE	ND	0.001	1
4,4'-DDT	ND	0.001	1
Dieldrin	ND	0.001	1
Endosulfan I	ND	0.001	1
Endosulfan II	ND	0.001	11
Endosulfan Sulfate	ND	0.001	1
Endrin	ND	0.001	1
Endrin Aldehyde	ND	0.001	1
Endrin Ketone	ND	0.001	1
Heptachlor Epoxide	ND	0.001	1
Heptachlor	ND	0.001	1
Methoxyclor	ND	0.001	11
Toxaphene	ND	0.020	1
PCB-1016	ND	0.010	1
PCB-1221	ND	0.010	1
PCB-1232	ND	0.010	1
PCB-1242	ND	0.010	1
PCB-1248	ND	0.010	1
PCB-1254	ND	0.010	1
PCB-1260	ND	0.010	1

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Non detected or below the Actual Detection Limit

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796

PROJECT: Artic PROJECT No.: 103567/Env 2

MATRIX:<u>SOIL</u> DATE SAMPLED:<u>09/22/09</u>

REPORT TO:Mr. BERT VOGLER

DATE EXTRACTED: 09/23/09 DATE ANALYZED: 09/24/09 DATE REPORTED: 09/30/09

.............

DATE RECEIVED:09/22/09

SAMPLE I.D.: 8-3-1.5

LAB I.D.: 090923-10

Organochlorine Pesticides & PCBs Analysis Method: EPA 8081A/8082

Unit: Mg/Kg = Milligram per Kilogram = PPM

PARAMETER SAMPLE RESULT DF PQL Aldrin 1 ND 0.001 alpha-BHC ND 0.001 beta-BHC 0.001 1 ND gamma-BHC (Lindane) ND 0.001 1 delta-BHC ND 1 0.001 alpha-Chlordane ND 0.001 1 gamma-Chlordane 1 ND 0.001 Total Chlordane (Technical) ND 0.005 1 4,4'-DDD ND 0.001 1 4,4'-DDE ND 0.001 1 4,4'-DDT ND 0.001 1 Dieldrin ND 0.001 1 Endosulfan I ND 0.001 1 Endosulfan II ND 0.001 1 1___ Endosulfan Sulfate ND 0.001 Endrin ND 0.001 1 Endrin Aldehvde ND 0.001 1 Endrin Ketone ND 0.001 1 Heptachlor Epoxide 1____ ND 0.001 Heptachlor ND 1 0.001 Methoxyclor 1 ND 0.001 Toxaphene ND 0.020 1 1 PCB-1016 ND 0.010 PCB-1221 ND 0.010 1 ND 0.010 PCB-1232 1 PCB-1242 ND 0.010 1 1____ PCB-1248 ND 0.010 ND 1 PCB-1254 0.010 PCB-1260 ND 0.010 1

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Non detected or below the Actual Detection Limit

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796

PROJECT: Artic PROJECT No.: 103567/Env 2

MATRIX:SOIL

DATE SAMPLED:09/22/09 REPORT TO:Mr. BERT VOGLER

DATE EXTRACTED: 09/23/09 DATE ANALYZED:09/24/09 DATE REPORTED: 09/30/09

DATE RECEIVED: 09/22/09

SAMPLE I.D.: B-3-5

LAB I.D.: 090923-11

Organochlorine Pesticides & PCBs Analysis

Method: EPA 8081A/8082

Unit: Mg/Kg = Milligram per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
Aldrin	ND	0.001	1
alpha-BHC	ND	0.001	1
beta-BHC	ND	0.001	1
gamma-BHC (Lindane)	ND	0.001	1
delta-BHC	ND	0.001	1
alpha-Chlordane	ND	0.001	1
gamma-Chlordane	ND	0.001	1
Total Chlordane (Technical)	ND	0.005	1
4,4'-DDD	ND	0.001	1
4,4'-DDE	ND	0.001	1
4,4'-DDT	ND	0.001	1
Dieldrin	ND	0.001	1
Endosulfan I	ND	0.001	1
Endosulfan II	ND	0.001	1
Endosulfan Sulfate	ND	0.001	1
Endrin	ND	0.001	1
Endrin Aldehyde	ND	0.001	1
Endrin Ketone	ND	0.001	1
Heptachlor Epoxide	ND	0.001	1
Heptachlor	ND	0.001	1
Methoxyclor	ND	0.001	1
Toxaphene	ND	0.020	1
PCB-1016	ND	0.010	1
PCB-1221	ND	0.010	1
PCB-1232	ND	0.010	1
PCB-1242	ND	0.010	1
PCB-1248	ND	0.010	1
PCB-1254	ND	0.010	1
PCB-1260	ND	0.010	1

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Non detected or below the Actual Detection Limit

Data Reviewed and Approved by: CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796

PROJECT: Artic PROJECT No.: 103567/Env 2

MATRIX: SOIL

DATE SAMPLED: 09/22/09 REPORT TO:Mr. BERT VOGLER

DATE RECEIVED:<u>09/22/09</u> DATE EXTRACTED:<u>09/23/09</u> DATE ANALYZED:<u>09/24/09</u> DATE REPORTED:<u>09/30/09</u>

SAMPLE I.D.: B-3-10

LAB I.D.: 090923-12

Organochlorine Pesticides & PCBs Analysis Method: EPA 8081A/8082

Unit: Mg/Kg = Milligram per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
Aldrin	ND	0.001	1
alpha-BHC	ND	0.001	1
beta-BHC	ND	0.001	1
gamma-BHC (Lindane)	ND	0.001	1
delta-BHC	ND	0.001	1
alpha-Chlordane	ND	0.001	1
gamma-Chlordane	ND	0.001	1
Total Chlordane (Technical)	ND	0.005	1
4,4'-DDD	ND	0.001	1
4,4'-DDE	ND	0.001	1
4,4'-DDT	ND	0.001	1
Dieldrin	ND	0.001	1
Endosulfan I	ND	0.001	1
Endosulfan II	ND	0.001	1
Endosulfan Sulfate	ND	0,001	1
Endrin	ND	0.001	1
Endrin Aldehyde	ND	0.001	1
Endrin Ketone	ND	0.001	1
Heptachlor Epoxide	ND	0.001	1
Heptachlor	ND	0.001	1
Methoxyclor	ND	0.001	1
Toxaphene	ND	0.020	1
PCB-1016	ND	0.010	1
PCB-1221	ND	0.010	1
PCB-1232	ND	0.010	1
PCB-1242	ND	0.010	1
PCB-1248	ND	0.010	1
PCB-1254	ND	0.010	1
PCB-1260	ND	0.010	1

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF

ND = Non detected or below the Actual Detection Limit

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796

PROJECT: Artic

PROJECT No.: 103567/Env 2DATE RECEIVED:09/22/09MATRIX:SOILDATE EXTRACTED:09/23/09DATE SAMPLED:09/22/09DATE ANALYZED:09/24/09REPORT TO:Mr. BERT VOGLERDATE REPORTED:09/30/09

SAMPLE I.D.: B-3-20

LAB I.D.: 090923-13

Organochlorine Pesticides & PCBs Analysis Method: EPA 8081A/8082

Unit: Mg/Kg = Milligram per Kilogram = PPM

PARAMETER DF SAMPLE RESULT POL Aldrin ND 0.001 1 alpha-BHC ND 0.001 1 beta-BHC ND 0.001 1 gamma-BHC (Lindane) ND 0.001 1 delta-BHC 0.001 ND 1 alpha-Chlordane ND 0.001 1 gamma-Chlordane ND 0.001 1 Total Chlordane (Technical) ND 0.005 1 4,4'-DDD ND 0.001 1 4,4'-DDE ND 0.001 1 4,4'-DDT ND 0.001 1 Dieldrin ND 0.001 1 Endosulfan I ND 0.001 1 Endosulfan II ND 0,001 1 1___ Endosulfan Sulfate 0.001 ND Endrin ND 0.001 1 Endrin Aldehyde ND 0.001 1 Endrin Ketone ND 0.001 1 Heptachlor Epoxide 1____ ND 0.001 Heptachlor ND 0.001 1 1 Methoxyclor ND 0.001 ND 0.020 1 Toxaphene 0.010 1____ PCB-1016 ND PCB-1221 ND 0.010 1 0.010 PCB-1232 ND 1 1 ND 0.010 PCB-1242 1 PCB-1248 ND 0.010 1 PCB-1254 ND 0.010 PCB-1260 ND 0.010 1

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Non detected or below the Actual Detection Limit

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796

PROJECT: Artic PROJECT No.: 103567/Env 2

MATRIX:<u>SOIL</u> DATE SAMPLED:09/22/09

REPORT TO:Mr. BERT VOGLER

SAMPLE I.D.: 8-3-30

LAB I.D.: 090923-14

DATE RECEIVED: 09/22/09

DATE EXTRACTED:09/23/09

DATE ANALYZED:09/24/09

DATE REPORTED:09/30/09

Organochlorine Pesticides & PCBs Analysis Method: EPA 8081A/8082

Unit: Mg/Kg = Milligram per Kilogram = PPM

PARAMETER DF SAMPLE RESULT POL Aldrin ND 0.001 1 alpha-BHC ND 0.001 1 beta-BHC ND 0.001 1 gamma-BHC (Lindane) ND 0.001 1_ delta-BHC ND 0.001 1 alpha-Chlordane 1 ND 0.001 gamma-Chlordane ND 0.001 1 Total Chlordane (Technical) 1 ND 0.005 4,4'-DDD 0.001 1____ ND 4,4'-DDE 0.001 1 ND 4,4'-DDT ND 0.001 1 Dieldrin 0.001 1 ND Endosulfan I ND 0.001 1 Endosulfan II ND 0.001 1 0.001 Endosulfan Sulfate 1 ND Endrin ND 0.001 1____ Endrin Aldehyde ND 0.001 1 Endrin Ketone ND 0.001 1 Heptachlor Epoxide 0.001 1 ND 1 Heptachlor ND 0.001 Methoxyclor 0.001 1 ND 1 Toxaphene ND 0.020 1 PCB-1016 ND 0.010 PCB-1221 ND 0.010 1 ND 0.010 PCB-1232 1 0.010 1 ND PCB-1242 ND 0.010 1 PCB-1248 ND 0.010 1 PCB-1254 PCB-1260 ND 0.010 1

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit Actual Detection Limit = POL X DF

Netual Detection Dimit = FQD X DF

ND = Non detected or below the Actual Detection Limit

N
1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER	: Kleinfelder
	620 W. 16th Street, Unit #F
	Long Beach, CA 90813
	Tel(562)432-1696 Fax(562)432-1796
PROJECT :	Artic

PROJECT No.: 103567/Env 2

DATE RECEIVED: 09/22/09 MATRIX: SOIL DATE EXTRACTED:09/23/09 DATE SAMPLED:09/22/09 DATE ANALYZED:09/24/09 REPORT TO: Mr. BERT VOGLER DATE REPORTED: 09/30/09

SAMPLE I.D.: B-3-40

LAB I.D.: 090923-15

Organochlorine Pesticides & PCBs Analysis Method: EPA 8081A/8082

Unit: Mg/Kg = Milligram per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
Aldrin	ND	0.001	1_
alpha-BHC	ND	0.001	1
beta-BHC	ND	0.001	1_
gamma-BHC (Lindane)	ND	0.001	1
delta-BHC	ND	0.001	1
alpha-Chlordane	ND	0.001	1
gamma-Chlordane	ND	0.001	1
Total Chlordane (Technical)	ND	0.005	1
4,4'-DDD	ND	0.001	1
4,4'-DDE	ND	0.001	1
4,4'-DDT	ND	0.001	1
Dieldrin	ND	0.001	1
Endosulfan I	ND	0.001	1
Endosulfan II	ND	0.001	1
Endosulfan Sulfate	ND	0.001	1
Endrin	ND	0.001	1
Endrin Aldehyde	ND	0.001	1
Endrin Ketone	ND	0.001	1
Heptachlor Epoxide	ND	0.001	1
Heptachlor	ND	0.001	1
Methoxyclor	ND	0.001	1
Toxaphene	ND	0.020	1
PCB-1016	ND	0.010	1
PCB-1221	ND	0.010	1
PCB-1232	ND	0.010	1
PCB-1242	ND	0.010	1
PCB-1248	ND	0.010	1
PCB-1254	ND	0.010	1
PCB-1260	ND	0.010	1

COMMENTS

DF = Dilution Factor

POL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Non detected or below the Actual Detection Limit

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796

PROJECT: Artic PROJECT No.: 103567/Env 2

MATRIX:<u>SOIL</u> DATE SAMPLED:<u>09/22/09</u> REPORT TO:Mr. BERT VOGLER DATE RECEIVED:<u>09/22/09</u> DATE EXTRACTED:<u>09/23/09</u> DATE ANALYZED:<u>09/24/09</u> DATE REPORTED:<u>09/30/09</u>

SAMPLE I.D.: B-3-50

LAB I.D.: 090923-16

Organochlorine Pesticides & PCBs Analysis Method: EPA 8081A/8082

Unit: Mg/Kg = Milligram per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
Aldrin	ND	0.001	1
alpha-BHC	ND	0.001	1
beta-BHC	ND	0.001	1
gamma-BHC (Lindane)	ND	0.001	1
delta-BHC	ND	0.001	1
alpha-Chlordane	ND	0.001	1
gamma-Chlordane	ND	0.001	1
Total Chlordane (Technical)	ND	0.005	1
4,4'-DDD	ND	0.001	1
4,4'-DDE	ND	0.001	1
4,4'-DDT	ND	0.001	1
Dieldrin	ND	0.001	1
Endosulfan I	ND	0.001	1
Endosulfan II	ND	0.001	1
Endosulfan Sulfate	ND	0.001	1
Endrin	ND	0.001	1
Endrin Aldehyde	ND	0.001	1
Endrin Ketone	ND	0.001	1
Heptachlor Epoxide	ND	0.001	1
Heptachlor	ND	0.001	1
Methoxyclor	ND	0.001	1
Toxaphene	ND	0.020	1
PCB-1016	ND	0.010	1
PCB-1221	ND	0.010	1
PCB-1232	ND	0.010	1
PCB-1242	ND	0.010	1
PCB-1248	ND	0.010	1
PCB-1254	ND	0.010	1
PCB-1260	ND	0.010	1

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF

ND = Non detected or below the Actual Detection Limit

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

METHOD BLANK REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: Artic

PROJECT No.: 103567/Env 2 MATRIX:SOIL DATE SAMPLED:09/22/09 REPORT TO:Mr. BERT VOGLER DATE RECEIVED: 09/22/09 DATE EXTRACTED: 09/23/09 DATE ANALYZED: 09/24/09 DATE REPORTED: 09/30/09

METHOD BLANK FOR LAB I.D.: 090923-3 THROUGH -16

Organochlorine Pesticides & PCBs Analysis Method: EPA 8081A/8082

Unit: Mg/Kg = Milligram per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
Aldrin	ND	0.001	1
alpha-BHC	ND	0.001	1
beta-BHC	ND	0.001	1
gamma-BHC (Lindane)	ND	0.001	1
delta-BHC	ND	0.001	1
alpha-Chlordane	ND	0.001	1
gamma-Chlordane	ND	0.001	1
Total Chlordane (Technical)	ND	0.005	1
4,4'-DDD	ND	0.001	1
4,4'-DDE	ND	0.001	1
4,4'-DDT	ND	0.001	1
Dieldrin	ND	0.001	1
Endosulfan I	ND	0.001	1
Endosulfan II	ND	0.001	1
Endosulfan Sulfate	ND	0.001	1
Endrin	ND	0.001	1
Endrin Aldehyde	ND	0.001	1
Endrin Ketone	ND	0.001	1
Heptachlor Epoxide	ND	0.001	1
Heptachlor	ND	0.001	1
Methoxyclor	ND	0.001	1
Toxaphene	ND	0.020	1
PCB-1016	ND	0.010	1
PCB-1221	ND	0.010	1
PCB-1232	ND	0.010	1
PCB-1242	ND	0.010	1
PCB-1248	ND	0.010	1
PCB-1254	ND	0.010	1
PCB-1260	ND	0.010	1

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Non detected or below the Actual Detection Limit

Enviro-Chem, Inc.									
1214 E. Lexingion Avenue, Ротопа, СА 91766 — Теі (909)590-5905 - Fax (909)590-5907									
	EPA 8081 QA/QC Report								
							-		
Matrix:	<u>Soil/So</u>	lid			Date Analy	zed:	<u>9/23~24/20</u>	009	
Unit:	<u>mq/Kg</u>								
<u>Matrix Spike (MŞ</u>	;)/Matrix Spil	e Duplicate	(MSD)						
<u>Spiked Sample L</u>	.ab I.D.:		<u>090923-8</u>	MS/MSD					
Analyte	S.R.	spk conc	MS	%REC	MSD	%ŘEC	%RPD	ACP %RPD	ACP %REC
Gamma-8HC	0.000	0.0500	0.0356	71%	0.0354	71%	1%	0-20%	70-130
Aldrin	0.000	0.0500	0.0421	84%	0.0433	87%	3%	0-20%	70-130
4,4-DDE	0 000	0.0500	0.0364	73%	0.0368	74%	1%	0-20%	70-130
Lab Control Spike (LCS) Recovery:									
Analyte	spk conc	LCS	% REĈ	ACP 5	%REC	1			
Gamma-BHC	0.00500	0.00541	108%	75-	125				
Aldrin	0.00500	0.00376	75%	75-	125				
4,4-DDE	0.00500	0.00398	80%	75-	125				
Dieldrín	0.00500	0.00412	82%	75.	125				
Surrogate Recove	лy	ACP%	%REC	%REC	%REC	%REC	%REC	%REC	%REC
Sample I.D.			MB	090923-3	090923-4	090923-5	090923-6	090923-7	090923-8
Tetra-chloro-meta	-xylene	50-150	73%	86%	75%	78%	129%	78%	81%
Decachlorobiphen	iyl 🦳	50-150	90%	93%	89%	103%	107%	109%	119%
Surrogate Recove	ery .	%REC	%REC	%REC	%REC	%REC	%REC	%REC	%REC
Sample I.O.		090923-9	090923-10	090923-11	090923-12	090923-13	090923-14	090923-15	090923-18
Tetra-chloro-meta-xylene		81%	80%	76%	82%	80%	81%	74%	76%
Decachioropipher	1 y i	100%	94%	91%	101%	98%	111%	90%	92%
Surrogate Recove	iry	%REC	%REC	%REĈ	%REC	%REC	%REC	1	
Sample I.D.						<u> </u>		1	
Tetra-chloro-meta	-xylene							1	
Decachloroblpher	Ŋ]	
			• - P						
S.R. = Sampia Result			= Sunogaia . Nata: LCS M	ran uua to mau e Men ara in		i (il Markeu) Iom coeulie =	n (n control		
spk conc = Spike Con	centration		NO18. 203, M	3, MgD Bla III	CONDOL fuere				
	overy -51- Docest DD	D D							
	able Percent RP	D Kange							
	adia Percani Re								
Analyzed and Review	wed By:	11							
Final Reviewer:	Ð	-							
L									

Enviro-Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909)590-5905 Fax (909)590-5907								
QA/QC Report								
		An	alysis: E	PA 808	2 (PCB)			
Matrix: Unit:	<u>Soil/S</u> mg/Kg (PP	olid M)			Date Analy	vzed:	<u>9/23~24/20</u>	009
Matrix Spike (MS)/Matrix Spike Duplicate (MSD) Spiked Sample Lab I.D.: <u>090923-8 MS/MSD</u>								
Analyte	spk conc	MS	%REC	MSD	%REC	%RPD	ACP % RPD	ACP %REC
PCB (1016+1260)	1.00	0.892	89%	0.952	95%	7%	0-20%	70-130
LCS STD RECO	SPK CONC	LCS	% REC	ACP 75.	%REC]		
spk conc = Spik %REC = Percer ACP %RPD = A ACP %REC = A Analyzed and I	Analyte spk conc LCS % REC ACP %REC PCB (1016+1260) 0.100 0.109 109% 75-125 spk conc = Spike Concentration % % % %REC = Percent Recovery ACP %RPD = Acceptable Percent RPD Range ACP %REC = Acceptable Percent Recovery Range ACP %REC = Acceptable Percent Recovery Range Analyzed and Reviewed By: $\mathcal{T}_{\!\!}$							
Final Reviewer	. (2	~	_					

	1 mila	IPHOUEUT NAME		l		111	1/1/20/00	1 1 1 RECEIVING LAB
103569	Z MAZ +	DITAN		ON	TYPE	100/00/00/	1 1 1 10/00	// muisochen
ON OA)	SAMPLEHS	Signature/Nurriburi		*	5	20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3////	
UATE	SAMPLE LTI TIME HIMMANSS	SAMPLE ID	MATHON	tauners	A PARA	(2) 5) 5 (2) (2) 2) (2) (2)	1111	11
9/22/09	あった	8-5-1-5	TIOS	\$	Hn/ +	XXXX		090923-3
-	かいた	8-5-5	1	5	ITTE/	1111		-4-
	6.00	B-5-10		5	-			12
	£1:8	8-5-20		2	P			9-
	£2:8	8-5-30		5	Ne al			2-1
	54:9	B-5-40		5	Here / Ves			1
	0:6	8-5-29		5	P			01
	11:52	8-3-15		5	tte/ vet			01
	12:21	8-3-5		5	an/an			-1-
	12:33	8-2-10	-	5	-			2-1
	Shi21	0-3-20		5				-13
-	10:51	8-3-30		5				1-1+
~	13:11	8340		5	-			41
*	13:25	8-3-20	-\$	5	P	4 4 4 4		91-
						-		
						_		
Returnation D	(Segnatiant)	DateTime	Change best bonn			vistuations/Bomarks:		Sond Amultis To:
Mull.	V. (Semistree)	9/22/05/15:55 June	NICLER wed ny (Signature	the	1	STANDARD T-	4-1	HEINTELLER 100 W. 16TH ST., STE.F
Acle	}	023/07/10:00	w	0				The server ict
Helindushed b	leantitudes) (A	7 Dath/Time Face	wed for Laboratory	r by: (Signati,	in.			ALL CHEL VOLLC

Enviro – Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

Date: October 1, 2009

Mr. Bert Vogler
Kleinfelder
620 W. 16th Street, Unit #F
Long Beach, CA 90813
Tel(562)432-1696 Fax(562)432-1796

Project: Artic Project No.: 103567/Env 2 Lab I.D.: 090924-46 through -52

Dear Mr. Vogler:

The **analytical results** for the soil samples, received by our lab on September 23, 2009, are attached. The samples were received chilled, intact and accompanying chain of custody.

Enviro-Chem appreciates the opportunity to provide you and your company this and other services. Please do not hesitate to call us if you have any questions.

Sincerely,

Curtis Desilets Vice President/Program Manager

Andy Wang Laboratory Manager

Eric Lu, Ph.D. Chief Chemist

Enviro – Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER :	Kleinfelder							
	620 W. 16th Street,	Unit #F						
	Long Beach, CA 9081	3						
	Tel(562)432-1696 Fa	x (562) 432-1	796					
PROJECT: Ar	tic	1941/1920/00/00/2020						
PROJECT No.	: 103567/Env 2		DATE REC	EIVED:09/2	3/09			
MATRIX: SOIL	no entre entre service services.	DATE EXTRACTED:09/24/09						
DATE SAMPLE	D:09/23/09		DATE ANA	LYZED: 09/2	4/09			
REPORT TO:M	Ir. BERT VOGLER		DATE REP	ORTED: 10/0	1/09			
TOTA	L PETROLEUM HYDROCA	RBONS (TPH)	- CARBON CI	HAIN ANALYS	IS			
	UNIT: MG/KG = MI	LLIGRAM PE	R KILOGRAM	= PPM				
SAMPLE I.D.	LAB I.D.	64-610	011-022	023-035	DF			
B-4-1	090924-46	ND	ND	ND	1			
B-4-5	090924-47	ND	ND	ND	1			
B-4-10	090924-48	ND	ND	ND	1			
B-4-20	090924-49	ND	ND	ND	1			
B-4-30	090924-50	ND	ND	ND	1			
B-4-40	090924-51	ND	ND	ND	1			
B-4-50	090924-52	ND	ND	ND	1			
METHOD BLAN	чк	ND	ND	ND	1			
	POL	10	10	50				
COMMENTS	- 2-	1.00	F2.5	2.52				
C4 - C10 = G7	ASOLINE RANGE							
C11 - C22 = I	DIESEL RANGE							
C23 - C35 = 1	MOTOR OIL RANGE							
DF = DILUT	ION FACTOR							
PQL = PRAC	FICAL QUANTITATION 1	TIMIT						
ACTUAL DETI	ECTION LIMIT = DF X	PQL						
ND = NON-DI	ETECTED OR BELOW THE	ACTUAL DET	FECTION LIM	IT				
Data Review	wed and Approved by	- PM						

CAL-DHS ELAP CERTIFICATE No.: 1555

Enviro Chem, Inc										
1214 E. Le	1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909)590-5905 Fax (909)590-5907									
	8015B Soil/Solid QC									
Date Analyzec	I:	9/24/20	09				Units:	mg/Kg (P	P <u>M)</u>	
Matrix:	<u>Solid</u>	/Slud	ge							
Matrix Spike (MS)/Matrix Spike Duplicate (MSD)										
Spiked Sampl	e Lab I.D	.:	09092	24-52 M	NS/MS	D				
Analyte	SR	sok conc	MS	%MS	MSD	%MSD	%RPD	ACP %MS	ACP RPD	
C11-C22 Range	0	2500	2183	87%	2181	87%	0%	75-125	0-20%	
Analyte C11~C22 Range	Spk conc 200	LCS 195	% REC 98%	ACP 75-125						
Surrogate Recovery	ACP%	%REC	%REC	%REC	%REC	%REC	%REC	%REC	%REC	
Sample I.D.		MB	090824-46	090824-47	090824-48	090824-49	090824-50	090824-51	090824-52	
O-Terphenyl	60-140%	99%	71%	116%	92%	81%	73%	102%	82%	
Octacosane	60-140%	93%	111%	117%	116%	108%	112%	117%	102%	
Surrogate Recovery	ACP%	%REC	%REC	%REC	%REC	%REC	%REC	%REC	%REC	
O Tembeoul	60-140%									
Octacosane	60-140%	-								
		-								
Surrogate Recovery	ACP%	%REC	%REC	%REC	%REC	%REC				
Sample I.D.										
O-Terphenyl	60-140%		1							
Octacosane	60-140%									
Analyzed and Reviewed By: * = Surrogate fail due to matrix interference Final Reviewer: OB * = Surrogate fail due to matrix interference Note: LCS, MS, MSD are in control therefore results are in control.										

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: Artic PROJECT No.: 103567/Env 2

MATRIX:<u>SOIL</u> DATE SAMPLED:<u>09/23/09</u> REPORT TO:<u>Mr. BERT VOGLER</u> SAMPLE I.D.: **B-4-1** DATE RECEIVED: 09/23/09 DATE ANALYZED: 09/24/09 DATE REPORTED: 10/01/09 LAB I.D.: 090924-46

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4 - CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1, 2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1, 2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

--- TO BE CONTINUED ON PAGE #2 -----

DATA REVIEWED AND APPROVED BY:____

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel (562) 432-1696 Fax (562) 432-1796 PROJECT: Artic PROJECT No.: 103567/Env 2

MATRIX:SOIL DATE SAMPLED: 09/23/09

REPORT TO: Mr. BERT VOGLER SAMPLE I.D.: B-4-1

DATE RECEIVED:09/23/09 DATE ANALYZED:09/24/09 DATE REPORTED: 10/01/09 LAB I.D.: 090924-46

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4 - ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	0.005	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1, 2, 4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005
IT WERE A THE A THE ATTACK AND A RECEIPTION OF A DRIVEN AND A DRIVEN	a set of second s	

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL DATA REVIEWED AND APPROVED BY:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: Artic

PROJECT No.: 103567/Env 2

MATRIX: SOIL DATE SAMPLED: 09/23/09

REPORT TO:Mr. BERT VOGLER SAMPLE I.D.: B-4-5 DATE RECEIVED: 09/23/09 DATE ANALYZED: 09/24/09 DATE REPORTED: 10/01/09 LAB I.D.: 090924-47

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4 - CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1, 2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

---- TO BE CONTINUED ON PAGE #2 -----

DATA REVIEWED AND APPROVED BY:__

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: Artic PROJECT No.: 103567/Env 2

MATRIX:SOIL DATE SAMPLED:09/23/09 REPORT TO:Mr. BERT VOGLER SAMPLE I.D.: B-4-5

DATE RECEIVED:09/23/09 DATE ANALYZED:09/24/09 DATE REPORTED: 10/01/09 LAB I.D.: 090924-47

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1, 3-DICHLOROPROPANE	ND	0.005
2, 2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4 - ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	0.011	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1, 1, 1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL 10

DATA REVIEWED AND APPROVED BY:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: Artic PROJECT No.: 103567/Env 2 MATRIX:SOIL DATE SAMPLED:09/23/09

DATE RECEIVED:<u>09/23/09</u> DATE ANALYZED:<u>09/24/09</u> DATE REPORTED:<u>10/01/09</u> LAB I.D.: 090924-48

SAMPLE I.D.: B-4-10

REPORT TO:Mr. BERT VOGLER

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2 - CHLOROTOLUENE	ND	0.005
4 - CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1, 2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1, 3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1, 2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1, 2-DICHLOROPROPANE	ND	0.005

----- TO BE CONTINUED ON PAGE #2 -----

all

DATA REVIEWED AND APPROVED BY:____

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER :	Kleinfelder	
	620 W. 16th Street, Unit #F	
	Long Beach, CA 90813	
	Tel(562)432-1696 Fax(562)432	-1796
PROJECT: A	Artic	
PROJECT No	D.: 103567/Env 2	
MATRIX: SOI	L	DA
DATE SAMPL	ED:09/23/09	DA'

DATE	RECEIVED: 09/23/09	
DATE	ANALYZED: 09/24/09	
DATE	REPORTED: 10/01/09	
LAB	D.: 090924-48	

SAMPLE I.D.: B-4-10

PARAMETER

REPORT TO:Mr. BERT VOGLER

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2 UNIT

:	mg/Kg	=	MILLIGRAM	PER	KILOGRAM	=	PPM	
			SAMPLE	RESU	LT		PQL X1	

C FIL WILL DE LET C	orare ne resourt	* X
1, 3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1,3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4 - ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1, 1, 1, 2-TETRACHLOROETHANE	ND	0.005
1, 1, 2, 2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	0.024	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1, 1, 1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

ND = NON-DETECTED OR BELOW THE PQL

DATA REVIEWED AND APPROVED BY:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: Artic PROJECT No.: 103567/Env 2 MATRIX:SOIL DATE SAMPLED:09/23/09 Di

DATE RECEIVED: <u>09/23/09</u> DATE ANALYZED: <u>09/24/09</u> DATE REPORTED: <u>10/01/09</u> LAB I.D.: 090924-49

SAMPLE I.D.: B-4-20 LAB I.D.: 090924-49

REPORT TO: Mr. BERT VOGLER

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2

UNIT:	mg/Kg	=	MILLIGRAM	PER	KILOGRAM	=	PPM

PARAMETER	SAMPLE RESULT	POL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2 - CHLOROTOLUENE	ND	0.005
4 - CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1, 2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1, 2-DICHLOROPROPANE	ND	0.005

---- TO BE CONTINUED ON PAGE #2 -----

DATA REVIEWED AND APPROVED BY:____

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER:	Kleinfelder	
	620 W. 16th Street, Unit #F	
	Long Beach, CA 90813	
	Tel(562)432-1696 Fax(562)432-1796	
PROJECT: A	rtic	
PROJECT No	.: 103567/Env 2	
MATRIX: SOI	Ľ	17

DATE SAMPLED: 09/23/09 REPORT TO: Mr. BERT VOGLER

SAMPLE I.D.: B-4-20

DATE RECEIVED: 09/23/09
DATE ANALYZED: 09/24/09
DATE REPORTED: 10/01/09
LAB I.D.: 090924-49

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	POL X1
1, 3-DICHLOROPROPANE	ND	0.005
2, 2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1, 1, 1, 2-TETRACHLOROETHANE	ND	0.005
1, 1, 2, 2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	0.005	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1, 1, 1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL

DATA REVIEWED AND APPROVED BY:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: Artic PROJECT No.: 103567/Env 2

MATRIX:SOILDATE RECEDATE SAMPLED:09/23/09DATE ANALREPORT TO:Mr. BERT VOGLERDATE REPCSAMPLE I.D.: B-4-30LAB I.D.:

DATE RECEIVED:<u>09/23/09</u> DATE ANALYZED:<u>09/24/09</u> DATE REPORTED:<u>10/01/09</u> LAB I.D.: 090924-50

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4 - CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1, 2-DICHLOROBENZENE	ND	0.005
1, 3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1, 2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

---- TO BE CONTINUED ON PAGE #2 -----

Al

DATA REVIEWED AND APPROVED BY:__

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel (562) 432-1696 Fax (562) 432-1796 PROJECT: Artic PROJECT No.: 103567/Env 2 MATRIX: <u>SOIL</u> DA DATE SAMPLED: <u>09/23/09</u> DA REPORT TO: <u>Mr. BERT VOGLER</u> DA SAMPLE I.D.: B-4-30 LA

...........

DATE RECEIVED:<u>09/23/09</u> DATE ANALYZED:<u>09/24/09</u> DATE REPORTED:<u>10/01/09</u> LAB I.D.: 090924-50

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1		
1, 3-DICHLOROPROPANE	ND	0.005		
2,2-DICHLOROPROPANE	ND	0.005		
1,1-DICHLOROPROPENE	ND	0.005		
CIS-1,3-DICHLOROPROPENE	ND	0.005		
TRANS-1, 3-DICHLOROPROPENE	ND	0.005		
ETHYLBENZENE	ND	0.005		
2-HEXANONE	ND	0.020		
HEXACHLOROBUTADIENE	ND	0.005		
ISOPROPYLBENZENE	ND	0.005		
4 - ISOPROPYLTOLUENE	ND	0.005		
4-METHYL-2-PENTANONE (MIBK)	ND	0.020		
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005		
METHYLENE CHLORIDE	ND	0.010		
NAPHTHALENE	ND	0.005		
N-PROPYLBENZENE	ND	0.005		
STYRENE	ND	0.005		
1, 1, 1, 2-TETRACHLOROETHANE	ND	0.005		
1,1,2,2-TETRACHLOROETHANE	ND	0.005		
TETRACHLOROETHENE (PCE)	ND	0.005		
TOLUENE	0.020	0.005		
1,2,3-TRICHLOROBENZENE	ND	0.005		
1,2,4-TRICHLOROBENZENE	ND	0.005		
1,1,1-TRICHLOROETHANE	ND	0.005		
1,1,2-TRICHLOROETHANE	ND	0.005		
TRICHLOROETHENE (TCE)	ND	0.005		
TRICHLOROFLUOROMETHANE	ND	0.005		
1,2,3-TRICHLOROPROPANE	ND	0.005		
1,2,4-TRIMETHYLBENZENE	ND	0.005		
1,3,5-TRIMETHYLBENZENE	ND	0.005		
VINYL CHLORIDE	ND	0.005		
M/P-XYLENE	ND	0.010		
O-XYLENE	ND	0.005		
COMMENTS PQL = PRACTICAL QUAN	TITATION LIMIT			

ND = NON-DETECTED OR BELOW THE PQL DATA REVIEWED AND APPROVED BY:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: Artic PROJECT No.: 103567/Env 2 MATRIX:SOIL DATE SAMPLED:09/23/09 REPORT TO:Mr. BERT VOGLER DA

DATE RECEIVED: 09/23/09 DATE ANALYZED: 09/24/09 DATE REPORTED: 10/01/09 LAB I.D.: 090924-51

.....

SAMPLE I.D.: B-4-40

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1		
ACETONE	ND	0.020		
BENZENE	ND	0.005		
BROMOBENZENE	ND	0.005		
BROMOCHLOROMETHANE	ND	0.005		
BROMODICHLOROMETHANE	ND	0.005		
BROMOFORM	ND	0.005		
BROMOMETHANE	ND	0.005		
2-BUTANONE (MEK)	ND	0.020		
N-BUTYLBENZENE	ND	0.005		
SEC-BUTYLBENZENE	ND	0.005		
TERT-BUTYLBENZENE	ND	0.005		
CARBON DISULFIDE	ND	0.010		
CARBON TETRACHLORIDE	ND	0.005		
CHLOROBENZENE	ND	0.005		
CHLOROETHANE	ND	0.005		
CHLOROFORM	ND	0.005		
CHLOROMETHANE	ND	0.005		
2 - CHLOROTOLUENE	ND	0.005		
4 - CHLOROTOLUENE	ND	0.005		
DIBROMOCHLOROMETHANE	ND	0.005		
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005		
1,2-DIBROMOETHANE	ND	0.005		
DIBROMOMETHANE	ND	0.005		
1,2-DICHLOROBENZENE	ND	0.005		
1,3-DICHLOROBENZENE	ND	0.005		
1,4-DICHLOROBENZENE	ND	0.005		
DICHLORODIFLUOROMETHANE	ND	0.005		
1,1-DICHLOROETHANE	ND	0.005		
1,2-DICHLOROETHANE	ND	0.005		
1,1-DICHLOROETHENE	ND	0.005		
CIS-1, 2-DICHLOROETHENE	ND	0.005		
TRANS-1, 2-DICHLOROETHENE	ND	0.005		
1,2-DICHLOROPROPANE	ND	0.005		

---- TO BE CONTINUED ON PAGE #2 -----

DATA REVIEWED AND APPROVED BY:___

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER:	Kleinfelder
	620 W. 16th Street, Unit #F
	Long Beach, CA 90813
	Tel (562) 432-1696 Fax (562) 432-1796
PROJECT: A	rtic
PROJECT No	.: 103567/Env 2
MATRIX: SOI	L D

MATRIX: SOIL	DATE RECEIVED:09/23/09
DATE SAMPLED: 09/23/09	DATE ANALYZED:09/24/09
REPORT TO:Mr. BERT VOGLER	DATE REPORTED: 10/01/09
SAMPLE I.D.: B-4-40	LAB I.D.: 090924-51

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1, 3-DICHLOROPROPANE	ND	0.005
2, 2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4 - ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1, 1, 1, 2-TETRACHLOROETHANE	ND	0.005
1, 1, 2, 2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	0.025	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1, 1, 1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

40

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: Artic PROJECT No.: 103567/Env 2 MATRIX:SOIL DATE SAMPLED:09/23/09

REPORT TO:Mr. BERT VOGLER

SAMPLE I.D.: 8-4-50

DATE RECEIVED:<u>09/23/09</u> DATE ANALYZED:<u>09/24/09</u> DATE REPORTED:<u>10/01/09</u> LAB I.D.: 090924-52

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1		
ACETONE	ND	0.020		
BENZENE	ND	0.005		
BROMOBENZENE	ND	0.005		
BROMOCHLOROMETHANE	ND	0.005		
BROMODICHLOROMETHANE	ND	0.005		
BROMOFORM	ND	0.005		
BROMOMETHANE	ND	0.005		
2-BUTANONE (MEK)	ND	0.020		
N-BUTYLBENZENE	ND	0.005		
SEC-BUTYLBENZENE	ND	0.005		
TERT-BUTYLBENZENE	ND	0.005		
CARBON DISULFIDE	ND	0.010		
CARBON TETRACHLORIDE	ND	0.005		
CHLOROBENZENE	ND	0.005		
CHLOROETHANE	ND	0.005		
CHLOROFORM	ND	0.005		
CHLOROMETHANE	ND	0.005		
2-CHLOROTOLUENE	ND	0.005		
4-CHLOROTOLUENE	ND	0.005		
DIBROMOCHLOROMETHANE	ND	0.005		
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005		
1,2-DIBROMOETHANE	ND	0.005		
DIBROMOMETHANE	ND	0.005		
1,2-DICHLOROBENZENE	ND	0.005		
1, 3-DICHLOROBENZENE	ND	0.005		
1,4-DICHLOROBENZENE	ND	0.005		
DICHLORODIFLUOROMETHANE	ND	0.005		
1, 1-DICHLOROETHANE	ND	0.005		
1,2-DICHLOROETHANE	ND	0.005		
1,1-DICHLOROETHENE	ND	0.005		
CIS-1, 2-DICHLOROETHENE	ND	0.005		
TRANS-1, 2-DICHLOROETHENE	ND	0.005		
1,2-DICHLOROPROPANE	ND	0.005		

----- TO BE CONTINUED ON PAGE #2 -----

DATA REVIEWED AND APPROVED BY:__

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER :	Kleinfelder	
	620 W. 16th Street, Unit #F	
	Long Beach, CA 90813	
	Tel(562)432-1696 Fax(562)432	-1796
PROJECT: A	rtic	
PROJECT No	.: 103567/Env 2	
MATRIX: SOI	L	DAT
DATE SAMPL	ED:09/23/09	DA
REPORT TO:	Mr. BERT VOGLER	DAT
Water Calendaria and and and and and and and and and an	ACTION TALE REPORTED AND A CONTRACT	

SAMPLE I.D.: 8-4-50

DATE RECEIVED: <u>09/23/09</u> DATE ANALYZED: <u>09/24/09</u> DATE REPORTED: <u>10/01/09</u> LAB I.D.: 090924-52

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1		
1,3-DICHLOROPROPANE	ND	0.005		
2, 2-DICHLOROPROPANE	ND	0.005		
1,1-DICHLOROPROPENE	ND	0.005		
CIS-1, 3-DICHLOROPROPENE	ND	0.005		
TRANS-1, 3-DICHLOROPROPENE	ND	0.005		
ETHYLBENZENE	ND	0.005		
2-HEXANONE	ND	0.020		
HEXACHLOROBUTADIENE	ND	0.005		
ISOPROPYLBENZENE	ND	0.005		
4 - ISOPROPYLTOLUENE	ND	0.005		
4-METHYL-2-PENTANONE (MIBK)	ND	0.020		
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005		
METHYLENE CHLORIDE	ND	0.010		
NAPHTHALENE	ND	0.005		
N - PROPYLBENZENE	ND	0.005		
STYRENE	ND	0.005		
1,1,1,2-TETRACHLOROETHANE	ND	0.005		
1,1,2,2-TETRACHLOROETHANE	ND	0.005		
TETRACHLOROETHENE (PCE)	ND	0.005		
TOLUENE	0.008	0.005		
1,2,3-TRICHLOROBENZENE	ND	0.005		
1,2,4-TRICHLOROBENZENE	ND	0.005		
1,1,1-TRICHLOROETHANE	ND	0.005		
1,1,2-TRICHLOROETHANE	ND	0.005		
TRICHLOROETHENE (TCE)	ND	0.005		
TRICHLOROFLUOROMETHANE	ND	0.005		
1,2,3-TRICHLOROPROPANE	ND	0.005		
1,2,4-TRIMETHYLBENZENE	ND	0.005		
1,3,5-TRIMETHYLBENZENE	ND	0.005		
VINYL CHLORIDE	ND	0.005		
M/P-XYLENE	ND	0.010		
O-XYLENE	ND	0.005		
	and the second sec			

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL

DATA REVIEWED AND APPROVED BY:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

METHOD BLANK REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: Artic PROJECT No.: 103567/Env 2

MATRIX:SOIL

REPORT TO:Mr. BERT VOGLER

DATE SAMPLED:09/23/09

DATE RECEIVED: 09/23/09 DATE ANALYZED: 09/24/09

DATE REPORTED: 10/01/09

T D . 000004 46 BUDOUOU 50

METHOD BLANK FOR LAB I.D.: 090924-46 THROUGH -52

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1		
ACETONE	ND	0.020		
BENZENE	ND	0.005		
BROMOBENZENE	ND	0.005		
BROMOCHLOROMETHANE	ND	0.005		
BROMODICHLOROMETHANE	ND	0.005		
BROMOFORM	ND	0.005		
BROMOMETHANE	ND	0.005		
2-BUTANONE (MEK)	ND	0.020		
N-BUTYLBENZENE	ND	0.005		
SEC-BUTYLBENZENE	ND	0.005		
TERT-BUTYLBENZENE	ND	0.005		
CARBON DISULFIDE	ND	0.010		
CARBON TETRACHLORIDE	ND	0.005		
CHLOROBENZENE	ND	0.005		
CHLOROETHANE	ND	0.005		
CHLOROFORM	ND	0.005		
CHLOROMETHANE	ND	0.005		
2 - CHLOROTOLUENE	ND	0.005		
4 - CHLOROTOLUENE	ND	0.005		
DIBROMOCHLOROMETHANE	ND	0.005		
1, 2-DIBROMO-3-CHLOROPROPANE	ND	0.005		
1,2-DIBROMOETHANE	ND	0.005		
DIBROMOMETHANE	ND	0.005		
1,2-DICHLOROBENZENE	ND	0.005		
1,3-DICHLOROBENZENE	ND	0.005		
1,4-DICHLOROBENZENE	ND	0.005		
DICHLORODIFLUOROMETHANE	ND	0.005		
1, 1-DICHLOROETHANE	ND	0.005		
1,2-DICHLOROETHANE	ND	0.005		
1,1-DICHLOROETHENE	ND	0.005		
CIS-1, 2-DICHLOROETHENE	ND	0.005		
TRANS-1, 2-DICHLOROETHENE	ND	0.005		
1,2-DICHLOROPROPANE	ND	0.005		

--- TO BE CONTINUED ON PAGE #2 -----

DATA REVIEWED AND APPROVED BY:____

Enviro – Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

METHOD BLANK REPORT

CUSTOMER:	Kleinfelder		
	620 W. 16th Street, U	Jnit #F	
	Long Beach, CA 90813		
	Tel (562) 432-1696 Fax	(562) 432-1796	
PROJECT :	Artic	53 E	
PROJECT N	o.: 103567/Env 2		
MATRIX:SO	IL	DAT	E RECEIVED:09/23/09
DATE SAMP	LED:09/23/09	DAT	'E ANALYZED: 09/24/09
REPORT TO	Mr. BERT VOGLER	DAT	E REPORTED: 10/01/09
2012/7/7/20201_00/02/	METHOD BLANK FOR LAB	I.D.: 090924-4	6 THROUGH -52
ANALY	SIS: VOLATILE ORGANICS	, EPA METHOD 503	35/8260B, PAGE 2 OF 2
	UNIT: mg/Kg = MIL	LIGRAM PER KILO	GRAM = PPM
PARAMETER		SAMPLE RESULT	POL X1
1.3-DICHL	OROPROPANE	ND	0.005
2.2-DICHL	OROPROPANE	ND	0.005
1,1-DICHL	OROPROPENE	ND	0.005
CIS-1,3-D	ICHLOROPROPENE	ND	0.005
TRANS-1.3	- DICHLOROPROPENE	ND	0.005
ETHYLBENZ	ENE	ND	0.005
2-HEXANON	E	ND	0.020
HEXACHLOR	OBUTADIENE	ND	0.005
ISOPROPYL	BENZENE	ND	0.005
4-ISOPROP	YLTOLUENE	ND	0.005
4-METHYL-	2-PENTANONE (MIBK)	ND	0.020
METHYL te	rt-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE	CHLORIDE	ND	0.010
NAPHTHALE	NE	ND	0.005
N-PROPYLB	ENZENE	ND	0.005
STYRENE		ND	0.005
1,1,1,2-T	ETRACHLOROETHANE	ND	0.005
1,1,2,2-T	ETRACHLOROETHANE	ND	0.005
TETRACHLO	ROETHENE (PCE)	ND	0.005
TOLUENE		ND	0.005
1,2,3-TRI	CHLOROBENZENE	ND	0.005
1,2,4-TRI	CHLOROBENZENE	ND	0.005
1,1,1-TRI	CHLOROETHANE	ND	0.005
1,1,2-TRI	CHLOROETHANE	ND	0.005
TRICHLORC	ETHENE (TCE)	ND	0.005
TRICHLORC	FLUOROMETHANE	ND	0.005
1,2,3-TRI	CHLOROPROPANE	ND	0.005
1,2,4-TRI	METHYLBENZENE	ND	0.005
1,3,5-TRI	METHYLBENZENE	ND	0.005
VINYL CHI	ORIDE	ND	0.005
M/P-XYLEN	IE	ND	0.010
O-XYLENE		ND	0.005
COMMENTS	PQL = PRACTICAL QUANTI	TATION LIMIT	
ND = NON-	DETECTED OR BELOW THE	PQL A	
DATA REVI	LEWED AND APPROVED BY:	hel	
CAL-DHS (PRETETCATE # 1555		

								are strate out	
Date Analyzed:	9/24-25/20	09					Matrix:	Solid/Soil/S	Sludge
Machine:	Ē						Unit:	mg/Kg (PP	M)
Matrix Cuika (MC)/Mat	du Callia Di	unligate /MS	201						
Spiked Sample Lab (D	ix spike Di	nono24.46	MEIMED						
Analyte	S.R.	sok conc	MS	%RC	MSD	%RC	%RPD	ACP %RC	ACP RPD
Benzene	0	0.050	0.058	116%	0.055	110%	6%	75-125	0-20
Chlorobenzene	0	0.050	0.056	112%	0.051	102%	10%	75-125	0-20
1.1-Dichloroethene	0	0.050	0.058	117%	0.055	110%	7%	75-125	0-20
Toluene	0	0.050	0.050	100%	0.055	110%	10%	75-125	0-20
Trichloroethene (TCE)	0	0.050	0.057	114%	0.049	98%	16%	75-125	0-20
Lab Control Spike (LC	S):								
Analyte	spk conc	LCS	%RC	ACP %RC					
Benzene	0.050	0.046	92%	75-125					
Chlorobenzene	0.050	0.058	116%	75-125					
Chloroform	0.050	0.050	100%	75-125					
1,1-Dichlorothene	0.050	0.050	100%	75-125					
Ethylbenzene	0.050	0.050	100%	75-125					
o-Xylene	0.050	0.050	100%	75-125					
m,p-Xylene	0.100	0.097	97%	75-125					
Toluene	0.050	0.049	98%	75-125					
1,1,1-Trichloroethane	0.050	0.048	96%	75-125	1				
Trichloroethene (TCE)	0.050	0.057	114%	75-125					
Surrogate Basevan	Lenk conc	ACD % DC	MR % PC	0/ DC	% PC	4 NPC	9/ P/C	N PC	0/ PC
Sample D	Spk conc	AUF /0NC	M.BIK	000024-1	000010-12	000024.46	1000024-47	1000024-48	000024-4
Dibromofluoromethane	50.0	70,130	1120/	030324-1	06%	100%	100%	050524-40	106%
Toluene-d8	50.0	70-130	100%	82%	90%	103%	00%	100%	101%
4-Bromofluorohenzene	50.0	70-130	92%	97%	83%	94%	91%	82%	90%
4 Bromonboroberizerie	00.0	10100	32.70	5170	0070	5470	5170	0270	3078
Surrogate Recovery	spk conc	ACP %RC	%RC	%RC	%RC	%RC	%RC	%RC	%RC
Sample I.D.			090924-50	090924-51	090924-52	090924-177			
Dibromofluoromethane	50.0	70-130	114%	94%	118%	114%		·	
Toluene-d8	50.0	70-130	103%	101%	102%	101%		-	
4-Bromofluorobenzene	50.0	70-130	85%	88%	81%	84%			
Surrogate Recovery	spk conc	ACP %RC	%RC	%RC	%RC	%RC	%RC	%RC	%RC
Sample I.D.			· · · · · · · · · · · · · · · · · · ·			Ĩ			
Dibromofluoromethane	50.0	70-130							
Toluene-d8	50.0	70-130							
4-Bromofluorobenzene	50.0	70-130		1 1					

spk conc = Spike Concentration MS = Matrix Spike

Analyzed/Reviewed By: <u>Sch</u> Final Reviewer: <u>9</u> %RC = Percent Recovery ACP %RC = Accepted Percent Recovery MSD = Matrix Spike Duplicate

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER :	Kleinfelder		
	620 W. 16th Street	, Unit #F	
	Long Beach, CA 908	13	
	Tel(562)432-1696 F	ax (562) 432-1796	
PROJECT: A	rtic		
PROJECT No	.: 103567/Env 2		
MATRIX: SOI	L	DATE	RECEIVED:09/23/09
DATE SAMPL	ED: 09/23/09	DATE	ANALYZED: 09/25/09
REPORT TO:	Mr. BERT VOGLER	DATE	REPORTED: 10/01/09

SAMPLE I.D.: B-4-1

LAB I.D.: 090924-46

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

************************************ TTLC STLC EPA ELEMENT SAMPLE
 ANALYZED
 RESULT
 PQL
 DF
 LIMIT
 LIMIT
 METHOD

 Antimony(Sb)
 ND
 1.0
 1
 500
 15
 6010B

 Arsenic(As)
 ND
 0.3
 1
 500
 5.0
 6010B

 Barium(Ba)
 24.0
 5.0
 1
 10,000
 100
 6010B

 Beryllium(Be)
 ND
 0.5
 1
 75
 0.75
 6010B

 Cadmium(Cd)
 ND
 0.5
 1
 100
 1.0
 6010B

 Chromium Total(Cr)
 4.20
 0.5
 1
 2,500
 560/5@
 6010B

 Chromium VI (Cr6)
 - 0.1
 1
 500
 5.0
 7196A

 Cobalt(Co)
 ND
 1.0
 1
 8,000
 80
 6010B

 Copper(Cu)
 4.56
 1.0
 1
 2,500
 25
 6010B

 Lead (Pb)
 1.36
 0.5
 1
 1,000
 5.0
 6010B

 Nickel (Ni)
 2.65
 2.5
 1
 RESULT ANALYZED PQL DF LIMIT LIMIT METHOD

COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal is recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: Artic PROJECT No.: 103567/Env 2

MATRIX:SOIL

DATE SAMPLED: 09/23/09

REPORT TO: Mr. BERT VOGLER DATE REPORTED: 10/01/09

DATE RECEIVED:<u>09/23/09</u> DATE ANALYZED:<u>09/25/09</u> DATE REPORTED:<u>10/01/09</u>

SAMPLE I.D.: B-4-5

LAB I.D.: 090924-47

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

onii: mg/ng - nibbionan ibn niboonan - in

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	42.6	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	8.23	0.5	1	2,500	560/5@	6010B
Chromium VI (Cr6)	. 55	0.1	1	500	5.0	7196A
Cobalt (Co)	ND	1.0	1	8,000	80	6010B
Copper (Cu)	7.27	1.0	1	2,500	25	6010B
Lead (Pb)	2.07	0.5	1	1,000	5.0	6010B
Mercury (Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum (Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	5.49	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(T1)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	17.6	5.0	1	2,400	24	6010B
Zinc(Zn)	27.2	0.5	1	5,000	250	6010B

COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested Data Reviewed and Approved by:

CAL-DHS ELAP CERTIFICATE No.: 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER:	Kleinfelder					
	620 W. 16th Street, Unit	#F				
Long Beach, CA 90813						
	Tel(562)432-1696 Fax(562	Tel (562) 432-1696 Fax (562) 432-1796				
PROJECT: A	rtic					
PROJECT No	.: 103567/Env 2					
MATRIX: SOI	L	DATE	RECEIVED: 09/23/09			
DATE SAMPL	ED:09/23/09	DATE	ANALYZED: 09/25/09			
REPORT TO:	Mr. BERT VOGLER	DATE	REPORTED: 10/01/09			

SAMPLE I.D.: B-4-10

LAB I.D.: 090924-48

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony (Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	22.3	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	3.57	0.5	1	2,500	560/5@	6010B
Chromium VI (Cr6)	X .+	0.1	1	500	5.0	7196A
Cobalt (Co)	ND	1.0	1	8,000	80	6010B
Copper(Cu)	3.56	1.0	1	2,500	25	6010B
Lead (Pb)	2.97	0.5	1	1,000	5.0	6010B
Mercury (Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum (Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	ND	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(T1)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	9.63	5.0	1	2,400	24	6010B
Zinc(Zn)	16.1	0.5	1	5,000	250	6010B

COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal is recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested Data Reviewed and Approved by:_ CAL-DHS ELAP CERTIFICATE No.: 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER :	Kleinfelder	
	620 W. 16th Street, Unit #F	
	Long Beach, CA 90813	
	Tel (562) 432-1696 Fax (562) 432	-1796
PROJECT: A	Artic	
PROJECT No	o.: 103567/Env 2	
MATRIX: SOI	<u></u>	DA
DATE SAMPL	LED: 09/23/09	DA

DATE	RECEIVED: 09/23/09
DATE	ANALYZED: 09/25/09
DATE	REPORTED: 10/01/09

SAMPLE I.D.: B-4-20

REPORT TO: Mr. BERT VOGLER

LAB I.D.: 090924-49

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony (Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	15.9	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	2.29	0.5	1	2,500	560/5@	6010B
Chromium VI (Cr6)		0.1	1	500	5.0	7196A
Cobalt (Co)	ND	1.0	1	8,000	80	6010B
Copper(Cu)	22.9	1.0	1	2,500	25	6010B
Lead (Pb)	ND	0.5	1	1,000	5.0	6010B
Mercury (Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum (Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	ND	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(Tl)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	6.75	5.0	1	2,400	24	6010B
Zinc(Zn)	10.4	0.5	1	5,000	250	6010B

COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER :	Kleinfelder		
	620 W. 16th Street, Uni	.t #F	
	Long Beach, CA 90813		
	Tel(562)432-1696 Fax(56	52) 432-1796	
PROJECT: A	rtic		
PROJECT No	.: 103567/Env 2		
MATRIX: SOI	L	DATE	RECEIVED: 09/23/09
DATE SAMPL	ED:09/23/09	DATE	ANALYZED: 09/25/09
REPORT TO:	Mr. BERT VOGLER	DATE	REPORTED: 10/01/09

SAMPLE I.D.: B-4-30

LAB I.D.: 090924-50

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony (Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	65.1	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	15.4	0.5	1	2,500	560/5@	6010B
Chromium VI (Cr6)	7.7	0.1	1	500	5.0	7196A
Cobalt (Co)	ND	1.0	1	8,000	80	6010B
Copper(Cu)	9.91	1.0	1	2,500	25	6010B
Lead (Pb)	1.45	0.5	1	1,000	5.0	6010B
Mercury (Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	10.3	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(T1)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	28.3	5.0	1	2,400	24	6010B
Zinc(Zn)	44.0	0.5	1	5,000	250	6010B

COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal is recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR; TITLE 22 (if marked) -- = Not analyzed/not requested Data Reviewed and Approved by:_

CAL-DHS ELAP CERTIFICATE No.: 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER :	Kleinfelder	
	620 W. 16th Street, Unit #H	7
	Long Beach, CA 90813	
	Tel(562)432-1696 Fax(562)43	32-1796
PROJECT: A	Artic	
PROJECT No	.: 103567/Env 2	
MATRIX: SOI	<u>L</u>	DAT
DATE SAMPL	ED: 09/23/09	DAT
REPORT TO:	Mr. BERT VOGLER	DAT

DATE RECEIVED:<u>09/23/09</u> DATE ANALYZED:<u>09/25/09</u> DATE REPORTED:<u>10/01/09</u>

SAMPLE I.D.: B-4-40

LAB I.D.: 090924-51

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

outri maying - minbroider rea arboarder - rea

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	9.73	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total (Cr)	0.664	0.5	1	2,500	560/5@	6010B
Chromium VI (Cr6)		0.1	1	500	5.0	7196A
Cobalt (Co)	ND	1.0	1	8,000	80	6010B
Copper (Cu)	ND	1.0	1	2,500	25	6010B
Lead(Pb)	ND	0.5	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	1	3,500	350	6010B
Nickel (Ni)	ND	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(T1)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	ND	5.0	1	2,400	24	6010B
Zinc(Zn)	5.95	0.5	1	5,000	250	6010B

COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested Data Reviewed and Approved by:

CAL-DHS ELAP CERTIFICATE No.: 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER :	Kleinfelder	
	620 W. 16th Street, Unit #F	
	Long Beach, CA 90813	
	Tel(562)432-1696 Fax(562)432	-1796
PROJECT: A	Artic	
PROJECT No	D.: 103567/Env 2	
MATRIX: SOI	LL.	DAT
DATE SAMPI	ED:09/23/09	DAT
REPORT TO:	Mr. BERT VOGLER	DAT

DATE RECEIVED:<u>09/23/09</u> DATE ANALYZED:<u>09/25/09</u> DATE REPORTED:<u>10/01/09</u>

................

SAMPLE I.D.: B-4-50

LAB I.D.: 090924-52

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ONIT: MY/KY - MILLIGRAM PER KILOGRAM - PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony (Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	119	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	14.6	0.5	1	2,500	560/5@	6010B
Chromium VI (Cr6)	5 	0.1	1	500	5.0	7196A
Cobalt (Co)	ND	1.0	1	8,000	80	6010B
Copper (Cu)	18.6	1.0	1	2,500	25	6010B
Lead (Pb)	7.34	0.5	1	1,000	5.0	6010B
Mercury (Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum (Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	14.4	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(T1)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	32.1	5.0	1	2,400	24	6010B
Zinc(Zn)	62.5	0.5	1	5,000	250	6010B

COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

METHOD BLANK REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: Artic PROJECT No.: 103567/Env 2 MATRIX:SOIL DATE SAMPLED:09/23/09 REPORT TO:Mr. BERT VOGLER DAT

DATE RECEIVED:09/23/09 DATE ANALYZED:09/25/09

DRT TO:<u>Mr. BERT VOGLER</u> DATE REPORTED:<u>10/01/09</u>

METHOD BLANK FOR LAB I.D.: 090924-46 THROUGH -52

> TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony (Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	ND	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	ND	0.5	1	2,500	560/5@	6010B
Chromium VI (Cr6)		0.1	1	500	5.0	7196A
Cobalt (Co)	ND	1.0	1	8,000	80	6010B
Copper (Cu)	ND	1.0	1	2,500	25	6010B
Lead (Pb)	ND	0.5	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum (Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	ND	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(Tl)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	ND	5.0	1	2,400	24	6010B
Zinc(Zn)	ND	0.5	1	5,000	250	6010B

COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested

Data Reviewed and Approved by: _____ CAL-DHS ELAP CERTIFICATE No.: 1555

	QA	/QC for	r Meta	ls Anal	L siskj	LTLCS	OLID/SC		XX		
<u>Matrix Spike/ M</u>	<u>atrix Spike</u>	Duplicate	<u>e/ LCS :</u>								
ANAL	YSIS DATE:	9/25/2009					, ,		Unit	: <u>mg/Ka(</u> p	<u>om</u>]
Analysis	Spk.Sample ID	LCS CONC.	LCS %Rec.	LCS STATUS	Sample Result	Spike Conc.	MS	% Rec MS	MSD	% Rec MSD	% RPD
Copper (Cu)	090924-48	1.00	100	PASS	3.56	50.0	59.1	111%	59.8	112%	1%
Lead (Pb)	090924-48	1.00	101	PASS	2.97	50.0	54.8	104%	54.5	103%	1%
Zinc (Zn)	090924-48	1.00	100	PASS	16.1	50.0	68.1	104%	68.6	105%	1%
ANAL	YSIS DATE. :	9/25/2009									
Analysis	Spk.Sample ID	LCS CONC.	LCS %Rec.	LCS STATUS	Sample Result	Spike Conc.	SM	% Rec MS	MSD	% Rec MSD	% RPD
Mercury (Hg)	090924-179	0.125	93.7	PASS	0	0.125	0.103	82%	0,112	%06	8%
<u>MS/MSD Status</u>	• •1										
Analysis	SM%	USW %	%TCS	%RPD							
Copper (Cu)	PASS	PASS	PASS	PASS							
Lead (Pb)	PASS	PASS	PASS	PASS							
Zinc (Zn)	PASS	PASS	PASS	SSFd							
Mercury (Hg)	PASS	PASS	PASS	PASS			¢				
Accepted Range	75 ~ 125	75 ~ 125	85~115	0 ~ 20	4		٤				
					Ľ.	INAL REVIE	WER:	9			

¦-۱,

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: Artic

PROJECT No.: 103567/Env 2 MATRIX:SOIL DATE SAMPLED:09/23/09 REPORT TO:Mr. BERT VOGLER

DATE RECEIVED: 09/23/09 DATE EXTRACTED: 09/24/09 DATE ANALYZED:09/25/09 DATE REPORTED: 10/01/09

SAMPLE I.D.: B-4-1

LAB I.D.: 090924-46

Organochlorine Pesticides & PCBs Analysis Method: EPA 8081A/8082

Unit: Mg/Kg = Milligram per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
Aldrin	ND	0.001	1
alpha-BHC	ND	0.001	1
beta-BHC	ND	0.001	1
gamma-BHC (Lindane)	ND	0.001	1
delta-BHC	ND	0.001	1
alpha-Chlordane	ND	0.001	1
gamma-Chlordane	ND	0.001	1
Total Chlordane (Technical)	ND	0.005	1
4,4'-DDD	ND	0.001	1
4,4'-DDE	ND	0.001	1
4,4'-DDT	ND	0.001	1
Dieldrin	ND	0.001	1
Endosulfan I	ND	0.001	1
Endosulfan II	ND	0.001	1
Endosulfan Sulfate	ND	0.001	1
Endrin	ND	0.001	1
Endrin Aldehyde	ND	0.001	- 1
Endrin Ketone	ND	0.001	1
Heptachlor Epoxide	ND	0.001	1
Heptachlor	ND	0.001	1
Methoxyclor	ND	0.001	1
Toxaphene	ND	0.020	1
PCB-1016	ND	0.010	1
PCB-1221	ND	0.010	1
PCB-1232	ND	0.010	1
PCB-1242	ND	0.010	1
PCB-1248	ND	0.010	1
PCB-1254	ND	0.010	1
PCB-1260	ND	0.010	1

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Non detected or below the Actual Detection Limit

11
1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER:	Kleinfelder	
	620 W. 16th Street, Unit #F	
	Long Beach, CA 90813	
	Tel(562)432-1696 Fax(562)432-	1796
PROJECT: A	irtic	
PROJECT No	.: 103567/Env 2	DA

DATE RECEIVED: 09/23/09 DATE EXTRACTED: 09/24/09 DATE ANALYZED: 09/25/09 DATE REPORTED: 10/01/09

SAMPLE I.D.: B-4-5

DATE SAMPLED:09/23/09

REPORT TO:Mr. BERT VOGLER

......

MATRIX: SOIL

LAB I.D.: 090924-47

Organochlorine Pesticides & PCBs Analysis

Method: EPA 8081A/8082

Unit: Mg/Kg = Milligram per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
Aldrin	ND	0.001	1
alpha-BHC	ND	0.001	1
beta-BHC	ND	0.001	1
gamma-BHC (Lindane)	ND	0.001	1
delta-BHC	ND	0.001	1
alpha-Chlordane	ND	0.001	1
gamma-Chlordane	ND	0.001	1
Total Chlordane (Technical)	ND	0.005	1
4,4'-DDD	ND	0.001	1
4,4'-DDE	ND	0.001	1
4,4'-DDT	ND	0.001	1
Dieldrin	ND	0.001	1
Endosulfan I	ND	0.001	1
Endosulfan II	ND	0.001	1
Endosulfan Sulfate	ND	0.001	1
Endrin	ND	0.001	1
Endrin Aldehyde	ND	0.001	1
Endrin Ketone	ND	0.001	1
Heptachlor Epoxide	ND	0.001	1
Heptachlor	ND	0.001	1
Methoxyclor	ND	0.001	1
Toxaphene	ND	0.020	1
PCB-1016	ND	0.010	1
PCB-1221	ND	0.010	1
PCB-1232	ND	0.010	1
PCB-1242	ND	0.010	1
PCB-1248	ND	0.010	1
PCB-1254	ND	0.010	1
PCB-1260	ND	0.010	1

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Non detected or below the Actual Detection Limit

W

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796

PROJECT: Artic PROJECT No.: 103567/Env 2 MATRIX:SOIL DATE SAMPLED: 09/23/09 REPORT TO:Mr. BERT VOGLER

DATE RECEIVED: 09/23/09 DATE EXTRACTED:09/24/09 DATE ANALYZED:09/26/09 DATE REPORTED:10/01/09

SAMPLE I.D.: B-4-10

LAB I.D.: 090924-48

Organochlorine Pesticides & PCBs Analysis Method: EPA 8081A/8082

Unit: Mg/Kg = Milligram per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
Aldrin	ND	0.001	1
alpha-BHC	ND	0.001	1
beta-BHC	ND	0.001	1
gamma-BHC (Lindane)	ND	0.001	1
delta-BHC	ND	0.001	1
alpha-Chlordane	ND	0.001	1
gamma-Chlordane	ND	0.001	1
Total Chlordane (Technical)	ND	0.005	1
4,4'-DDD	ND	0.001	1
4,4'-DDE	ND	0.001	1
4,4'-DDT	ND	0.001	1
Dieldrin	ND	0.001	1
Endosulfan I	ND	0.001	1
Endosulfan II	ND	0.001	1
Endosulfan Sulfate	ND	0.001	1
Endrin	ND	0.001	1
Endrin Aldehyde	ND	0.001	1
Endrin Ketone	ND	0.001	1
Heptachlor Epoxide	ND	0.001	1
Heptachlor	ND	0.001	1_
Methoxyclor	ND	0.001	1
Toxaphene	ND	0.020	1
PCB-1016	ND	0.010	1
PCB-1221	ND	0.010	1
PCB-1232	ND	0.010	1
PCB-1242	ND	0.010	1
PCB-1248	ND	0.010	1
PCB-1254	ND	0.010	1
PCB-1260	ND	0.010	1

COMMENTS

DF = Dilution Factor

POL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Non detected or below the Actual Detection Limit

ull

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: Artic

PROJECT No.: 103567/Env 2 MATRIX:SOIL DATE SAMPLED:09/23/09 REPORT TO:Mr. BERT VOGLER

DATE RECEIVED:<u>09/23/09</u> DATE EXTRACTED:<u>09/24/09</u> DATE ANALYZED:<u>09/26/09</u> DATE REPORTED:<u>10/01/09</u>

SAMPLE I.D.: B-4-20

LAB I.D.: 090924-49

Organochlorine Pesticides & PCBs Analysis Method: EPA 8081A/8082

Unit: Mg/Kg = Milligram per Kilogram = PPM

PARAMETER	SAMPLE RESULT	POL	DF
Aldrin	ND	0.001	1
alpha-BHC	ND	0.001	1
beta-BHC	ND	0.001	1
gamma-BHC (Lindane)	ND	0.001	1
delta-BHC	ND	0.001	1
alpha-Chlordane	ND	0.001	1
gamma-Chlordane	ND	0.001	1
Total Chlordane (Technical)	ND	0.005	1
4,4'-DDD	ND	0.001	1
4,4'-DDE	ND	0.001	1
4,4'-DDT	ND	0.001	1
Dieldrin	ND	0.001	1
Endosulfan I	ND	0.001	1
Endosulfan II	ND	0.001	1
Endosulfan Sulfate	ND	0.001	1
Endrin	ND	0.001	1
Endrin Aldehyde	ND	0.001	1
Endrin Ketone	ND	0.001	1
Heptachlor Epoxide	ND	0.001	1
Heptachlor	ND	0.001	1
Methoxyclor	ND	0.001	1
Toxaphene	ND	0.020	1
PCB-1016	ND	0.010	1
PCB-1221	ND	0.010	1
PCB-1232	ND	0.010	1
PCB-1242	ND	0.010	1
PCB-1248	ND	0.010	1
PCB-1254	ND	0.010	1
PCB-1260	ND	0.010	1

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Non detected or below the Actual Detection Limit

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: Artic DATE RECEIVED:09/23/09

PROJECT No.: 103567/Env 2

DATE EXTRACTED:09/24/09 MATRIX: SOIL DATE SAMPLED:09/23/09 DATE ANALYZED:09/26/09 REPORT TO: Mr. BERT VOGLER DATE REPORTED: 10/01/09

SAMPLE I.D.: B-4-30

LAB I.D.: 090924-50

Organochlorine Pesticides & PCBs Analysis Method: EPA 8081A/8082

Unit: Mg/Kg = Milligram per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
Aldrin	ND	0.001	1
alpha-BHC	ND	0.001	1
beta-BHC	ND	0.001	1
gamma-BHC (Lindane)	ND	0.001	1
delta-BHC	ND	0.001	1
alpha-Chlordane	ND	0.001	1
gamma-Chlordane	ND	0.001	1
Total Chlordane (Technical)	ND	0.005	1
4,4'-DDD	ND	0.001	1
4,4'-DDE	ND	0.001	1
4,4'-DDT	ND	0.001	1
Dieldrin	ND	0.001	1
Endosulfan I	ND	0.001	1
Endosulfan II	ND	0.001	1
Endosulfan Sulfate	ND	0.001	1
Endrin	ND	0.001	1
Endrin Aldehyde	ND	0.001	1
Endrin Ketone	ND	0.001	1
Heptachlor Epoxide	ND	0.001	1
Heptachlor	ND	0.001	1
Methoxyclor	ND	0.001	1
Toxaphene	ND	0.020	1
PCB-1016	ND	0.010	1_
PCB-1221	ND	0.010	1
PCB-1232	ND	0.010	1
PCB-1242	ND	0.010	1
PCB-1248	ND	0.010	1
PCB-1254	ND	0.010	1
PCB-1260	ND	0.010	1

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF

ND = Non detected or below the Actual Betection Limit

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel (562) 432-1696 Fax (562) 432-1796 PROJECT: Artic

PROJECT No.: 103567/Env 2 MATRIX:SOIL

DATE SAMPLED:09/23/09 REPORT TO:Mr. BERT VOGLER

DATE RECEIVED:09/23/09 DATE EXTRACTED:09/24/09 DATE ANALYZED:09/26/09 DATE REPORTED: 10/01/09

SAMPLE I.D.: B-4-40

LAB I.D.: 090924-51

.......

-----Organochlorine Pesticides & PCBs Analysis Method: EPA 8081A/8082

Unit: Mg/Kg = Milligram per Kilogram = PPM

PARAMETER SAMPLE RESULT POL DF Aldrin 1 ND 0.001 alpha-BHC 1____ ND 0.001 beta-BHC ND 0.001 1 gamma-BHC (Lindane) ND 0.001 1 delta-BHC ND 0.001 1 alpha-Chlordane 1 ND 0.001 gamma-Chlordane ND 0.001 1 Total Chlordane (Technical) ND 0.005 1 4,4'-DDD ND 0.001 1 4,4'-DDE ND 0.001 1 4,4'-DDT 1 ND 0,001 Dieldrin ND 0.001 1 Endosulfan I ND 0.001 1 Endosulfan II 1____ ND 0.001 Endosulfan Sulfate ND 0.001 1 Endrin ND 0.001 1____ Endrin Aldehyde ND 0.001 1 Endrin Ketone ND 0.001 1 Heptachlor Epoxide 0.001 1_ ND Heptachlor 1 ND 0.001 1 Methoxyclor ND 0.001 Toxaphene ND 0.020 1 PCB-1016 ND 0.010 1_ PCB-1221 ND 0.010 1 PCB-1232 ND 0.010 1 PCB-1242 ND 0.010 1 PCB-1248 ND 0.010 1 PCB-1254 ND 0.010 1 PCB-1260 ND 0.010 1

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit Actual Detection Limit = POL X DF

ND = Non detected or below the Actual Detection Limit

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER :	Kleinfelder
	620 W. 16th Street, Unit #F
	Long Beach, CA 90813
	Tel(562)432-1696 Fax(562)432-1796
PROJECT:	Artic

DATE RECEIVED:09/23/09
DATE EXTRACTED:09/24/09
DATE ANALYZED: 09/26/09
DATE REPORTED: 10/01/09

SAMPLE I.D.: B-4-50

LAB I.D.: 090924-52

Organochlorine Pesticides & PCBs Analysis

Method: EPA 8081A/8082

Unit: Mg/Kg = Milligram per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
Aldrin	ND	0.001	1
alpha-BHC	ND	0.001	1
beta-BHC	ND	0.001	1
gamma-BHC (Lindane)	ND	0.001	1
delta-BHC	ND	0.001	1
alpha-Chlordane	ND	0.001	1
gamma-Chlordane	ND	0.001	1
Total Chlordane (Technical)	ND	0.005	1
4,4'-DDD	ND	0.001	1
4,4'-DDE	ND	0.001	1
4,4'-DDT	ND	0.001	1
Dieldrin	ND	0.001	1
Endosulfan I	ND	0.001	1
Endosulfan II	ND	0.001	1
Endosulfan Sulfate	ND	0.001	1
Endrin	ND	0.001	1
Endrin Aldehyde	ND	0.001	1
Endrin Ketone	ND	0.001	1
Heptachlor Epoxide	ND	0.001	1
Heptachlor	ND	0.001	1
Methoxyclor	ND	0.001	1
Toxaphene	ND	0.020	1
PCB-1016	ND	0.010	1
PCB-1221	ND	0.010	1
PCB-1232	ND	0.010	1
PCB-1242	ND	0.010	1
PCB-1248	ND	0.010	1
PCB-1254	ND	0.010	1
PCB-1260	ND	0.010	1

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Non detected or below the Actual Detection Limit

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

METHOD BLANK REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: Artic

PROJECT No.: 103567/Env 2 MATRIX:SOIL DATE SAMPLED:09/23/09 REPORT TO:Mr. BERT VOGLER DATE RECEIVED:<u>09/23/09</u> DATE EXTRACTED:<u>09/24/09</u> DATE ANALYZED:<u>09/25/09</u> DATE REPORTED:<u>10/01/09</u>

METHOD BLANK FOR LAB I.D.: 090924-46 THROUGH -52

Organochlorine Pesticides & PCBs Analysis

Method: EPA 8081A/8082

Unit: Mg/Kg = Milligram per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
Aldrin	ND	0.001	1
alpha-BHC	ND	0.001	1
beta-BHC	ND	0.001	1
gamma-BHC (Lindane)	ND	0.001	1
delta-BHC	ND	0.001	1
alpha-Chlordane	ND	0.001	1
gamma-Chlordane	ND	0.001	1
Total Chlordane (Technical)	ND	0.005	1
4,4'-DDD	ND	0.001	1
4,4'-DDE	ND	0.001	1
4,4'-DDT	ND	0.001	1
Dieldrin	ND	0.001	1
Endosulfan I	ND	0,001	1
Endosulfan II	ND	0.001	1
Endosulfan Sulfate	ND	0.001	1
Endrin	ND	0.001	1
Endrin Aldehyde	ND	0.001	1
Endrin Ketone	ND	0.001	1
Heptachlor Epoxide	ND	0.001	1
Heptachlor	ND	0.001	1
Methoxyclor	ND	0.001	1
Toxaphene	ND	0.020	1
PCB-1016	ND	0.010	1
PCB-1221	ND	0.010	1
PCB-1232	ND	0.010	1
PCB-1242	ND	0.010	1
PCB-1248	ND	0.010	1
PCB-1254	ND	0.010	1
PCB-1260	ND	0.010	1

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Non detected or below the Actual Detection Limit

			Env	viro-Che	em, Inc.				
	1214 E	. Lexington Av	venue, Pomor	Na, CA 91766	Tel (909)590-5905 Fa	x (909)590-59	07	
		FP	A 808			enort			
			71000			opon			
	Sail(Sa	lid			- · · ·				
Malrix:	<u>3011/301</u>	IIQ			Date Analy	zed:	<u>9/25~26/20</u>	09	
Unit:	<u>mg/Kg</u>								
<u>Matrix Spike (MS)</u>	/Matrix Spil	ke Duplicate	<u>(MSD)</u>						
Spiked Sample La	<u>ab I.D.:</u>		<u>090923-9</u>	2 MS/MSI	D				
Analyte	S.R.	spk conc	MS	%REC	MSD	%REC	%RPD	ACP %RPD	ACP %REC
Gamma-BHC	0.000	0.0500	0.0428	86%	0.0430	86%	0%	0-20%	70-130
Aldrin	0.000	0.0500	0.0537	107%	0.0530	106%	1%	0-20%	70-130
4,4-DDE	0.000	0.0500	0.0399	80%	0.0412	82%	3%	0-20%	70-130
Lab Control Spike	+ (LCS) Rec	overv:							
Analyte	spk conc	LCS	% REC	ACP	%REC]			
Gamma-BHC	0.00500	0.00428	86%	75-	125]			
Aldrin	0.00500	0.00556	111%	75-	125]			
4,4-DDE	0.00500	0.00512	102%	75-	125				
Dieldrin	0.00500	0.00567	113%	75-	125				
Surrogate Recover	 ນ	ACP%	%REC	%REC	%REC	%REC	%REC	%REC	%REC
Sample I D	<u>y</u>			090924-46	090924-47	090924-48	090924-49	090924-50	090924-51
Tetra-chloro-meta-	vulana	50-150	104%	08%	82%	80%	100%	87%	94%
Decaphorobinhen	дуюне Л	50-150	89%	91%	57%	88%	82%	79%	76%
Decadillotophen	yı	00-100	0070		0170	0070	0270	1070	
Surrogate Recover	ſy	%REC	%REC	%REC	%REC	%REC	%REC	%REC	%REC
Sample I.D.		090924-52							
Tetra-chloro-meta-	xvlene	100%							
Decachlorobipheny	yľ	88%							
Suma nata Dagaria	- /						MPEC	7	
Surroyate Recover	y		MREG						
Take-chloro-meta-	vulana	<u> </u>						=	
Decachlorobiohen	vi							-	
	/	J		1		•	•	-	(
S.R = Sample Result			• = Surrogate	fail due to mat	rix ınlərfərence	e (il Marked)			
spk conc = Spike Conc	antration		Note: LCS, M	IS, MSD ara in	control there	fore results a	re in control.		
%REC = Percent Reco	wery								
AGP %RPD = Accepte	ble Percent RF	PD Range							
ACP %REC = Accepta	ble Percent Re	сочегу Валде							
		7-6							
Analyzed and Review	od By:	0 -							
	Ð								
Final Reviewer:	Q.~	_							

1214 E.	Lexington /	Avenue, Po	Enviro omona, CA	o-Chem, Inc 91766	Tel (909)59	0-5905 Fa	ax (909)590-5907	_
			<u>QA/Q</u>	C Rep	ort			
		An	alysis: E	EPA 808	2 (PCB)			
Matrix: Unit:	<u>Soil/S</u> mg/Kg (PP	olid M)			Date Analy	/zed:	<u>9/25~26/2009</u>	
Matrix Spike (M Spiked Sample	IS)/Matrix : Lab I,D.:	Spike Dup	licate (MSE 09092)) <u>3-92 N</u>	<u>/////////////////////////////////////</u>	<u>D</u>		
Analyte	spk conc	MS	%REC	MSD	%REC	%RPD	ACP % RPD ACP %	REC
PCB (1016+1260)	1.00	0.900	90%	0.971	97%	8%	0-20% 70-13	30
LCS STD RECO	SPK CONC		% REC	ACP	KREC]		
PCB (1016+1260)	0.100	0.109	109%	75-	125	J		
spk conc = Spik %REC = Percer ACP %RPD = A ACP %REC = A Analyzed and F	e Concentr ht Recovery acceptable f acceptable f Reviewed f	ation Percent RP Percent Re By:	PD Range covery Ran つて	ge				
Final Reviewer	:C	1,)	_					

1055/04/TeV/2 AFTIC 105 105 AFTIC 105	DHd	JECT NO.		PROJECT NAME		-		11 11	1111	/ / RECENTINGLAR
USD Unstant and	10	tase	/ENV2	AFTIC		UN DN		1 (3) A	1111	Sauri Da America
ORT MARTIC MARTIC <th></th> <th>(.P.N0. (P01.N0)</th> <th>SAMPLERS IS</th> <th>aguatumonanan ang ang ang ang ang ang ang ang ang ang</th> <th>1</th> <th>ð ö</th> <th>51051</th> <th>100 100 100 100 100 100 100 100 100 100</th> <th>111</th> <th></th>		(.P.N0. (P01.N0)	SAMPLERS IS	aguatumonanan ang ang ang ang ang ang ang ang ang ang	1	ð ö	51051	100 100 100 100 100 100 100 100 100 100	111	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	DATE MIDD/YY	SAMPLE I.D. TIME HHHMM*SS	SAMPLETD	MATHIX	TAINERS TAINE	The st	22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	111	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9	125/09	せていた	1-1-8	SOIL	S Juck	XX	x x		040924-46
$ \begin{array}{ $			たま	B-4-5		176.7 acou	(at 1 1			24
$ \begin{array}{ $			され	8-4-10		1				48
6:20 5:41-50 4 4 4 4 4 4 5 4 8:57 5-4-50 4 4 4 4 5 4 8:57 5-4-50 4 4 4 5 5 5-4-50 4 4 4 5 6:41 6:44 6:44 6:44 6:44 6:44 6:41 6:44 6:44 6:44 6:44 6:44 6:41 6:44 6:44 6:44 6:44 6:44 6:41 6:44 6:44 6:44 6:44 6:44 6:41 6:44 6:44 6:44 6:44 6:44 6:41 6:44 6:44 6:44 6:44 6:44 6:42 6:44 6:44 6:44 6:44 6:44 6:44 6:44 6:44 6:44 6:44 6:44 6:45 6:44 6:44 6:44 6:44 6:44 6:44 6:44 6:44 6:44 6:44 6:44 6:44 6:44 6:44 6:44 6:44 6:44 6:44 6:44 6:44 6:44 6:44 6:44 6:44 <			8:08	8-4-20						5-73
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			02:8	6-4-30						25
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			6:54	8-4-40						1.5
Image: Sector of the sector		4	8.52	8-4-50	A	4 4	A +	AA		25
Image: Sector										
Image: Sector										
Image: Section of the secting of the secting of the sectin										
Image: Section of the section of t										
Image: Sector										
Image: constraint of the second of the second sec										
International of the second of Second Sec										
International International International International Reference Detertional Detertional Detertional Detertional Reference Detertional Detertional Detertional Detertional Reference Detertional Detertional Detertional Detertional Reference Presidential Detertional Detertional Detertional Reference Detertional Detertional Detertional Detectional Reference Detertional Detetional Detectional Detectional <td></td>										
International by Separative Destrue Destrue Destrue Destrue Harmannou by Separative Destrue Destrue Destrue Destrue Manuface Destrue Destrue Destrue Destrue <							_			
Model Montained Montained Montained Montained Montained Heinpauley try figuration Date/Term Date/Term Date/Term Date/Term Date/Term Antimication or yi (Separation) Date/Term Date/Term Date/Term Date/Term Date/Term Antimication of yi (Separation) Date/Term Date/Term Date/Term Date/Term Date/Term Antimication of yi (Separation) Date/Term Date/Term Date/Term Date/Term Date/Term Antimication of yi (Separation) Date/Term Date/Term Date/Term Date/Term Date/Term Antimication of yi (Separation) Date/Term Date/Term Date/Term Date/Term Date/Term Antimication of yi (Separation) Date/Term Date/Term Date/Term Date/Term Date/Term Antimication of yi (Separation) Date/Term Date/Term Date/Term Date/Term Date/Term Antimication of yi (Separation) Date/Term Date/Term Date/Term Date/Term Date/Term Antio Date/Term Date/Term Date/Term Date/Term Date/Term Date/Term Antio Date/Term Date/Term Date/Term Date/Term Date/Term <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>										
Holingamme by (Septement DeterTrans DeterTrans <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>										
Harmanner by: Segmenter Date/Tree Date/Tree </td <td></td>										
Anticipation Activity A				Particular Strength	5	_	The second se	active of the second		······································
Release of Section Data True Release of Section Principal of Section Data True Release of True Release of Section Data True Release of True Release of Section Data True Release of True Release of True Determined by To True Release of True Release of True Determined by To True Release of True Release of True Determined by To True Release of True Release of True Release of True Release of True Release of True Release of True Release of True Release of True Release of True Release of True Release of True Release of True Release of True Release of True Release of True Release of True Release of True Release of True Release of True		Allected		9/23/09 15:45	Acle	Jan	NE	DAED TAT		AFINTELOER
Relificative by Signature Data/Time Received for Laboratory for Signature Relificatived by Signature Att: Stept Att: Stept ENV-02 REV 05/08 Mile - Samper Canary - Return Copy Ta Stepter ENV-02 REV 05/08 Mile - Samper CHAIN OF CUSTODY	Test V	Hole	Segratures	911469 944	Referred by ISignatu	8				LONG BEACH, CA 20813
ENV-OZ FIEV 05/06) White - Startpair Canary - Petarn Copy Ta Shipper Petar Copy Ta Shipper Petar - Liab Copy Coc No 04539	Heli	countred by: 15	Manufactures	Clater/Time	Received for Laborate	W DV: (Signature)				ATT WOLFL
	ENV	22 REV 05/C	(90)		White - Startpier	сна	anary - Peturn Copy IN OF CI	To Shipper	Prok - Lino Copy	COC Nº 04535

Enviro – Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

Date: October 2, 2009

Mr. Bert Vogler
Kleinfelder
620 W. 16th Street, Unit #F
Long Beach, CA 90813
Tel(562)432-1696 Fax(562)432-1796

Project: ARTIC Project No.: 103567/Env 2 Lab I.D.: 090925-51 through -64

Dear Mr. Vogler:

The **analytical results** for the soil samples, received by our lab on September 25, 2009, are attached. The samples were received chilled, intact and accompanying chain of custody.

Enviro-Chem appreciates the opportunity to provide you and your company this and other services. Please do not hesitate to call us if you have any questions.

Sincerely,

Curtís Desilets Vice President/Program Manager

Andy Wang Laboratory Manager

Eric Lu, Ph.D. Chief Chemist

Enviro – Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER:	Kleinfelder				
	620 W. 16th Street,	Unit #F			
	Long Beach, CA 90813	1			
	Tel(562)432-1696 Fax	:(562)432-1'	796		
PROJECT: A	RTIC				
PROJECT No.	: 103567/Env 2		DATE REC	EIVED: <u>09/2</u>	<u>5/09</u>
MATRIX: SOIL	_		DATE EXT	RACTED: 09/	<u>28/09</u>
DATE SAMPLE	ED: <u>09/24/09</u>		DATE ANA	LYZED: 09/2:	<u>8/09</u>
REPORT TO:	<u>1r. BERT VOGLER</u>		DATE REP	ORTED: <u>10/0</u>	2/09
тотя	AL PETROLEUM HYDROCAR	BONS (TPH)	- CARBON CI	HAIN ANALYS	IS
	METH	IOD: EPA 80	15B		
	UNIT: $mg/Kg = MI$	LLIGRAM PER	KILOGRAM	= PPM	
SAMPLE I.D	LAB I.D.	C4-C10	C11-C22	C23-C35	DF
B-2-1,5	090925-51	ND	ND	ND	1
8-2-5	090925-52	ND	ND	ND	1
B-2-10	090925-53	ND	ND		1
B-2-20	090925-54	ND	ND	ND	1
B-2-30	090925-55	ND	ND	ND	1
B-2-40	090925-56	ND	ND	ND	1
B-2-50	090925-57	ND	ND	ND	1
B-1-1.5	090925-58	ND	ND	ND	1
B-1-5	090925-59	ND	ND	ND	10*
B~1-10	090925-60	ND	ND	ND	1
B-1-20	090925-61	ND	ND	ND	1
B-1-30	090925-62	ND	ND	ND	1
B-1-40	090925-63	ND	ND	ND	1
B-1-50	090925-64	ND	ND	ND	1
METHOD BLA	NK	ND	ND	ND	1
	PQL	10	10	50	
COMMENTS					
C4 - C10 = G.	ASOLINE RANGE				
C11 - C22 = 2	DIESEL RANGE				
C23 - C35 = 3	MOTOR OIL RANGE				
DF = DILUT	ION FACTOR				
PQL = PRAC	TICAL QUANTITATION L	IMIT			
ACTUAL DET	ECTION LIMIT = DF X !	PQL			
* = ACTUAL	DETECTION LIMIT RAIS	SED DUE TO	MATRIX INT	ERFERENCE	
ND = NON-D	ETECTED OR BELOW THE	ACTUAL DET	ECTION LIM	IT	
		101			
Data Revie	wed and Approved by:	ing			
CAL-DHS EL	AP CERTIFICATE No.: 1	1555			

Enviro Chem, Inc									
1214 E. Le	xington A	Avenue, I	Pomona,	CA 9176	36 Tel	(909)590	-5905 F	ax (909)59	0-5907
		8	8015E	3 Soil	/Solid	QC			
Date Analyzed	1:	<u>9/28/20(</u>	<u>09</u>				Units:	mg/Kg (P	P <u>M)</u>
Matrix:	<u>Solid</u>	/Slud	<u>qe</u>						
Matrix Spike (MS)/Matr	ix Spike I	Duplicate	e (MSD)					
Spiked Sampl	e Lab I.D	.:	09092	25-52 N	AS/MS	D			
Analyte	SR	spk conc	MS	%MS	MSD	%MSD	%RPD	ACP %MS	ACP RPD
LCS STD REC Analyte C11~C22 Range	SPK CONC 200	LCS 223	% REC 112%	ACP 75-125					
Surronate Becovery	ACP%	%REC	%REC	%BEC	%REC	%REC	%REC	%REC	%8EC
Sample LD	, (01)/	MR	090925-51	090925-52	090925-53	090925-54	090925-55	090925-56	090925-57
O-Terohenvi	60-140%	88%	101%	103%	76%	85%	78%	68%	88%
Octacosane	60-140%	97%	105%	108%	76%	87%	85%	75%	92%
Surrogate Recovery	ACP%	%REC	%REC	%REC	%REC	%REC	%REC	%REC	%REC
Sample I.D.		090925-58	090925-59	090925-60	090925-61	090925-62	090925-63	090925-64	
O-Terphenyl	60-140%	73%	93%	105%	110%	102%	85%	100%	
Octacosane	60-140%	84%	112%	102%	108%	103%	128%	102%	
								1	
Surrogate Recovery	ACP%	%REC	I %REC	KREC	KREC	I %REC	I		<u> </u>
Sample I.D.					<u> </u>	 			I
O-Terphenyl	60-140%						l		
Octacosane	60-140%								
				185	$\overline{)}$				

Analyzed and Reviewed By:

Final Reviewer:

* = Surrogate fail due to matrix interference Note: LCS, MS, MSD are in control therefore results are in control.

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER:	Kleinfelder						
	620 W. 16th S	treet, Un	it #F				
	Long Beach, C	A 90813					
	Tel (562) 432-1	696 Fax(5	62) 432-1	796			
PROJECT: A	RTIĈ						
PROJECT No	.: 103567/Env	2					
MATRIX: SOI	L			DATE RI	ECEIVED:	09/25/09	
DATE SAMPL	ED: <u>09/24/09</u>			DATE AN	NALYZED:	09/28/09	
REPORT TO:	Mr. BERT VOGLE	R		DATE RI	EPORTED:	10/02/09	
EPA 5035/8260B FOR FUEL OXYGENATES; PAGE 1 OF 2 UNITS: mg/Kg = MILLIGRAM PER KILOGRAM = PPM							
SAMPLE		ETBE	DIPE	MTBE	TAME	TBA	DF
I.D.	LAB I.D.						
5015	000005 51	ND		ND		ND	1
<u>B-2-1.5</u>	090925-51	ND		ND	<u></u>		
<u>B-2-5</u>	090925-52		<u>ND</u>	<u>ND</u>			<u> </u>
<u>B-2-10</u>	090925-53	ND	ND	<u>ND</u>	<u>_ND</u>	ND	
8-2-20	_090925-54	ND	ND	<u>ND</u>	ND	<u>ND</u>	
Method Bla	nk	<u>ND</u>	ND	<u></u>	ND	ND	1
	DOT	0.01	0.01	0 005	0.01	0.05	
	ЪÕГ	0.01	0.01	0.005	0.01	0.05	
COMMENTS:							
DF = DILUT	ION FACTOR						
PQL = PRAC	TICAL QUANTITA	ATION LIMI	т				
ACTUAL DET	ECTION LIMIT =	DF X PQI					
ND = NON - D	ETECTED OR BEI	LOW THE AC	TUAL DEI	ECTION LI	MIT		
ETBE = ETH	YL tert-BUTYL	ETHER	DIPE =	ISOPROPY	L ETHER		
MTBE = MET	HYL tert-BUTYI	L ETHER	TAME =	TERT-AMY	L METHYL	, ETHER	
TBA = TERT	IARY BUTYL ALC	СОНОЬ	1.It				
Data Devie	wed and Annros	red by	1				

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER:	Kleinfelder						
	620 W. 16th Street, Unit #F						
	Long Beach. CA 90813						
	Tel (562) 432-1	696 Fax(562) 432-1	796			
PROJECT: A	RTIC						
PROJECT No	.: 103567/Env	2					
MATRIX:SOI	L	-		DATE R	ECETVED: 0	09/25/09	
DATE SAMPL				DATE A	NALYZED: (09/29/09	
REPORT TO:	Mr. BERT VOGLE	R		DATE R	EPORTED :	10/02/09	
	EPA 5035/826	OB FOR FU	JEL OXYGE	NATES; PA	GE 2 OF	2	
	UNITS: mg/1	Kg = MILL	IGRAM PE	R KILOGRA	M = PPM		
SAMPLE		ETBE	DIPE	MTBE	TAME	TBA	DF
I.D.	LAB I.D.						-
<u>B-2-30</u>	090925-55	ND	ND	ND	ND	ND	1
B-2-40	090925-56	ND	ND	ND	ND	ND	1
B-2-50	090925-57	ND	ND	ND	ND	ND	1
B-2-1.5	090925-58	ND	ND	ND	NĎ	ND	1
B-2-5	090925-59	ND	ND	ND	ND	ND	1
B-2-10	090925-60	ND	ND	ND	ND	ND	1
B-2-20	090925-61	ND	ND	ND	ND	ND	1
B-2-30	090925-62	ND	ND	ND	ND	ND	1
B-2-40	<u>090925-63</u>	ND	DN	ND	ND	ND	1
B-2-50	<u>090925-64</u>	ND	ND	NĎ	ND	ND	1
	_						
Method Bla	nk	ND	ND	ND	ND	ND	<u> </u>
	POL	0.01	0.01	0.005	0 01	0 05	
			0.01	0.000	~. ~ 1	0.00	
COMMENTS:							
DF = DILUTION FACTOR							
POL - PRACTICAL OHANTITATION LIMIT							

PQL = PRACTICAL QUANTITATION LIMIT ACTUAL DETECTION LIMIT = DF X PQL ND = NON-DETECTED OR BELOW THE ACTUAL DETECTION LIMIT ETBE = ETHYL tert-BUTYL ETHER DIPE = ISOPROPYL ETHER MTBE = METHYL tert-BUTYL ETHER TAME = TERT-AMYL METHYL ETHER TBA = TERTIARY BUTYL ALCOHOL

All

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: K	leinfelder		
62	20 W. 16th Street, Unit	#F	
\mathbf{L}_{i}	ong Beach, CA 90813		
Т	el(562)432-1696 Fax(562)	432~1796	
PROJECT: ART	IC		
PROJECT No.:	103567/Env 2		
MATRIX: SOIL		DATE RECEIVED: <u>09/25/</u>	09
DATE SAMPLED	:09/24/09	DATE ANALYZED:09/28/	09
REPORT TO:Mr	. BERT VOGLER	DATE REPORTED: <u>10/02/</u>	09
SAMPLE I.D.:	B-2-1.5	LAB I.D.: 090925-51	
			 קר קר
ANALISIS	: YOLATILE ORGANICS, EPA	A MEINUD BUSS/02000, PAGE I (
	INIT : ma/Ka = MTLLTGP	AM DER KTLOGRAM = PPM	
DADAMETED	UNIT: mg/Kg = MILLIGR	AM PER KILOGRAM = PPM	
PARAMETER	UNIT: mg/Kg = MILLIGR SAMPI	AM PER KILOGRAM = PPM LE RESULT PQL X1	
PARAMETER ACETONE BENZENE	UNIT: mg/Kg = MILLIGR SAMPI	AM PER KILOGRAM = PPM LE RESULT PQL X1 ND 0.020	
PARAMETER ACETONE BENZENE BROMOBENZENE	UNIT: mg/Kg = MILLIGR SAMPI	AM PER KILOGRAM = PPM LE RESULT PQL X1 ND 0.020 ND 0.005 ND 0.005	
PARAMETER ACETONE BENZENE BROMOBENZENE BROMOCHLOROM	UNIT: mg/Kg = MILLIGR SAMPI	AM PER KILOGRAM = PPM LE RESULT PQL X1 ND 0.020 ND 0.005 ND 0.005 ND 0.005	
PARAMETER ACETONE BENZENE BROMOBENZENE BROMODICHLOROM	UNIT: mg/Kg = MILLIGR SAMPI ETHANE OMETHANE	AM PER KILOGRAM PPM LE RESULT PQL X1 ND 0.020 ND 0.005 ND 0.005 ND 0.005 ND 0.005 ND 0.005	
PARAMETER ACETONE BENZENE BROMOBENZENE BROMOCHLOROM BROMODICHLOR BROMOFORM	UNIT: mg/Kg = MILLIGR SAMPI ETHANE OMETHANE	AM PER KILOGRAM = PPM LE RESULT PQL X1 ND 0.020 ND 0.005	
PARAMETER ACETONE BENZENE BROMOBENZENE BROMOCHLOROM BROMODICHLOR BROMOFORM BROMOMETHANE	UNIT: mg/Kg = MILLIGR SAMPI ETHANE OMETHANE	AM PER KILOGRAM = PPM LE RESULT PQL X1 ND 0.020 ND 0.005	
PARAMETER ACETONE BENZENE BROMOBENZENE BROMOCHLOROM BROMOCHLOROM BROMOFORM BROMOFORM BROMOMETHANE 2-BUTANONE (UNIT: mg/Kg = MILLIGR SAMPI ETHANE OMETHANE MEK)	AM PER KILOGRAM PPM LE RESULT PQL X1 ND 0.020 ND 0.005	
PARAMETER ACETONE BENZENE BROMOBENZENE BROMOCHLOROM BROMODICHLOR BROMOFORM BROMOFORM BROMOMETHANE 2-BUTANONE (N-BUTYLBENZE	UNIT: mg/Kg = MILLIGR SAMPI ETHANE OMETHANE MEK) NE	AM PER KILOGRAM = PPM LE RESULT PQL X1 ND 0.020 ND 0.005 ND 0.005	

BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZÊNÊ	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	NĎ	0.005
4 - CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1, 2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	_0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

----- TO BE CONTINUED, ON PAGE #2 -----

DATA REVIEWED AND APPROVED BY:_

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER:	Kleinfelder 620 W. 16th S Long Beach, C Tel(562)432-1	treet, Unit #F A 90813 696 Fax(562)432-1796	
PROJECT: A	RTIC		
PROJECT No.	.: 103567/Env	2	
MATRIX: SOIL	Ĺ	DAT	E RECEIVED: <u>09/25/09</u>
DATE SAMPLE	ED: <u>09/24/09</u>	DAT	E ANALYZED: <u>09/28/09</u>
REPORT TO:N	Mr. BERT VOGLE	<u>DAT</u>	E REPORTED: <u>10/02/09</u>
SAMPLE I.D.	.: в-2-1.5	LAB	I.D.: 090925-51

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2

UNIT:	mg/Kg	=	MILLIGRAM	PER	KILOGRAM	=	PPM
-------	-------	---	-----------	-----	----------	---	-----

PARAMETER	SAMPLE RESULT	PQL X1
1, 3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	<u>ND</u>	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	0.010	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.00 <u>5</u>
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROM <u>ETHANE</u>	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	<u></u>	0.005
VINYL CHLORIDE	ND	0.0 <u>05</u>
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005
COMMENTS PQL = PRACTICAL QUANT	TITATION LIMIT	

ND = NON-DETECTED OR BELOW THE PQL

DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder		
620 W. 16th Stree	t, Unit #F	
Long Beach, CA 90	813	
Tel(562)432-1696	Fax (562) 432-1796	
PROJECT: ARTIC		
PROJECT No.: 103567/Env 2		
MATRIX: <u>SOIL</u>	DAT	E RECEIVED: <u>09/25/09</u>
DATE SAMPLED:09/24/09	DAT	E ANALYZED: <u>09/28/09</u>
REPORT TO: Mr. BERT VOGLER	DAT	E REPORTED: <u>10/02/09</u>
SAMPLE I.D.: B-2-5	LAB	I.D.: 090925-52
ANALYSIS: VOLATILE ORGAN	IICS, EPA METHOD 503	5/8260B, PAGE 1 OF 2
UNIT: mg/Kg =	MILLIGRAM PER KILO	GRAM = PPM
PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2 - CHLOROTOLUENE	ND	0,005
4 - CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0,005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1.2-DICHLOROPROPANE	ND .	0.005

---- TO BE CONTINUED ON PAGE #2 -----

DATA REVIEWED AND APPROVED BY:__

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER :	Kleinfelder		
	620 W. 16th Street,	Unit #F	
	Long Beach, CA 90813	3	
	Tel(562)432-1696 Fax	x (562) 432-1796	
PROJECT: A	RTIC		
PROJECT No	.: 103567/Env 2		
MATRIX:SOI	L	AG	TE RECEIVED:09/25/09
DATE SAMPL		DA	TE ANALYZED: 09/28/09
REPORT TO:	Mr. BERT VOGLER	DA	TE REPORTED: 10/02/09
SAMPLE I.D	.: B-2-5	LA	B I.D.: 090925-52
ANALYS	IS: VOLATILE ORGANIC	S, EPA METHOD 5	035/8260B, PAGE 2 OF 2
	UNIT: mg/Kg = MI	LLIGRAM PER KII	OGRAM = PPM
PARAMETER	27 2	SAMPLE RESULT	POL X1
1.3-DICHLO	ROPROPANE	ND	0.005
2,2-DICHLO	ROPROPANE	ND	0.005
1.1-DICHLO	ROPROPENE	ND	0.005
CIS-1,3-DI	CHLOROPROPENE	NĎ	0.005
TRANS-1,3-	DICHLOROPROPENE	ND	0.005
ETHYLBENZE	NE	ND	0.005
2-HEXANONE		ND	0.020
HEXACHLORO	BUTADIENE	ND	0.005
ISOPROPYLE	ENZENE	ND	0.005
4-ISOPROPY	LTOLUENE	ND	0.005
4-METHYL-2	~PENTANONE (MIBK)	ND	0.020
METHYL ter	t-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE	CHLORIDE	ND	0.010
NAPHTHALEN	E	ND	0.005
N-PROPYLBE	NZENE	ND	0.005
STYRENE		ND	0.005
1,1,1,2-TE	TRACHLOROETHANE	ND	0.005
<u>1,1,2,2-TE</u>	TRACHLOROETHANE	ND	0.005
TETRACHLOR	OETHENE (PCE)	NĎ	0.005
TOLUENE		ND	0.005
<u>1,2,3-TRIC</u>	CHLOROBENZENE	<u>_ND</u>	0.005
<u>1,2,4-TRIC</u>	CHLOROBENZENE	ND	0.005
<u>1,1,1-TRIC</u>	CHLOROETHANE	ND	0.005
<u>1,1,2-TRIC</u>	CHLOROETHANE	ND	0.005
TRICHLOROE	THENE (TCE)	ND	0.005
TRICHLORON	LUOROMETHANE	NĎ	0.005
<u>1,2,3-TRIC</u>	CHLOROPROPANE	ND	0.005
<u>1,2,4-TRIN</u>	IETHYLBENZENE	ND	0.005
<u>1,3,5-TRIN</u>	<u> 1ETHYLBENZENE</u>	ND	0.005
VINYL CHLO	DRIDE	ND	0.005
M/P-XYLEN	<u> </u>	ND	0.010
<u>O-XYLENE</u>		ND	0.005
COMMENTS !	PQL = PRACTICAL QUANT	TITATION LIMIT	
ND = NON-I	ספייפרייפה הפ פפורמע ייענ	POT //	

ND = NON-DETECTED OR BELOW THE Ŵ

DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER:	Kleinfelder		
	620 W. 16th Street	. Unit #F	
	Long Beach, CA 900	213	
	Tol (562) 432-1696		1
DRAIFCT. A	181 (302) 432-1090 J	ax(502)452-1790	
BROJECT No	102567/Env 2		
MATRIX COT	.: 10356//Env 2		
PATRIA: SUL			DATE RECEIVED: $09/25/09$
DATE SAMPL	ED: <u>09/24/09</u>	1	DATE ANALYZED: 09/28/09
REPORT TO:	Mr. BERT VOGLER	1	DATE REPORTED: 10/02/09
SAMPLE I.D	e.: B−2−10		LAB I.D.: 090925-53
ANALYS	IS: VOLATILE ORGAN	ICS, EPA METHOD	5035/8260B, PAGE 1 OF 2
	UNIT: mg/Kg =	MILLIGRAM PER K	ILOGRAM = PPM
PARAMETER		SAMPLE RESULT	PQL X1
ACETONE		ND	0.020
BENZENE		ND	0.005
<u>BROMOBENZE</u>	NE	ND	0.005
BROMOCHLOR	OMETHANE	ND	0. <u>005</u>
BROMODICHL	OROMETHANE	ND	0.005
BROMOFORM		<u>ND</u>	0.005
BROMOMETHA	NE	ND	0.005
<u>2 - BUTANONE</u>	(MEK)	ND	0.020
<u>N-BUTYLBEN</u>	ZENE	ND	0.005
SEC-BUTYLB	ENZENE	NĎ	0.005
<u>TERT-BUTYL</u>	BENZENE	ND	0.005
CARBON DIS	ULFIDE	ND	0.010
CARBON TET	RACHLORIDE	ND	0.005
CHLOROBENZ	ENE	ND	0.005
CHLOROETHA	NE	ND	0.005
<u>CHLOROFORM</u>	1	ND	0.005
CHLOROMETH	IANE	ND	_0.005
2-CHLOROTO	LUENE	ND	0.005
4-CHLOROTO	DLUENE	ND	0.005
DIBROMOCHL	JOROMETHANE	ND	0.005
1,2-DIBROM	10-3-CHLOROPROPANE	ND	0.005
1,2-DIBROM	IOETHANE	ND	0.005
DIBROMOMET	CHANE	ND	0.005
1,2-DICHLO	DROBENZENE	ND	0.005
1,3-DICHLO	DROBENZENE	ND	0.005
1,4-DICHLO	DROBENZENE	ND	0.005
DICHLORODI	FLUOROMETHANE	ND	0.005
1.1-DICHLO	DROETHANE	NĎ	0.005
1.2-DICHLO	DROETHANE	ND	0.005
1,1-DICHLO	DROETHENE	ND	0.005
CIS-1.2-DI	CHLOROETHENE	ND	0,005
TRANS-1.2	DICHLOROETHENE	מא	0.005
1.2-DICHLO	DROPROPANE	ND	0.005

---- TO BE CONTINUED ON PAGE #2 -----

DATA REVIEWED AND APPROVED BY:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: ARTIC PROJECT No.: 103567/Env 2 MATRIX: SOIL DATE SAMPLED: 09/24/09 REPORT TO:Mr. BERT VOGLER SAMPLE I.D.: B-2-10

DATE RECEIVED: 09/25/09 DATE ANALYZED: 09/28/09 DATE REPORTED: 10/02/09 LAB I.D.: 090925-53

ANALYSTS, VOLATTLE ORGANICS EDA METHOD 5035/8260B DAGE 2 OF 2

PARAMETER	SAMPLE RESULT	POL X1
1,3-DICHLOROPROPANE	ND	0,005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTB	BE) ND	0.005
METHYLENE CHLORIDE	<u>ND</u>	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
<u>STYRENË</u>	<u>ND</u>	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	0.008	0. <u>00</u> 5
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROB <u>ENZENE</u>	<u>ND</u>	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	N <u>D</u>	0.005
TRICHLOROFLUOROMETHANE	<u>ND</u>	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	<u>ND</u>	<u>0.005</u>
VINYL CHLORIDE	ND	<u>0.005</u>
M/P-XYLENE	ND	0.010
	110	0.005

NON-DETEC Pr

DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER:	Kleinfelder	
	620 W. 16th Street, Unit #F	
	Long Beach, CA 90813	
	Tel(562)432-1696 Fax(562)432-179	6
PROJECT: A	RTIC	
PROJECT No	.: 103567/Env 2	
MATRIX: SOID	L	DATE RECEIVED: <u>09/25/09</u>
DATE SAMPLI	ED: <u>09/24/09</u>	DATE ANALYZED: <u>09/28/09</u>
REPORT TO:	<u>Mr. BERT VOGLER</u>	DATE REPORTED: <u>10/02/09</u>
SAMPLE I.D	.: B-2-20	LAB I.D.: 090925-54

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2

UNIT:	ma/Ka	=	MILLIGRAM	PER	KILOGRAM	=	PPM
-------	-------	---	-----------	-----	----------	---	-----

PARAMETER	SAMPLE RESULT	PQL X1	
ACETONE	ND	0.020	
BENZENE	ND	0.005	
BROMOBENZENE	ND	0.005	
BROMOCHLOROMETHANE	ND	0.005	
BROMODICHLOROMETHANE	ND	0.005	
BROMOFORM	ND	0.005	
BROMOMETHANE	ND	0.005	
2-BUTANONE (MEK)	0.039	0.020	
N-BUTYLBENZENE	ND	0.005	
SEC-BUTYLBENZENE	ND	0.005	
TERT-BUTYLBENZENE	ND	0.005	
CARBON DISULFIDE	ND	0.010	
CARBON TETRACHLORIDE	ND	0.005	
CHLOROBENZENE	ND	0.005	
CHLOROETHANE	ND	0.005	
CHLOROFORM	<u>NĎ</u>	0.005	
CHLOROMETHANE	ND	0.0 <u>05</u>	
2-CHLOROTOLUENE	N <u>D</u>	0.005	
4-CHLOROTOLUENE	<u>ND</u>	0.005	
DIBROMOCHLOROMETHANE	ND	0. <u>005</u>	
1,2-DIBROMO-3-CHLOROPROPANE	<u>ND</u>	0.005	
1,2-DIBROMOETHANE	ND	0.005	
DIBROMOMETHANE	ND	0. <u>005</u>	
1,2-DICHLOROBENZENE	ND	_0.005	
1,3-DICHLOROBENZENE	<u>ND</u>	0.005	
1,4-DICHLOROBENZENE	ND	0.005	
DICHLORODIFLUOROMETHANE	ND	0.005	
1,1-DICHLOROETHANE	<u>ND</u>	0.005	
1,2-DICHLOROETHANE	<u>ND</u>	0.005	
1,1-DICHLOROETHENE	ND	0.005	
CIS-1,2-DICHLOROETHENE	ND	0.005	
TRANS-1, 2-DICHLOROETHENE	ND	0.005	
1 2-DICHLOROPROPANE	סא	0.005	

---- TO BE CONTINUED ON BAGE #2 ----

DATA REVIEWED AND APPROVED BY:_

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

		_ • • • • •			
CUSTOMER:	Kleinfelder 620 W. 16th Str Long Beach, CA	ceet, Unit # 90813	F		
	m-1/5(0)/00 1()		00 1000		
	Tel (562) 432-16	96 Fax(562)4	32-1796		
PROJECT: A	RTIC				
PROJECT No	.: 103567/Env 2				
MATRIX: SOI	Ľ		DATE	RECEIVE	D: <u>09/25/09</u>
DATE SAMPL	ED: <u>09/24/09</u>		DATE	ANALYZE	D: <u>09/28/09</u>
REPORT TO:	Mr. BERT VOGLER		DATE	REPORTE	D: <u>10/02/09</u>
SAMPLE I.D	.: B-2-20		LAB	I.D.: 09	0925-54

D.: 090925-54 _____

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2

UNIT: mg/K	g =	MILLIGRAM	PER	KILOGRAM =	PPM
------------	-----	-----------	-----	------------	-----

PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	N <u>D</u>	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	N <u>D</u>	0. <u>005</u>
ETHYLBENZENE	NĎ	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADI ENE	<u>ND</u>	0.0 <u>05</u>
ISOPROPYLBENZENE	ND	0 <u>.005</u>
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.00 <u>5</u>
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	0.035	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	<u>ND</u>	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0,005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005
COMMENTS PQL = PRACTICAL QUANT	ITATION LIMIT	

ND = NON-DETECTED OR BELOW THE PQL

DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER:	Kleinfelder		
	620 W. 16th Street, Unit	#F	
	Long Beach, CA 90813		
	Tel (562) 432-1696 Fax (562)) 432-1796	
PROJECT: A	RTIC		
PROJECT No	.: 103567/Env 2		
MATRIX: SOI	Ĺ	DATE RECH	EIVED:09/25/09
DATE SAMPL	ED: <u>09/24/09</u>	DATE ANAL	LYZED:09/29/09
REPORT TO:	Mr. BERT VOGLER	DATE REPO	ORTED: 10/02/09
SAMPLE I.D	.: B-2-30	LAB I.D.	: 090925-55
ANALYS	IS: VOLATILE ORGANICS, EPA	A METHOD 5035/826	OB, PAGE 1 OF 2
	UNIT: mg/Kg = MILLIGR	AM PER KILOGRAM =	= PPM
PARAMETER	SAMP	LE RESULT	PQL X1
ACETONE		ND	0.020
BENZENE		ND	0.005
DDOMODENT	NC	ND	0 005

2

BENZENE ND 0.005 BROMOGENZENE ND 0.005 BROMOCHLOROMETHANE ND 0.005 BROMOCHLOROMETHANE ND 0.005 BROMOFORM ND 0.005 BROMOFORM ND 0.005 BROMOFTHANE ND 0.005 SECMOMETHANE ND 0.005 SECMOMETHANE ND 0.005 SECHUTLBENZENE ND 0.005 SEC-BUTYLBENZENE ND 0.005 SEC-BUTYLBENZENE ND 0.005 CARBON DISULFIDE ND 0.005 CHLOROBENZENE ND 0.005 CHLOROBENZENE ND 0.005 CHLOROFORM ND 0.005 CHLOROFORM ND 0.005 CHLOROFORM ND 0.005 CHLOROTOLUENE ND 0.005 2-CHLOROTOLUENE ND 0.005 1.2-DIBROMOCHLOROMETHANE ND 0.005 1.2-DIEROMOETHANE ND 0.005	ACETONE	ND	0.020
BROMOBENZENE ND 0.005 BROMOCHLOROMETHANE ND 0.005 BROMODICHLOROMETHANE ND 0.005 BROMOPORM ND 0.005 BROMOMETHANE ND 0.005 BROMOMETHANE ND 0.005 BROMOMETHANE ND 0.005 BROMOMETHANE ND 0.005 SEC-BUTXIDENCENE ND 0.005 SEC-BUTYLEENZENE ND 0.005 CHARON DISULFIDE ND 0.005 CARBON DISULFIDE ND 0.005 CHLOROBENZENE ND 0.005 CHLOROBENZENE ND 0.005 CHLOROFORM ND 0.005 2-CHLOROTOLUENE ND 0.005 1.2-DIBROMOCHLOROMETHANE ND 0.005 <td>BENZENE</td> <td>ND</td> <td>0.005</td>	BENZENE	ND	0.005
BROMOCHLOROMETHANE ND 0.005 BROMODICHLOROMETHANE ND 0.005 BROMOFORM ND 0.005 BROMOFORM ND 0.005 BROMOMETHANE ND 0.005 2-BUTANONE (MEK) ND 0.020 N-BUTYLBENZENE ND 0.005 SEC-BUTYLBENZENE ND 0.005 CARBON DISULFIDE ND 0.005 CARBON TETRACHLORIDE ND 0.005 CHLOROBENZENE ND 0.005 CHLOROFORM ND 0.005 CHLOROTOLUENE ND 0.005 J-CHLOROTOLUENE ND 0.005 J-S-DIBROMOCHLOROMETHANE ND 0.005 J.2-DIBROMOCHLOROMETHANE ND 0.005 J.2-DIBROMOCHLOROMETHANE ND 0.005 J.2-DICHLOROBENZENE	BROMOBENZENE	ND	0.005
BROMODICHLOROMETHANE ND 0.005 BROMOFORM ND 0.005 BROMOMETHANE ND 0.005 SROMOMETHANE ND 0.005 SROMOMETHANE ND 0.005 SEC-BUTYLBENZENE ND 0.005 SEC-BUTYLBENZENE ND 0.005 CARBON TETRACHLORIDE ND 0.005 CHLOROBENZENE ND 0.005 CHLOROFORM ND 0.005 CHLOROPORM ND 0.005 2-CHLOROTOLUENE ND 0.005 2-CHLOROTOLUENE ND 0.005 1.2-DIBROMOCHLOROMETHANE ND 0.005 1.2-DIBROMOCHLOROBENZENE ND 0.005 1.2-DIBROMOETHANE ND 0.005 1.2-DICHLOROBENZENE ND 0.005 1.3-DICHLOROBENZENE	BROMOCHLOROMETHANE	ND	0.005
BROMOFORM ND 0.005 BROMOMETHANE ND 0.005 2-BUTANONE (MEK) ND 0.020 N-BUTYLBENZENE ND 0.005 SEC-BUTYLBENZENE ND 0.005 SEC-BUTYLBENZENE ND 0.005 CARBON DISULFIDE ND 0.005 CARBON TETRACHLORIDE ND 0.005 CHLOROBENZENE ND 0.005 CHLOROFORM ND 0.005 CHLOROFORM ND 0.005 CHLOROTOLUENE ND 0.005 1.2-DIBROMOCHLOROMETHANE ND 0.005 1.2-DIBROMOS-SCHLOROPROPANE ND 0.005 1.2-DICHLOROBENZENE ND 0.005 1.2-DICHLOROBENZENE ND 0.005 1.2-DIROMO-3-CHLOROPROPANE ND 0.005 1.4-DICHLOR	BROMODICHLOROMETHANE	ND	0.005
BROMOMETHANE ND 0.005 2-BUTANONE (MEK) ND 0.020 N-BUTYLBENZENE ND 0.005 SEC-BUTYLBENZENE ND 0.005 TERT-BUTYLBENZENE ND 0.005 CARBON DISULFIDE ND 0.005 CARBON TETRACHLORIDE ND 0.005 CHLOROBENZENE ND 0.005 CHLOROFORM ND 0.005 2-CHLOROTOLUENE ND 0.005 2-CHLOROTOLUENE ND 0.005 1.2-DIBROMOETHANE ND 0.005 1.2-DIBROMOETHANE ND 0.005 1.2-DIBROMOETHANE ND 0.005 1.2-DICHLOROBENZENE ND 0.005 1.3-DICHLOROBENZENE ND 0.005 1.4-DICHLOROBENZENE ND 0.005 1.4-DICHLOROBENZENE	BROMOFORM	ND	0.005
2-BUTANONE (MEK) ND 0.020 N-BUTYLBENZENE ND 0.005 SEC-BUTYLBENZENE ND 0.005 TERT-BUTYLBENZENE ND 0.005 CARBON DISULFIDE ND 0.005 CARBON TETRACHLORIDE ND 0.005 CHLOROBENZENE ND 0.005 CHLOROBENZENE ND 0.005 CHLOROFORM ND 0.005 CHLOROFORM ND 0.005 CHLOROFORM ND 0.005 2-CHLOROTOLUENE ND 0.005 2-CHLOROTOLUENE ND 0.005 2-CHLOROTOLUENE ND 0.005 1, 2-DIBROMOCHLOROMETHANE ND 0.005 1, 2-DIBROMOETHANE ND 0.005 1, 2-DIROMOETHANE ND 0.005 1, 2-DIROMOETHANE ND 0.005 1, 2-DICHLOROBENZENE ND 0.005 1, 2-DICHLOROBENZENE ND 0.005 1, 4-DICHLOROBENZENE ND 0.005 1, 1-D	BROMOMETHANE	ND	0.005
N-BUTYLBENZENEND0.005SEC-BUTYLBENZENEND0.005TERT-BUTYLBENZENEND0.005CARBON DISULFIDEND0.010CARBON TETRACHLORIDEND0.005CHLOROBENZENEND0.005CHLOROFENANEND0.005CHLOROFORMND0.005CHLOROTOLUENEND0.0052-CHLOROTOLUENEND0.0051.2-DIBROMOCHLOROMETHANEND0.0051.2-DIBROMOETHANEND0.0051.2-DIBROMOETHANEND0.0051.2-DICHLOROBENZENEND0.0051.3-DICHLOROBENZENEND0.0051.4-DICHLOROBENZENEND0.0051.3-DICHLOROBENZENEND0.0051.4-DICHLOROBENZENEND0.0051.1-DICHLOROBENZENEND0.0051.1-DICHLOROBENZENEND0.0051.1-DICHLOROETHANEND0.0051.1-DICHLOROETHANEND0.0051.2-DICHLOROETHANEND0.0051.1-DICHLOROETHANEND0.0051.2-DICHLOROETHANEND0.0051.1-DICHLOROETHANEND0.0051.1-DICHLOROETHENEND0.0051.2-DICHLOROETHENEND0.0051.2-DICHLOROETHENEND0.0051.2-DICHLOROETHENEND0.0051.2-DICHLOROETHENEND0.0051.2-DICHLOROETHENEND0.0051.2-DICHLOROETHENEND0.0051.2-DICHLOROETHENEND0.	2-BUTANONE (MEK)	ND	0.020
SEC-BUTYLBENZENE ND 0.005 TERT-BUTYLBENZENE ND 0.005 CARBON DISULFIDE ND 0.010 CARBON TETRACHLORIDE ND 0.005 CHLOROBENZENE ND 0.005 CHLOROFENANE ND 0.005 CHLOROFORM ND 0.005 CHLOROFORM ND 0.005 CHLOROTOLUENE ND 0.005 2-CHLOROTOLUENE ND 0.005 4-CHLOROTOLUENE ND 0.005 1.2-DIBROMOCHLOROMETHANE ND 0.005 1.2-DIBROMO-3-CHLOROPROPANE ND 0.005 1.2-DIBROMO-3-CHLOROPROPANE ND 0.005 1.2-DIBROMO-3-CHLOROPROPANE ND 0.005 1.2-DICHLOROBENZENE ND 0.005 1.3-DICHLOROBENZENE ND 0.005 1.4-DICHLOROBENZENE ND 0.005 1.4-DICHLOROBENZENE ND 0.005 1.4-DICHLOROBENZENE ND 0.005 1.4-DICHLOROBENZENE ND 0.005 <td><u>N-BUTYLBENZENE</u></td> <td>ND</td> <td>0.005</td>	<u>N-BUTYLBENZENE</u>	ND	0.005
TERT-BUTYLBENZENE ND 0.005 CARBON DISULFIDE ND 0.010 CARBON TETRACHLORIDE ND 0.005 CHLOROBENZENE ND 0.005 CHLOROETHANE ND 0.005 CHLOROFORM ND 0.005 CHLOROTOLUENE ND 0.005 2-CHLOROTOLUENE ND 0.005 4-CHLOROTOLUENE ND 0.005 1.2-DIBROMO-3-CHLOROPROPANE ND 0.005 1.2-DIBROMOSTHANE ND 0.005 1.2-DICHLOROBENZENE ND 0.005 1.3-DICHLOROBENZENE ND 0.005 1.4-DICHLOROBENZENE ND 0.005 1.4-DICHLOROBENZENE ND 0.005 1.1-DICHLOROBENZENE ND 0.005 1.2-DICHLOROBENZENE ND 0.005 <tr< td=""><td>SEC-BUTYLBENZENE</td><td>NĎ</td><td>0.005</td></tr<>	SEC-BUTYLBENZENE	NĎ	0.005
CARBON DISULFIDE ND 0.010 CARBON TETRACHLORIDE ND 0.005 CHLOROBENZENE ND 0.005 CHLOROETHANE ND 0.005 CHLOROFORM ND 0.005 CHLOROFORM ND 0.005 CHLOROFORM ND 0.005 CHLOROFORM ND 0.005 CHLOROFOLUENE ND 0.005 2-CHLOROTOLUENE ND 0.005 4-CHLOROTOLUENE ND 0.005 1.2-DIBROMOCHLOROMETHANE ND 0.005 1.2-DIBROMOETHANE ND 0.005 1.2-DIBROMOETHANE ND 0.005 1.2-DIBROMOETHANE ND 0.005 1.2-DICHLOROBENZENE ND 0.005 1.3-DICHLOROBENZENE ND 0.005 1.4-DICHLOROBENZENE ND 0.005 1.4-DICHLOROBENZENE ND 0.005 1.1-DICHLOROBENZENE ND 0.005 1.2-DICHLOROBENZENE ND 0.005 1.1-DICHLO	TERT-BUTYLBENZENE	ND	0.005
CARBON TETRACHLORIDE ND 0.005 CHLOROBENZENE ND 0.005 CHLOROETHANE ND 0.005 CHLOROFORM ND 0.005 CHLOROFORM ND 0.005 CHLOROTOLUENE ND 0.005 2-CHLOROTOLUENE ND 0.005 4-CHLOROTOLUENE ND 0.005 1, 2-DIBROMOCHLOROMETHANE ND 0.005 1, 2-DIBROMOCHLOROPROPANE ND 0.005 1, 2-DIBROMOETHANE ND 0.005 1, 2-DIBROMOETHANE ND 0.005 1, 2-DIBROMOETHANE ND 0.005 1, 2-DIBROMOETHANE ND 0.005 1, 2-DICHLOROBENZENE ND 0.005 1, 3-DICHLOROBENZENE ND 0.005 1, 4-DICHLOROBENZENE ND 0.005 1, 1-DICHLOROETHANE ND 0.005 1, 1-DICHLOROETHANE ND 0.005 1, 2-DICHLOROETHANE ND 0.005 1, 1-DICHLOROETHANE ND 0.005 <td>CARBON DISULFIDE</td> <td>ND</td> <td>0.010</td>	CARBON DISULFIDE	ND	0.010
CHLOROBENZENE ND 0.005 CHLOROETHANE ND 0.005 CHLOROFORM ND 0.005 CHLOROMETHANE ND 0.005 2-CHLOROTOLUENE ND 0.005 4-CHLOROTOLUENE ND 0.005 4-CHLOROTOLUENE ND 0.005 1.2-DIBROMOCHLOROMETHANE ND 0.005 1.2-DIBROMOCHLOROMETHANE ND 0.005 1.2-DIBROMOCHLOROPROPANE ND 0.005 1.2-DIBROMOETHANE ND 0.005 1.2-DIBROMOETHANE ND 0.005 1.2-DIBROMOETHANE ND 0.005 1.2-DICHLOROBENZENE ND 0.005 1.3-DICHLOROBENZENE ND 0.005 1.4-DICHLOROBENZENE ND 0.005 1.4-DICHLOROBENZENE ND 0.005 1.4-DICHLOROBENZENE ND 0.005 1.1-DICHLOROETHANE ND 0.005 1.2-DICHLOROETHANE ND 0.005 1.2-DICHLOROETHENE ND 0.005	CARBON TETRACHLORIDE	ND	0.005
CHLOROETHANE ND 0.005 CHLOROFORM ND 0.005 CHLOROMETHANE ND 0.005 2-CHLOROTOLUENE ND 0.005 4-CHLOROTOLUENE ND 0.005 DIBROMOCHLOROMETHANE ND 0.005 1.2-DIBROMO-3-CHLOROPROPANE ND 0.005 1.2-DIBROMOETHANE ND 0.005 1.2-DIBROMOETHANE ND 0.005 1.2-DIBROMOETHANE ND 0.005 1.2-DICHLOROBENZENE ND 0.005 1.3-DICHLOROBENZENE ND 0.005 1.4-DICHLOROBENZENE ND 0.005 1.4-DICHLOROBENZENE ND 0.005 1.1-DICHLOROBENZENE ND 0.005 1.1-DICHLOROETHANE ND 0.005 1.2-DICHLOROETHANE ND 0.005 1.1-DICHLOROETHANE ND 0.005 1.2-DICHLOROETHENE ND 0.005 1.1-DICHLOROETHENE ND 0.005 1.2-DICHLOROETHENE ND 0.005 <td>CHLOROBENZENE</td> <td>ND</td> <td>0.005</td>	CHLOROBENZENE	ND	0.005
CHLOROFORM ND 0.005 CHLOROMETHANE ND 0.005 2-CHLOROTOLUENE ND 0.005 4-CHLOROTOLUENE ND 0.005 DIBROMOCHLOROMETHANE ND 0.005 1.2-DIBROMO-3-CHLOROPROPANE ND 0.005 1.2-DIBROMOETHANE ND 0.005 1.2-DIBROMOETHANE ND 0.005 1.2-DIBROMOETHANE ND 0.005 1.2-DICHLOROBENZENE ND 0.005 1.3-DICHLOROBENZENE ND 0.005 1.4-DICHLOROBENZENE ND 0.005 1.4-DICHLOROBENZENE ND 0.005 1.4-DICHLOROBENZENE ND 0.005 1.4-DICHLOROBENZENE ND 0.005 1.1-DICHLOROETHANE ND 0.005 1.2-DICHLOROETHANE ND 0.005 1.1-DICHLOROETHENE ND 0.005 1.1-DICHLOROETHENE ND 0.005 1.1-DICHLOROETHENE ND 0.005 1.2-DICHLOROETHENE ND 0.005	CHLOROETHANE	ND	0.005
CHLOROMETHANE ND 0.005 2-CHLOROTOLUENE ND 0.005 4-CHLOROTOLUENE ND 0.005 DIBROMOCHLOROMETHANE ND 0.005 1,2-DIBROMO-3-CHLOROPROPANE ND 0.005 1,2-DIBROMO-3-CHLOROPROPANE ND 0.005 1,2-DIBROMOETHANE ND 0.005 1,2-DIBROMOETHANE ND 0.005 1,2-DICHLOROBENZENE ND 0.005 1,3-DICHLOROBENZENE ND 0.005 1,4-DICHLOROBENZENE ND 0.005 1,4-DICHLOROBENZENE ND 0.005 1,1-DICHLOROBENZENE ND 0.005 1,1-DICHLOROBENZENE ND 0.005 1,1-DICHLOROETHANE ND 0.005 1,2-DICHLOROETHANE ND 0.005 1,1-DICHLOROETHENE ND 0.005 1,1-DICHLOROETHENE ND 0.005 1,2-DICHLOROETHENE ND 0.005 1,2-DICHLOROETHENE ND 0.005 1,2-DICHLOROETHENE ND	CHLOROFORM	ND	0.005
2-CHLOROTOLUENE ND 0.005 4-CHLOROTOLUENE ND 0.005 DIBROMOCHLOROMETHANE ND 0.005 1,2-DIBROMO-3-CHLOROPROPANE ND 0.005 1,2-DIBROMOETHANE ND 0.005 1,2-DIBROMOETHANE ND 0.005 1,2-DIBROMOETHANE ND 0.005 1,2-DICHLOROBENZENE ND 0.005 1,3-DICHLOROBENZENE ND 0.005 1,4-DICHLOROBENZENE ND 0.005 1,1-DICHLOROBENZENE ND 0.005 1,1-DICHLOROBENZENE ND 0.005 1,1-DICHLOROBENZENE ND 0.005 1,1-DICHLOROBENZENE ND 0.005 1,1-DICHLOROETHANE ND 0.005 1,1-DICHLOROETHANE ND 0.005 1,1-DICHLOROETHENE ND 0.005 1,1-DICHLOROETHENE ND 0.005 1,2-DICHLOROETHENE ND 0.005 1,2-DICHLOROETHENE ND 0.005 1,2-DICHLOROETHENE ND <t< td=""><td>CHLOROMETHANE</td><td>ND</td><td>0.005</td></t<>	CHLOROMETHANE	ND	0.005
4-CHLOROTOLUENE ND 0.005 DIBROMOCHLOROMETHANE ND 0.005 1,2-DIBROMO-3-CHLOROPROPANE ND 0.005 1,2-DIBROMOETHANE ND 0.005 DIBROMOMETHANE ND 0.005 1,2-DIBROMOETHANE ND 0.005 DIBROMOMETHANE ND 0.005 1,2-DICHLOROBENZENE ND 0.005 1,3-DICHLOROBENZENE ND 0.005 1,4-DICHLOROBENZENE ND 0.005 1,1-DICHLOROBENZENE ND 0.005 1,1-DICHLOROBENZENE ND 0.005 1,1-DICHLOROBENZENE ND 0.005 1,1-DICHLOROETHANE ND 0.005 1,2-DICHLOROETHANE ND 0.005 1,1-DICHLOROETHENE ND 0.005 1,1-DICHLOROETHENE ND 0.005 1,2-DICHLOROETHENE ND 0.005 1,2-DICHLOROETHENE ND 0.005 1,2-DICHLOROETHENE ND 0.005	2 - CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE ND 0.005 1,2-DIBROMO-3-CHLOROPROPANE ND 0.005 1,2-DIBROMOETHANE ND 0.005 DIBROMOMETHANE ND 0.005 DIBROMOMETHANE ND 0.005 1,2-DICHLOROBENZENE ND 0.005 1,3-DICHLOROBENZENE ND 0.005 1,4-DICHLOROBENZENE ND 0.005 1,4-DICHLOROBENZENE ND 0.005 1,1-DICHLOROBENZENE ND 0.005 1,1-DICHLOROBENZENE ND 0.005 1,1-DICHLOROBENZENE ND 0.005 1,1-DICHLOROETHANE ND 0.005 1,2-DICHLOROETHANE ND 0.005 1,1-DICHLOROETHENE ND 0.005 1,1-DICHLOROETHENE ND 0.005 1,2-DICHLOROETHENE ND 0.005 1,2-DICHLOROETHENE ND 0.005 1,2-DICHLOROETHENE ND 0.005	4 - CHLOROTOLUENE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE ND 0.005 1,2-DIBROMOETHANE ND 0.005 DIBROMOMETHANE ND 0.005 1,2-DICHLOROBENZENE ND 0.005 1,3-DICHLOROBENZENE ND 0.005 1,4-DICHLOROBENZENE ND 0.005 1,4-DICHLOROBENZENE ND 0.005 1,4-DICHLOROBENZENE ND 0.005 1,1-DICHLOROBENZENE ND 0.005 1,1-DICHLOROBENZENE ND 0.005 1,1-DICHLOROETHANE ND 0.005 1,2-DICHLOROETHANE ND 0.005 1,1-DICHLOROETHENE ND 0.005 1,1-DICHLOROETHENE ND 0.005 1,2-DICHLOROETHENE ND 0.005 TRANS-1,2-DICHLOROETHENE ND 0.005 1,2-DICHLOROPROPANE ND 0.005	DIBROMOCHLOROMETHANE	NĎ	0.005
1,2-DIBROMOETHANE ND 0.005 DIBROMOMETHANE ND 0.005 1,2-DICHLOROBENZENE ND 0.005 1,3-DICHLOROBENZENE ND 0.005 1,4-DICHLOROBENZENE ND 0.005 1,4-DICHLOROBENZENE ND 0.005 DICHLOROBENZENE ND 0.005 DICHLORODIFLUOROMETHANE ND 0.005 1,1-DICHLOROETHANE ND 0.005 1,2-DICHLOROETHANE ND 0.005 1,1-DICHLOROETHANE ND 0.005 1,1-DICHLOROETHENE ND 0.005 1,2-DICHLOROETHENE ND 0.005 TRANS-1,2-DICHLOROETHENE ND 0.005 1,2-DICHLOROPROPANE ND 0.005	1, 2-DIBROMO-3-CHLOROPROPANE	<u>ND</u>	0.005
DIBROMOMETHANE ND 0.005 1,2-DICHLOROBENZENE ND 0.005 1,3-DICHLOROBENZENE ND 0.005 1,4-DICHLOROBENZENE ND 0.005 DICHLOROBENZENE ND 0.005 DICHLOROBENZENE ND 0.005 DICHLOROBENZENE ND 0.005 DICHLORODIFLUOROMETHANE ND 0.005 1,1-DICHLOROETHANE ND 0.005 1,2-DICHLOROETHANE ND 0.005 1,1-DICHLOROETHENE ND 0.005 1,2-DICHLOROETHENE ND 0.005 TRANS-1,2-DICHLOROETHENE ND 0.005 1,2-DICHLOROPROPANE ND 0.005	1,2-DIBROMOETHANE	ND	0.005
1, 2 - DICHLOROBENZENE ND 0.005 1, 3 - DICHLOROBENZENE ND 0.005 1, 4 - DICHLOROBENZENE ND 0.005 DICHLORODIFLUOROMETHANE ND 0.005 1, 1 - DICHLOROETHANE ND 0.005 1, 2 - DICHLOROETHANE ND 0.005 1, 1 - DICHLOROETHANE ND 0.005 1, 2 - DICHLOROETHANE ND 0.005 1, 1 - DICHLOROETHENE ND 0.005 1, 1 - DICHLOROETHENE ND 0.005 1, 2 - DICHLOROETHENE ND 0.005	DIBROMOMETHANE	ND	0.005
1,3-DICHLOROBENZENE ND 0.005 1,4-DICHLOROBENZENE ND 0.005 DICHLORODIFLUOROMETHANE ND 0.005 1,1-DICHLOROETHANE ND 0.005 1,2-DICHLOROETHANE ND 0.005 1,1-DICHLOROETHANE ND 0.005 1,2-DICHLOROETHANE ND 0.005 1,1-DICHLOROETHENE ND 0.005 1,2-DICHLOROETHENE ND 0.005 TRANS-1,2-DICHLOROETHENE ND 0.005 1,2-DICHLOROPROPANE ND 0.005	1,2-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE ND 0.005 DICHLORODIFLUOROMETHANE ND 0.005 1,1-DICHLOROETHANE ND 0.005 1,2-DICHLOROETHANE ND 0.005 1,1-DICHLOROETHANE ND 0.005 1,2-DICHLOROETHANE ND 0.005 1,1-DICHLOROETHENE ND 0.005 1,2-DICHLOROETHENE ND 0.005 TRANS-1,2-DICHLOROETHENE ND 0.005 1,2-DICHLOROPROPANE ND 0.005	1, 3-DICHLOROBENZENE	ND	_0.005
DICHLORODIFLUOROMETHANE ND 0.005 1,1-DICHLOROETHANE ND 0.005 1,2-DICHLOROETHANE ND 0.005 1,1-DICHLOROETHANE ND 0.005 1,1-DICHLOROETHENE ND 0.005 1,2-DICHLOROETHENE ND 0.005 CIS-1,2-DICHLOROETHENE ND 0.005 TRANS-1,2-DICHLOROETHENE ND 0.005 1,2-DICHLOROPROPANE ND 0.005	1,4-DICHLOROBENZENE	<u>ND</u>	0.005
1,1-DICHLOROETHANE ND 0.005 1,2-DICHLOROETHANE ND 0.005 1,1-DICHLOROETHENE ND 0.005 CIS-1,2-DICHLOROETHENE ND 0.005 TRANS-1,2-DICHLOROETHENE ND 0.005 1,2-DICHLOROETHENE ND 0.005 1,2-DICHLOROETHENE ND 0.005	DICHLORODIFLUOROMETHANE	ND	0.005
1,2-DICHLOROETHANE ND 0.005 1,1-DICHLOROETHENE ND 0.005 CIS-1,2-DICHLOROETHENE ND 0.005 TRANS-1,2-DICHLOROETHENE ND 0.005 1,2-DICHLOROPROPANE ND 0.005	1,1-DICHLOROET <u>HANE</u>	ND	0.005
1,1-DICHLOROETHENE ND 0.005 CIS-1,2-DICHLOROETHENE ND 0.005 TRANS-1,2-DICHLOROETHENE ND 0.005 1,2-DICHLOROPROPANE ND 0.005	1,2-DICHLOROETHANE	ND	0. <u>005</u>
CIS-1,2-DICHLOROETHENE ND 0.005 TRANS-1,2-DICHLOROETHENE ND 0.005 1,2-DICHLOROPROPANE ND 0.005	1,1-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE ND 0.005 1, 2-DICHLOROPROPANE ND 0.005	CIS-1, 2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE ND 0.005	TRANS-1, 2-DICHLOROETHENE	ND	0.005
	1,2-DICHLOROPROPANE	ND	0.005

----- TO BE CONTINUED ON PAGE #2 -----L

D

DATA REVIEWED AND APPROVED BY:_

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER:	Kleinfelder 620 W. 16th Stre Long Beach, CA 9 Tel(562)432-1696	et, Unit #F 0813 5 Fax(562)432-179	6	
PROJECT: A	RTIC			
PROJECT No.	.: 103567/Env 2			
MATRIX: SOIL	Ĺ		DATE RECEI	VED: <u>09/25/09</u>
DATE SAMPLE	ED: <u>09/24/09</u>		DATE ANALY	ZED: <u>09/29/09</u>
REPORT TO:	Mr. BERT VOGLER		DATE REPOR	TED: <u>10/02/09</u>
SAMPLE I.D	.: B-2-30		LAB I.D.:	090925-55

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2

ANALYSIS: VOLATILE ORGANIC UNIT: $m\sigma/K\sigma = M$	S, EPA METHOD 503 ILLIGRAM PER KILOG	S/8260B, PAGE 2 OF 2 RAM = PPM
PARAMETER	SAMPLE RESULT	POL X1
1, 3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	_0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	<u>ND</u>	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	0.011	0.005
1,2,3-TRICHLOROBENZENE	<u>ND</u>	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	<u>ND</u>	0.005
TRICHLOROFLUOROMETHANE	ND	_0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
<u>1,2,4-TRIMETHYLBENZENE</u>	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	<u>0.005</u>
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005
COMMENTS PQL = PRACTICAL QUANT	ITATION LIMIT	

ND = NON-DETECTED OR BELOW THE PQL

DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555 CM .

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street Long Beach, CA 908 Tel(562)432-1696 Fa	, Unit #F 13 ax(562)432-1796	
PROJECT: ARTIC		
PROJECT No.: 103567/Env 2		
MATRIX: <u>SOIL</u>	D.	ATE RECEIVED: <u>09/25/09</u>
DATE SAMPLED: <u>09/24/09</u>	D	ATE ANALYZED: <u>09/29/09</u>
REPORT TO:Mr. BERT VOGLER	D.	ATE REPORTED: <u>10/02/09</u>
SAMPLE I.D.: B-2-40	L	AB I.D.: 090925-56
ANALYSIS: VOLATILE ORGANIC	CS, EPA METHOD 5	035/8260B, PAGE 1 OF 2
UNIT: $mg/Kg = M$	ILLIGRAM PER KI	LOGRAM = PPM
PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0,005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0,005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0,005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ŅD	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	NĎ	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1, 3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1, 2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

----- TO BE CONTINUED ON PAGE #2 -----

DATA REVIEWED AND APPROVED BY:_

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: ARTIC PROJECT No.: 103567/Env 2 MATRIX: SOIL DATE SAMPLED: 09/24/09 REPORT TO: Mr. BERT VOGLER SAMPLE I.D.: B-2-40

DATE RECEIVED: 09/25/09 DATE ANALYZED: 09/29/09 DATE REPORTED: 10/02/09 LAB I.D.: 090925-56

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2

UNIT:	mg/Kg	Ξ	MILLIGRAM	PER	KILOGRAM	=	PPM	

PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	*ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	0.006	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0,005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0,005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005
COMMENTS POL = PRACTICAL OUANT	TTATION LIMIT	

MIS PUD PRACIICAL QUANI. TALLON PIMIT

ND = NON-DETECTED OR BELOW THE PQL

DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER:	Kleinfelder		
	620 W. 16th Street	, Unit #F	
	Long Beach, CA 908	13	
	Tel(562)432-1696 F	ax (562) 432-179	96
PROJECT: AN	RTIC		
PROJECT No.	.: 103567/Env 2		
MATRIX:SOI	L .		DATE RECEIVED:09/25/09
DATE SAMPLE	- ED:09/24/09		DATE ANALYZED:09/29/09
REPORT TO:	Mr. BERT VOGLER		DATE REPORTED: $10/02/09$
SAMPLE I.D	: B-2-50		LAB I D \cdot 090925-57
ANALYS	IS: VOLATILE ORGANI	CS. EPA METHOD	5035/8260B, PAGE 1 OF 2
	IINTT: ma/Ka = N	TITTCRAM DED	KILOGPAM = PPM
DARAMETER	onii: mg/ng = r	SAMDLE DECIT	$\mathbf{T} \qquad \mathbf{DOI} \ \mathbf{V}^{1}$
ACETONE		ND	
BENZENE			0.020
DENZENE DROMORENIZEJ	NF.		0.005
BROMOCULOR			0.005
BROMODICUL	OMETHANE ODOMETUNE		0.005
BROMODICHL	OROMETHANE		0.005
BROMONETHAL	NE		0.005
DROMOME THAT			0.005
Z-BUTANONE	(MEK)	ND	0.020
N-BUTYLBEN	ZENE		0.005
SEC-BUTTLE	ENZENE	<u>_</u>	0.005
TERT-BUTYL	BENZENE	ND	0.005
CARBON DIS	ULFIDE	ND	0.010
CARBON TET	RACHLORIDE		0.005
CHLOROBENZ	ENE	ND	0.005
CHLOROETHA	NE	ND	0.005
CHLOROFORM		<u>ND</u>	0.005
CHLOROMETH	ANE	<u>_ND</u>	0.005
2-CHLOROTO	LUENE	ND	0.005
4-CHLOROTO	LUENE	ND	0.005
DIBROMOCHL	OROMETHANE	<u>ND</u>	0.005
1,2-DIBROM	O-3-CHLOROPROPANE _	ND	0.005
<u>1,2-DIBROM</u>	OETHANE	ND	0.005
DIBROMOMET	HANE	ND	0.005
<u>1,2-DICHLO</u>	RÓBENZENE	ND	0.005
<u>1,3-DICHLO</u>	ROBENZENE	ND	0.005
<u>1,4-DICHLO</u>	ROBENZENE	ND	0.005
DICHLORODI	FLUOROMETHANE	ND	0.005
<u>1,1-DICHLO</u>	ROETHANE	<u>ND</u>	0.005
<u>1,2-DICHLO</u>	ROETHANE	ND	0.005
<u>1,1-DICHLO</u>	ROETHENE	ND	0.005
<u>CIS-1,2-DI</u>	CHLOROETHENE	ND	0.005
<u>TRANS-1,2-</u>	DICHLOROETHENE	ND	0.005
1,2-DICHLO	ROPROPANE	ND	0.005

---- TO BE CONTINUED ON PAGE #2 -----

DATA REVIEWED AND APPROVED BY:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER:	Kleinfelder	
	620 W. 16th Street, Unit #	F
	Long Beach, CA 90813	
	Tel(562)432-1696 Fax(562)4	32-1796
PROJECT: A	RTIC	
PROJECT No	.: 103567/Env 2	
MATRIX: <u>SOI</u>	<u>L</u>	DATE RECEIVED: <u>09/25/09</u>
DATE SAMPLI	ED: <u>09/24/09</u>	DATE ANALYZED: <u>09/29/09</u>
REPORT TO:	<u>Mr. BERT VOGLER</u>	DATE REPORTED: <u>10/02/09</u>
SAMPLE I.D	.: B-2-50	LAB I.D.: 090925-57

ANALYSIS: VOLATILE ORGANICS	S, EPA METHOD 503	5/8260B, PAGE 2 OF 2
UNIT: $mg/Kg = MI$	LLIGRAM PER KILOG	SRAM = PPM
PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
<u>4-METHYL-2-PENTANONE (MIBK)</u>	ND	0.020
<u>METHYL tert~BUTYL ETHER (MTBE)</u>	<u>ND</u>	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	<u>ND</u>	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	<u>ND</u>	0.005
<u>1,1,2,2-TETRACHLOROETHANE</u>	ND	0.005
TETRACHLOROETHENE (PCE)	<u>ND</u>	0.005
TOLUENE	<u>0.013</u>	0.005
1,2,3-TRICHLOROBENZENE	ND	0,005
1,2,4-TRICHLOROBENZENE	ND	0.005
<u>1,1,1-TRICHLOROETHANE</u>	<u>ND</u>	0.005
1,1,2-TRICHLOROETHANE	<u>ND</u>	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0,005
1,2,4-TRIMETHYLBENZENE	ND	0.005
<u>1,3,5-TRIMETHYLBENZENE</u>	ND	
VINYL CHLORIDE	<u>ND</u>	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005
COMMENTS PQL = PRACTICAL QUANT	ITATION LIMIT	
ND = NON-DETECTED OR BELOW THE	POL /	

DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

IN

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W 16th Street Uni	+ #F	
Long Beach, CA 90813		
Tel(562)432-1696 Fax(56	52) 432-1796	
PROJECT: ARTIC	2,102 4.00	
PROJECT No : 103567/Env 2		
MATRIX SOLL	D7	
DATE SAMPLED.09/24/09		$\frac{12}{20} \frac{1}{20} $
DATE SAMPLED: 09724709 DEDORT TO MY REPT VOCIDE	104 104	$\frac{12}{10} = \frac{10}{100} = 10$
SAMPLE I D $\sim B-1-1$ 5	DP L.7	$\frac{10}{02} = \frac{10}{02} = 10$
ANALYSTS · VOLATTLE ORGANICS	EPA METHOD 5	035/8260B PAGE 1 OF 2
INIT: mg/Kg = MILLT	COM DED KTT	OCRAM = DDM
DADAMETED CALL MG/NG - MIDII	UNAL PROVIDE	
	MPLE RESULT	PQH A1
DENZENC		0.020
		0.005
		0.005
BROMODICALOROMETHANE		0.005
BROMOPURM		0.005
2 DUTANONE (MPZ)		0.003
Z-BUTANONE (MEK)	<u>ND</u>	0.020
	ND	0.005
		0.005
CNRON DIGULEIDE		0.005
		0.010
		0.005
		0.005
	ND	0.005
		0.005
		0.005
		0.005
		0.005
		0.005
		0.005
	ND	0.005
	ND	0.005
		0.005
1 4-DICHLOROBENZENE	ND	0.005
	ND	0.005
		0.005
	ND	<u> </u>
	ND	0 005
	ND ND	0.005
1,1-DICHLOROETHENE		0.005
1,1-DICHLOROETHENE	ND ND ND ND	0.005 0.005 0.005 0.005

---- TO BE CONTINUED ON PAGE #2 -----

DATA REVIEWED AND APPROVED BY:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: ARTIC PROJECT No.: 103567/Env 2 MATRIX: SOIL DATE SAMPLED:09/24/09

DATE RECEIVED: 09/25/09 DATE ANALYZED:09/29/09

JAB I.D.: 090925-58
LOGRAM = PPM
PQL X1
0.005
0.005
0.005
0.005
0.005
0.005
0.020
0.005
0.005
0.005
0.020
0.005
0.010
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.010
0.005
-

CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

		-
CUSTOMER:	Kleinfelder	
	620 W. 16th Street, Unit #F	
	Long Beach, CA 90813	
	Tel(562)432-1696 Fax(562)432-179	6
PROJECT: A	RTIC	
PROJECT No	.: 103567/Env 2	
MATRIX: SOI	<u>L</u>	DATE RECEIVED: 09/25/09
DATE SAMPLI	ED: <u>09/24/09</u>	DATE ANALYZED: 09/29/09
REPORT TO:	<u>Mr. BERT VOGLER</u>	DATE REPORTED: 10/02/09
SAMPLE I.D	.: B-1-5	LAB I.D.: 090925-59

PORTED: 10/02/09 .: 090925-59 -----

10000 -VINT VOTO TTOT BUT

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZÈNE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1, 2-DIBROMO-3-CHLOROPROPAN	E ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROM <u>OMETHANE</u>	ND	0.005
1,2-DICHLOROBENZÊNÊ	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1 2-DICHLORODRODANE	ND	0 005

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: ARTIC PROJECT No.: 103567/Env 2 MATRIX: SOIL DATE SAMPLED: 09/24/09 REPORT TO: Mr. BERT VOGLER SAMPLE I.D.: B-1-5 _____

DATE RECEIVED: 09/25/09 DATE ANALYZED: 09/29/09 DATE REPORTED:10/02/09 LAB I.D.: 090925-59

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2

UNIT: m	a/Ka =	MILLIGRAM	PER	KILOGRAM	=	PPM
---------	--------	-----------	-----	----------	---	-----

PARAMETER	SAMPLE RESULT	PQL X1	
1, 3-DICHLOROPROPANE	ND	0,005	
2,2-DICHLOROPROPANE	ND	0.005	
1,1-DICHLOROPROPENE	ND	0.005	
CIS-1, 3-DICHLOROPROPENE	ND	0.005	
TRANS-1, 3-DICHLOROPROPENE	ND	0.005	
ETHYLBENZENE	ND	0.005	
2-HEXANONE	ND	0.020	
HEXACHLOROBUTADIENE	ND	0.005	
ISOPROPYLBENZENE	ND	0.005	
4-ISOPROPYLTOLUENE	ND	0.005	
4-METHYL-2-PENTANONE (MIBK)	ND	0.020	
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005	
METHYLENE CHLORIDE	ND	0.010	
NAPHTHALENE	ND	0.005	
N-PROPYLBENZENE	ND	0.005	
STYRENE	<u>ND</u>	0.005	
1,1,1,2-TETRACHLOROETHANE	N <u>D</u>	0.005	
1,1,2,2-TETRACHLOROETHANE	ND	0.005	
TETRACHLOROETHENE (PCE)	ND	0.005	
TOLUENE	0.010	0.005	_
1,2,3-TRICHLOROBENZENE	ND	0.005	
1,2,4-TRICHLOROBENZENE	ND	0.005	
1,1,1-TRICHLOROETHANE	ND	0.005	
1,1,2-TRICHLOROETHANE	ND	0.005	
TRICHLOROETHENE (TCE)	ND	0.005	
TRICHLOROFLUOROMETHANE	<u>ND</u>	0.005	
1,2,3-TRICHLOROPROPANE	ND	0.005	
1,2,4-TRIMETHYLBENZENE	ND	0.005	
1,3,5-TRIMETHYLBENZENE	ND	0.005	
VINYL CHLORIDE	ND	0.005	
M/P-XYLENE	ND	0.010	
O-XYLENE	ND	0.005	
COMMENTS POL = PRACTICAL QUANT	TTATION LIMIT		

PRACT MENIS PUL L C M I

ND = NON-DETECTED OR BELOW THE PQL

DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER:	Kleinfelder	
	620 W. 16th Street, Unit #F	
	Long Beach, CA 90813	
	Tel(562)432-1696 Fax(562)432-179	6
PROJECT: A	RTIC	
PROJECT No	.: 103567/Env 2	
MATRIX: SOI	Ĺ	DATE RECEIVED: <u>09/25/09</u>
DATE SAMPL	ED: <u>09/24/09</u>	DATE ANALYZED: <u>09/29/09</u>
REPORT TO:	<u>Mr. BERT_VOGLER</u>	DATE REPORTED: <u>10/02/09</u>
SAMPLE I.D	.: B-1-10	LAB I.D.: 090925-60

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2

UNIT: mg/Kg = MILLIGRAM	A PER	KILOGRAM	=	PPM
-------------------------	-------	----------	---	-----

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ON	0.020
BENZENE	ND	0.005
BROMOBENZENE	NĎ	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	_0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENÉ	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENÉ	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4 - CHLOROTOLUENE	ND	0,005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	_0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	_0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0 <u>.005</u>
1,1-DICHLOROETHENE	ND	0.005
CIS-1, 2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

---- TO BE CONTINUED ON PAGE #2 -----

DATA REVIEWED AND APPROVED BY:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER :	Kleinfelder					
	620 W. 16th Street,	Unit #F				
	Long Beach, CA 9081:	3				
	Tel(562)432-1696 Fax	к (562) 432-1796				
PROJECT: A	RTIC					
PROJECT No	.: 103567/Env 2					
MATRIX:SOI	L	DAT	E RECEIVED:09/25/09			
DATE SAMPL		DATE ANALYZED: $09/29/09$				
REPORT TO:	Mr. BERT VOGLER	DATE REPORTED: $10/02/09$				
SAMPLE I.D	.: B-1-10	LAB I D. : 090925-60				
ANALYS	IS: VOLATILE ORGANIC:	S, EPA METHOD 503	35/8260B, PAGE 2 OF 2			
	UNIT: mg/Kg = MI	LLIGRAM PER KILC	GRAM = PPM			
PARAMETER		SAMPLE RESULT	POL X1			
1,3-DICHLO	ROPROPANE	ND	0.005			
2,2-DICHLO	ROPROPANE	ND	0.005			
1,1-DICHLO	ROPROPENE	ND	0.005			
CIS-1,3-DI	CHLOROPROPENE	ND	0.005			
TRANS-1,3-	DICHLOROPROPENE	ND	0.005			
ETHYLBENZE	NE	ND	0,005			
2-HEXANONE		NĎ	0.020			
HEXACHLORO	BUTADIENE	ND	0.005			
ISOPROPYLB	ENZENE	ND	0.005			
4 - ISOPROPY	LTOLUENE	ND	0.005			
4-METHYL-2	-PENTANONE (MIBK)	ND	0.020			
<u>METHYL ter</u>	t-BUTYL ETHER (MTBE)	ND	0.005			
METHYLENE	CHLORIDE	ND	0.010			
<u>NAPHTHALEN</u>	E	ND	0.005			
<u>N-PROPYLBE</u>	NZENE	<u>ND</u>	0.005			
STYRENE		ND	0.005			
<u>1,1,1,2-TE</u>	TRACHLORO <u>ET</u> HANE	ND	0.005			
<u>1,1,2,2-TE</u>	TRACHLOROETHANE	ND	0.005			
<u>TETRACHLOR</u>	OETHENE (PCE)	ND	_0.005			
TOLUENE		ND	0.005			
<u>1,2,3-TRIC</u>	HLOROBENZENE	ND	0.005			
<u>1,2,4-TRIC</u>	HLOROBENZENE	ND	0.005			
<u>1,1,1-TRIC</u>	HLOROETHANE	ND	<u>0.005</u>			
<u>1,1,2-TRIC</u>	HLOROETHANE	ND	0.005			
TRICHLOROE	THENE (TCE)	ND	0.005			
TRICHLOROF	LUOROMETHANE	<u>ND</u>	0.005			
<u>1,2,3-TRIC</u>	HLOROPROPANE	ND	0.005			
<u>1,2,4-TRIM</u>	ETHYLBENZENE	<u>ND</u>	0.005			
<u>1,3,5-TRIM</u>	IETHYLBENZENE	ND	0.005			
VINYL CHLC	RIDE	ND	0.005			
M/P-XYLENE			0.010			
O-XYLENE		ND	0.005			
COMMENTS PQL = PRACTICAL QUANTITATION LIMIT						
ND = NON - D	ETECTED OR BELOW THE	POL //				

ND = NON-DETECTED OR BELOW THE PQL

DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

hel

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: ARTIC PROJECT No.: 103567/Env 2 MATRIX:SOIL DATE RECEIVED:09/25/09 DATE SAMPLED: 09/24/09 DATE ANALYZED: 09/29/09 REPORT TO: Mr. BERT VOGLER DATE REPORTED: 10/02/09 SAMPLE I.D.: B-1-20 LAB I.D.: 090925-61 ------ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM PARAMETER SAMPLE RESULT PQL X1 ACETONE ND 0.020 BENZENE ND 0.005 BROMOBENZENE ND 0.005 BROMOCHLOROMETHANE ND 0.005 BROMODICHLOROMETHANE ND 0.005 BROMOFORM ND 0.005 BROMOMETHANE ND 0.005 2-BUTANONE (MEK) ND 0.020 N-BUTYLBENZENE ŇD 0.005 SEC-BUTYLBENZENE ND 0.005 TERT-BUTYLBENZENE ND 0.005 CARBON DISULFIDE 0.010 ND CARBON TETRACHLORIDE ND 0.005 0.005 CHLOROBENZENE ND CHLOROETHANE ND 0.005 CHLOROFORM ND 0.005 CHLOROMETHANE ND 0.005 2-CHLOROTOLUENE ND 0.005 4 - CHLOROTOLUENE ND 0.005 DIBROMOCHLOROMETHANE ND 0.005 1,2-DIBROMO-3-CHLOROPROPANE ND 0.005 1,2-DIBROMOETHANE ND0.005 DIBROMOMETHANE ND 0.005 1,2-DICHLOROBENZENE ND 0.005 1,3-DICHLOROBENZENE ND 0.005 1,4-DICHLOROBENZENE ND 0.005 **DICHLORODIFLUOROMETHANE** ND 0.005 1,1-DICHLOROETHANE ND 0.005 1,2-DICHLOROETHANE ND 0.005 1,1-DICHLOROETHENE ND 0.005 CIS-1,2-DICHLOROETHENE ND 0.005 TRANS-1, 2-DICHLOROETHENE ND 0.005 1,2-DICHLOROPROPANE ND 0.005

----- TO BE CONTINUED ON PAGE #2 -----

DATA REVIEWED AND APPROVED BY:___
1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder		
620 W. 16th Street,	, Unit #F	
Long Beach, CA 908:	13	
Tel(562)432-1696 Fa	ax(562)432-1796	
PROJECT: ARTIC	, .	
PROJECT No.: 103567/Env 2		
MATRIX: SOIL	D	ATE RECEIVED:09/25/09
DATE SAMPLED:09/24/09	D	ATE ANALYZED: 09/29/09
REPORT TO:Mr. BERT VOGLER	D	ATE REPORTED: 10/02/09
SAMPLE I.D.: B-1-20	I	AB I.D.: 090925-61
ANALYSIS: VOLATILE ORGANI	CS, EPA METHOD 5	5035/8260B, PAGE 2 OF 2
UNIT: $mq/Kq = M$	ILLIGRAM PER KI	LOGRAM = PPM
PARAMETER	SAMPLE RESULT	POL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1,3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4 - ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE) ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	<u>ND</u>	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
<u>1,2,4-TRICHLOROBENZENE</u>	ND	0.005
1,1,1-TRICHLOROETHANE	ND	_0.005
<u>1,1,2-TRICHLOROETHANE</u>	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
<u>1,2,3-TRICHLOROPROPANE</u>	ND	0.005
<u>1,2,4-TRIMETHYLBENZENE</u>	ND	0 <u>.005</u>
<u>1,3,5-TRIMETHYLBENZENE</u>	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005
COMMENTS PQL = PRACTICAL QUAN	TITATION LIMIT	

ND = NON-DETECTED OR BELOW THE PQL DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

<u>l</u>ull

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder		
620 W. 16th Street	, Unit #F	
Long Beach, CA 908	13	
Tel(562)432-1696 F	ax(562)432-1796	
PROJECT: ARTIC		
PROJECT No.: 103567/Env 2		
MATRIX:SOIL	r	DATE RECEIVED:09/25/09
DATE SAMPLED:09/24/09	Γ	DATE ANALYZED: 09/29/09
REPORT TO:Mr. BERT VOGLER	Ι	DATE REPORTED: 10/02/09
SAMPLE I.D.: B-1-30	I	LAB I.D.: 090925-62
ANALYSIS: VOLATILE ORGANI	CS, EPA METHOD	5035/8260B, PAGE 1 OF 2
UNIT: $mg/Kg = N$	AILLIGRAM PER KI	LOGRAM = PPM
PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENÉ	ND	0,005
BROMOCHLOROMETHANE	NĎ	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0,005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1, 2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	<u>ND</u>	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1, 1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1 2-DICHLOROPROPANE		0 005

----- TO BE CONTINUED SNY PAGE #2 -----

DATA REVIEWED AND APPROVED BY:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER :	Kleinfelder		
	620 W. 16th Street,	Unit #F	
	Long Beach, CA 9081	3	
	Tel(562)432-1696 Fa:	x(562)432-1796	
PROJECT: A	RTIC		
PROJECT No	.: 103567/Env 2		
MATRIX: SOI	L	D	ATE RECEIVED:09/25/09
DATE SAMPL	ED: <u>09/24/09</u>	D	ATE ANALYZED: 09/29/09
REPORT TO:	<u>Mr. BERT_VOGLER</u>	D	ATE REPORTED: 10/02/09
SAMPLE I.D	.: B-1-30	L	AB I.D.: 090925-62
ANALYS	IS: VOLATILE ORGANIC	S, EPA METHOD 5	035/8260B, PAGE 2 OF 2
	UNIT: mg/Kg = MI	LLIGRAM PER KI	LOGRAM = PPM
PARAMETER		SAMPLE RESULT	PQL X1
<u>1,3-DICHLO</u>	ROPROPANE	ND	0.005
<u>2.2-DICHLO</u>	ROPROPANE	ND	0.005
<u>1,1-DICHLO</u>	ROPROPENE	N <u>D</u>	0.005
<u>CIS-1,3-DI</u>	CHLOROPROPENE	ND	0.005
<u> TRANS-1,3-</u>	DICHLOROPROPE <u>NE</u>	<u>ND</u>	0.005
<u>ETHYLBENZE</u>	NE	ND	_0.005
<u>2-HEXANONE</u>		<u>ND</u>	0.020
<u>HEXACHLORO</u>	BUTADIENE	<u>ND</u>	0.005
ISOPROPYLB	ENZENE	ND	0.005
<u>4-ISOPROPY</u>	LTOLUENE	<u>ND</u>	0.005
<u>4-METHYL-2</u>	-PENTANONE (MIBK)	ND	0.020
METHYL ter	<u>t-BUTYL ETHER (MTBE)</u>	ND	0.005
METHYLENE	CHLORIDE	ND	0.010
NAPHTHALEN		<u>_ND</u>	0.005
N-PROPYLBE	NZENE	<u>ND</u>	0.005
STIRENE		<u>ND</u>	0.005
1, 1, 1, 2 - TE	TRACHLOROETHANE		0.005
$\frac{1, 1, 2, 2-TE}{TETEROROWOE$	ATRACHLOROETHANE		
TOLUENE	(PCE)		0.005
	NU OBOBENIZENE		0.005
1, 2, 3 - 1 RIC	ULODOBENZENE		
1 1 1 - TPTC	THLOROFTHANE		0.005
1 1 2 - TRIC	HLOROFTHANE	ND	0.005
TRICHLOROF	THENE (TOE)		0.005
TRICHLOROF	CLUOROMETHANE	ND	0.005
1.2.3-TRIC	CHLOROPROPANE		0.005
1.2.4-TRIM	IETHYLBENZENE		0.005
1.3.5-TRIM	1ETHYLBENZENE	ND	0.005
VINYL CHLO	DRIDE	ND	0,005
M/P-XYLENE		ND	0.010
O-XYLENE		ND	0.005
COMMENTS I	PQL = PRACTICAL QUANT	ITATION LIMIT	

ND = NON-DETECTED OR BELOW THE PQL

DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

M

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Long Beach, CA 90813	Unit #F	
Tel(562)432-1696 Fax	(562)432-1796	6
PROJECT: ARTIC		
PROJECT No.: 103567/Env 2		
MATRIX:SOIL		DATE RECEIVED:09/25/09
DATE SAMPLED:09/24/09		DATE ANALYZED: 09/29/09
REPORT TO: Mr. BERT VOGLER		DATE REPORTED: $10/02/09$
SAMPLE I.D.: B-1-40		LAB I.D.: 090925-63
ANALYSIS: VOLATILE ORGANICS	, EPA METHOD	5035/8260B, PAGE 1 OF 2
UNIT: $mg/Kg = MI$	LLIGRAM PER K	ILOGRAM = PPM
PARAMETER	SAMPLE RESUL	T PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2 - CHLOROTOLUENE	ND	0.005
4 - CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0,005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND ND	0.005
DIBROMOMETHANE	ND	0.005
1.2-DICHLOROBENZENE	ND	0.005
1.3-DICHLOROBENZENE	ND	0.005
1.4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE		0.005
1, 1-DICHLOROETHANE		0.005
1.2-DICHLOROETHANE	ND	0.005
1.1-DICHLOROETHENE	ND	0.005
CIS-1, 2-DICHLOROETHENE	ND	0,005
TRANS-1 2-DICHLOROETHENE		0.005
1.2-DICHLOROPROPANE		0.005

----- TO BE CONTINUED ON PAGE #2 -----

i

DATA REVIEWED AND APPROVED BY:____

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: ARTIC PROJECT No.: 103567/Env 2 MATRIX:SOIL DATE RECEIVED: 09/25/09 DATE SAMPLED: 09/24/09 DATE ANALYZED:09/29/09 REPORT TO:Mr. BERT VOGLER DATE REPORTED: 10/02/09 SAMPLE I.D.: B-1-40 LAB I.D.: 090925-63 -------ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM PARAMETER SAMPLE RESULT POL X1 1,3-DICHLOROPROPANE 0.005 ND 2,2-DICHLOROPROPANE ND 0.005 1,1-DICHLOROPROPENE ŇD 0.005 CIS-1, 3-DICHLOROPROPENE ND 0.005 TRANS-1, 3-DICHLOROPROPENE ND 0.005 ETHYLBENZENE ND 0.005 2-HEXANONE ND 0.020 <u>HEXACHLOROBUTADIENE</u> ND 0.005 ISOPROPYLBENZENÉ ND 0.005 4 - ISOPROPYLTOLUENE ND 0.005 4-METHYL-2-PENTANONE (MIBK) ND 0.020 METHYL tert-BUTYL ETHER (MTBE) ND 0.005 METHYLENE CHLORIDE ND 0.010 NAPHTHALENE ND 0.005 N-PROPYLBENZENE ND 0.005 STYRENE ND 0.005 1, 1, 1, 2-TETRACHLOROETHANE ND 0.005 1, 1, 2, 2-TETRACHLOROETHANE ND 0.005 TETRACHLOROETHENE (PCE) ND 0.005 TOLUENE ND 0.005 1,2,3-TRICHLOROBENZENE ND 0.005 1, 2, 4-TRICHLOROBENZENE ND 0.005 1,1,1-TRICHLOROETHANE ND 0.005 ND 0.005 1,1,2-TRICHLOROETHANE TRICHLOROETHENE (TCE) ND 0.005 TRICHLOROFLUOROMETHANE ND 0.005 1,2,3-TRICHLOROPROPANE ND 0.005 1,2,4-TRIMETHYLBENZENE ND 0.005 1,3,5~TRIMETHYLBENZENE ND 0.005 VINYL CHLORIDE ND 0.005 <u>M/P-XYLENE</u> ND 0.010 O-XYLENE ND 0.005

COMMENTS POL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE POL

DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Long Beach CP 90813	Unit #F	
Tel (562) 432-1696 Fax	(562) 432-1796	
PROJECT ARTIC	.(502)452-1790	
PROJECT No : 103567/Ept 2		
MATTER COLL	Y	
DATE CANDIED AA/AA/AA	L	DATE RECEIVED: $09/25/09$
DATE SAMPLED: 09/24/09	L	DATE ANALYZED: 09/29/09
REPORT TO: Mr. BERT VOGLER	L	DATE REPORTED: 10/02/09
SAMPLE I.D.: B-1-50	1	LAB I.D.: 090925-64
ANALYSIS: VOLATILE ORGANICS	. EPA METHOD	5035/8260B, PAGE 1 OF 2
UNIT: $mg/Kg = MII$	LLIGRAM PER KI	LLOGRAM = PPM
PARAMETER	SAMPLE RESULT	POL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0,005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0,005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0,005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0,005
CHLOROBENZENE	ND -	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2 - CHLOROTOLUENE	ND	0.005
4 - CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	DND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1, 3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

----- TO BE CONTINUED ON PAGE #2 -----

DATA REVIEWED AND APPROVED BY:___

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796
PROJECT: ARTIC
PROJECT No.: 103567/Env 2
MATRIX: <u>SOIL</u> DATE RECEIVED: <u>09/25/09</u>
DATE SAMPLED: 09/24/09 DATE ANALYZED: 09/29/09
REPORT TO: <u>Mr. BERT_VOGLER</u> DATE REPORTED: <u>10/02/09</u>
SAMPLE I.D.: B-1-50 LAB I.D.: 090925-64

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM					
PARAMETER	SAMPLE RESULT	PQL X1			
1,3-DICHLOROPROPANE	<u>ND</u>	0.005			
2,2-DICHLOROPROPANE	ND	0.005			
1,1-DICHLOROPROPENE	ND	0.005			
CIS-1, 3-DICHLOROPROPENE	ND	0,005			
TRANS-1, 3-DICHLOROPROPENE	ND	0.005			
ETHYLBENZENE	ND	0.005			
2-HEXANONE	ND	0.020			
HEXACHLOROBUTADIENE	ND	0.005			
ISOPROPYLBENZENE	ND	0.005			
4-ISOPROPYLTOLUENE	ND	0.005			
4-METHYL-2-PENTANONE (MIBK)	ND	0.020			
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005			
METHYLENE CHLORIDE	ND	0.010			
NAPHTHALENE	ND	0.005			
N-PROPYLBENZENE	ND	0.005			
STYRENE	ND	0.005			
1,1,1,2-TETRACHLOROETHANE	ND	0.005			
1,1,2,2-TETRACHLOROETHANE	ND	0,005			
TETRACHLOROETHENE (PCE)	ND	0.005			
TOLUENE	0.007	0.005			
1,2,3-TRICHLOROBENZENE	ND	0.005			
1,2,4-TRICHLOROBENZENE	ND	0.005			
1,1,1-TRICHLOROETHANE	ND	0.005			
1,1,2-TRICHLOROETHANE	ND	0.005			
TRICHLOROETHENE (TCE)	ND	0.005			
TRICHLOROFLUOROMETHANE	<u>ND</u>	0.005			
1,2,3-TRICHLOROPROPANE	<u>D</u>	0.005			
1,2,4-TRIMETHYLBENZENE	<u>ND</u>	0,005			
1, 3, 5-TRIMETHYLBENZENE	ND	0.005			
VINYL CHLORIDE	<u>ND</u>	0.005			
M/P-XYLENE	ND	0.010			
O-XYLENE	ND	0.005			
COMMENTS POL = PRACTICAL QUANT	TTATION LIMIT				

COMMENTS PUL PRACTICAL QUANTITA

ND = NON-DETECTED OR BELOW THE PQL DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

METHOD BLANK REPORT

CUSTOMER:	Kleinfelder		
	620 W. 16th Street	, Unit #F	
	Long Beach, CA 908	13	
	Tel (562) 432-1696 F	ax (562) 432-1796	
PROJECT: A	RTIC		
PROJECT No	.: 103567/Env 2		
MATRIX:SOI	L	DA	ATE RECEIVED:09/25/09
DATE SAMPL		DA	ATE ANALYZED: 09/28/09
REPORT TO:	Mr. BERT VOGLER	DA	TE REPORTED: 10/02/09
	METHOD BLANK FOR	LAB I.D.: 090925-	51 THROUGH -54
ANALYS	IS: VOLATILE ORGANI	CS, EPA METHOD 5	035/8260B, PAGE 1 OF 2
	UNIT: $mg/Kg = 1$	MILLIGRAM PER KII	OGRAM = PPM
PARAMETER	<u> </u>	SAMPLE RESULT	PQL X1
ACETONE		ND	0.020
BENZENE		ND	0.005
BROMOBENZE	NE	ND	0.005
BROMOCHLOR	OMETHANE	ND	0.005
BROMODICHL	OROMETHANE	ND	0.005
BROMOFORM		ND	0.005
BROMOMETHA	NE	NĎ	0.005
2-BUTANONE	(MEK)	ND	0.020
N-BUTYLBEN	ZENE		0.005
SEC-BUTYLB	ENZENE	ND	0.005
TERT-BUTYL	BENZENE	ND	0.005
CARBON DIS	ULFIDE	ND	0,010
CARBON TET	RACHLORIDE	ND	0.005
CHLOROBENZ	ENE	ND	0.005
CHLOROETHA	NE	ND	0.005
CHLOROFORM		ND	0.005
CHLOROMETH	IANE		0.005
2 - CHLOROTO	LUENE	ND	0.005
4 - CHLOROTO	LUENE	ND	0.005
DIBROMOCHL	OROMETHANE	ND	0.005
1,2-DIBROM	10-3-CHLOROPROPANE	ND	0.005
1,2-DIBROM	IOETHANE	ND	0.005
DIBROMOMET	CHANE	ND	0.005
1,2-DICHLC	DROBENZENE	ND	0.005
1,3-DICHLC	DROBENZENE	ND	0.005
1,4-DICHLO	DROBENZENE	ND	0.005
DICHLORODI	FLUOROMETHANE	ND	0.005
1,1-DICHLC	DROETHANE	ND	0.005
1,2-DICHLO	DROETHANE	NĎ	0.005
1,1-DICHLO	DROETHENE	ND	0.005
CIS-1,2-DI	CHLOROETHENE	ND	0.005
TRANS-1,2-	DICHLOROETHENE	ND	0.005
1.2-DICHLO	DROPROPANE	ND	0.005

---- TO BE CONTINUED ON PAGE #2 -----

DATA REVIEWED AND APPROVED BY: _____

Enviro – Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

METHOD BLANK REPORT

CUSTOMER:	Kleinfelder		
	620 W. 16th Street,	Unit #F	
	Long Beach, CA 90813	3	
	Tel(562)432-1696 Fax	(562) 432-1796	
PROJECT: A	RTIC	.,,	
PROJECT NO	· 103567/Env 2		
MATRIX.COT		DATE	RECEIVED 09/25/09
DATE SAMOL	<u>0</u> ED-09/24/09	DATE	ANALYZED: 09/28/09
DATE DATED	$M_{r} = REPT VOCLEP$	DATE	REPORTED: 10/02/09
KEPOKI IO:	METHOD BLANK FOR LA	B T D + 000025-51	$\frac{10702702}{10702702}$
	METHOD BLANK FOR LA	B 1.D. 090925-51	Inkoogn -54
ANALVS	TS. VOLATILE OPCANICS	5 EDA METHOD 5035	(8260B PAGE 2 OF 2
AUADIS	IDIT: ma/ka ~ MI	LICOM DED KILOGI	70200B, FRGE 2 OF 2
DADAMEMED	ONIT: Mg/Rg = MI	SAMPLE DESULT	DOL VI
PARAMETER	DODDODANE	SAMPLE RESULT	PQL XI
1, 3-DICHLO	ROPROPANE	ND	0.005
2,2-DICHLO	ROPROPANE		0.005
I, I-DICRLO	ROPROPENE		0.005
<u>CIS-1, 3-DI</u>	CHLOROPROPENE	ND	0.005
<u>TRANS-1,3-</u>	DICHLOROPROPENE	ND	0.005
ETHYLBENZE	NE	ND	0.005
<u>2 - HEXANONE</u>		ND	0.020
<u>HEXACHLORO</u>	BUTADIENE	ND	0.005
<u>ISOPROPYLB</u>	ENZENE	ND	0.005
<u>4-ISOPROPY</u>	LTOLUENE	ND	0.005
<u>4-METHYL-2</u>	-PENTANONE (MIBK)	ND	0.020
<u>METHYL ter</u>	t-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE	CHLORIDE	<u>ND</u>	0.010
NAPHTHALEN	E	ND	0.005
<u>N-PROPYLBE</u>	NZENE	ND _	0.005
STYRENE		ND	0.005
<u>1,1,1,2-TE</u>	TRACHLOROETHANE	ND	0.005
<u>1,1,2,2-TE</u>	TRACHLOROETHANE	ND	0.005
TETRACHLOR	OETHENE (PCE)	ND	0.005
TOLUENE		ND	0.005
1,2,3-TRIC	HLOROBENZÈNE	ND	0.005
1,2,4-TRIC	HLOROBENZENE	ND	0.005
1,1,1-TRIC	HLOROETHANE	ND	0.005
1,1,2-TRIC	HLOROETHANE	ND	0.005
TRICHLOROE	THENE (TCE)	ND	0.005
TRICHLOROF	LUOROMETHANE	ND	0.005
1.2.3-TRIC	HLOROPROPANE	ND	0.005
1.2.4-TRIM	1ETHYLBENZENE	ND	0.005
1.3.5-TRIM	1ETHYLBENZENE	ND	0.005
VINYL CHLC	DRIDE	ND	0.005
M/P-XYLENE		ND	0.010
O-XYLENE	-	ND	0.005
COMMENTS	POL = PRACTICAL OUANT	TTATION LIMIT	
ND = NON-T	DETECTED OR BELOW THE	POL	

DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

I,D

			Enviro-Che	m, Inc.					
1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909)590-5905 Eax (909)590-5907									
8260B QA/QC Report									
Date Analyzed:	9/28/2009						Matrix:	Solid/Soil/S	Sludge
Machine:	C.						Unit:	mg/Kg (PP	M)
	_								_
Matrix Spike (MS)/Matr	ix Spike Dı	plicate (MS	D)						
Spiked Sample Lab I.D.	.:	090928-195	5 MS/MSD						
Analyte	S.R.	spk conc	MS	%RC	MSD	%RC	%RPD	ACP %RC	ACP RPD
Benzene	0	0.050	0.058	116%	0.051	102%	14%	75-125	0-20
Chlorobenzene	0	0.050	0.052	104%	0.050	100%	4%	75-125	0-20
1,1-Dichloroethene	0	0.050	0.047	94%	0.055	110%	16%	75-125	0-20
Toluene	0	0.050	0.044	88%	0.050	100%	12%	75-125	0-20
Trichloroethene (TCE)	0	0.050	0.056	112%	0.053	106%	6%	75-125	0-20
Lab Control Spike (LCS	S):								
Analyte	spk conc	LCS	%RC	ACP %RC					
Benzene	0.050	0.052	104%	75-125					
Chlorobenzene	0.050	0.051	102%	75-125					
Chloroform	0.050	0.045	90%	75-125					
1,1-Dichlorothene	0.050	0.055	110%	75-125					
Ethylbenzene	0.050	0.047	94%	75-125					
o-Xylene	0.050	0.048	96%	75-125					
m,p-Xylene	0.100	0.101	101%	75-125					
Toluene	0.050	0.043	86%	75-125					
1,1,1-Trichloroethane	0.050	0.051	102%	75-125					
Trichloroethene (TCE)	0.050	0.054	108%	75-125					
Surrogate Recovery	spk conc	ACP %RC	MB %RC	<u>∽ %RC</u>	%RC	%RC	%RC `	<u> %RC</u>	_%RC
Sample I.D.			M-BLK	090925-51	090925-52	090925-53	090925-54	090928-182	090928-186
Dibromofluoromethane	50.0	70-130	109%	105%	107%	105%	108% /	87%	87%
Toluene-d8	50.0	70-130	99%	99%	99%	99%	96%	97%	95%
4-Bromofluorobenzene	50.0	70-130	101%	97%	96%	96%	79%	100%	98%
Surrogate Recovery	spk conc	ACP %RC	%RC	%RC	<u>%RC</u>	<u>%RC</u>	%RC	%RC	%RC
Sample I.D.			090928-187	090928-191	090928-195	090928-196	090928-199	090928-202	090928-203
Dibromofluoromethane	50.0	70-130	85%	98%	88%	87%	87%	<u>93%</u>	94%
Toluene-d8	50.0	70-130	96%	<u>97%</u>	96%	94%	97%	96%	97%
4-Bromofluorobenzene	50.0	70-130	97%	96%	95%	95%	95%	93%	93%
Surrogate Recovery	spk conc	ACP %RC	%RC	<u>%RC</u>	<u>%RC</u>	%RC	%RC	<u>%RC</u>	<u> </u>
Sample I.D.							<u> </u>		<u>.</u>
Dibromofluoromethane	50.0	70-130					<u> </u>		
Toluene-d8	50.0	70-130				L	<u> </u>		
4-Bromofluorobenzene	50.0	70-130							
* = Surrogate fail due to	matrix inter	ference; L	CS, MS, MS	D are in cor	ntrol therefor	e the analy	sis is in con	trol.	
S.R. = Sample Results					%RC = Pe	rcent Recov	/ery		
spk conc = Spike Conce	ntration				ACP %RC	= Accepted	l Percent Re	covery	
MS = Matrix Spike	_				MSD = Ma	trix Spike D	uplicate		
	5	LL							
Analyzed/Reviewed By	·	- r (_						
Elast Devision	$\not\vdash$								
rinai keviewer:	<u> </u>								

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

METHOD BLANK REPORT CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: ARTIC PROJECT No.: 103567/Env 2 MATRIX:SOIL DATE RECEIVED:09/25/09 DATE SAMPLED: 09/24/09 DATE ANALYZED: 09/29/09 REPORT TO:Mr. BERT VOGLER DATE REPORTED: 10/02/09 METHOD BLANK FOR LAB I.D.: 090925-55 THROUGH -64 ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM PARAMETER SAMPLE RESULT PQL X1 ACETONE ND 0.020 BENZENE ND 0.005 BROMOBENZENE ND 0.005 BROMOCHLOROMETHANE ND 0.005 BROMODICHLOROMETHANE ND 0.005 BROMOFORM ND 0.005 BROMOMETHANE ND 0.005 2-BUTANONE (MEK) ND 0.020 N-BUTYLBENZENE ND 0.005 SEC-BUTYLBENZENE ND 0.005 TERT-BUTYLBENZENE ND 0.005 CARBON DISULFIDE ND 0.010 CARBON TETRACHLORIDE ND 0.005 CHLOROBENZENE ND 0.005 CHLOROETHANE ND 0.005 CHLOROFORM ND 0.005 CHLOROMETHANE ND 0.005 2 - CHLOROTOLUENE ND 0.005 4-CHLOROTOLUENE 0.005 ND DIBROMOCHLOROMETHANE ND 0.005 1, 2-DIBROMO-3-CHLOROPROPANE ND 0.005 1,2-DIBROMOETHANE 0.005 ND DIBROMOMETHANE ND 0.005 1,2-DICHLOROBENZENE ND 0.005 1, 3-DICHLOROBENZENE ND 0.005 1,4-DICHLOROBENZENE ND 0.005 DICHLORODIFLUOROMETHANE ND 0.005 0.005 1,1-DICHLOROETHANE ND 1,2-DICHLOROETHANE ND 0.005 1,1-DICHLOROETHENE ND 0.005 0.005 CIS-1,2-DICHLOROETHENE ND TRANS-1, 2-DICHLOROETHENE ND 0.005 1,2-DICHLOROPROPANE ND 0.005

---- TO BE CONTINUED ON PAGE #2 -----

DATA REVIEWED AND APPROVED BY:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

	METHOD	BLANK REPO	RT
CUSTOMER:	Kleinfelder		
	620 W. 16th Street.	Unit #F	
	Long Beach, CA 9081	3	
	Tel (562) 432-1696 Fa	× (562) 432-1796	
DRATECT - AI	NG1 (302) 432 1090 Pa	(302) 432 - 1790	
PROJECT. A	· 102567/Env 2		
MATOTY COL	.: 10356//Env 2	C.3.00	
MAIKIA: SUL		DAT.	E RECEIVED:09/25/09
DALE SAMPLI	ED: 09/24/09	DAT.	E ANALIZED: <u>09/29/09</u>
REPORT TO:	MI. BERT VOGLER		E REPORTED: 10702709
	METHOD BLANK FOR L	AB I.D.: 090925-5	5 THROUGH -64
ANALIS.	IS: VOLATILE ORGANIC	S, EPA METHOD 503	5/8260B, PAGE 2 OF 2
	VN1T: mg/Kg = M	ILLIGRAM PER KILO	GRAM = PPM
PARAMETER		SAMPLE RESULT	PQL X1
<u>1,3-DICHLO</u>	ROPROPANE	ND	0.005
2,2-DICHLO	ROPROPANE	ND	0.005
<u>1,1-DICHLO</u>	ROPROPENE	ND	0.005
<u>CIS-1,3-DI</u>	CHLOROPROPENE	ND	0.005
TRANS-1,3-	DICHLOROPROPEN <u>E</u>	ND	0.005
ETHYLBENZE	NE	ND	0.00 <u>5</u>
2-HEXANONE		ND	0.020
HEXACHLORO	BUTADIENE		0.005
ISOPROPYLB	<u>ENZENE</u>	<u>ND</u>	0.005
<u>4-ISOPROPY</u>	LTOLUENE	ND	_0.005
<u>4-METHYL-2</u>	-PENTANONE (MIBK)	ND	0.020
<u>METHYL ter</u>	<u>t-BUTYL ETHER (MTBE)</u>	ND	0.005
METHYLENE	CHLORIDE	ND	0.010
NAPHTHALEN	<u> </u>	<u>ND</u>	0.005
<u>N-PROPYLBE</u>	NZENE	ND	0.005
STYRENE		ND	0.005
<u>1,1,1,2-TË</u>	<u>TRACHLOROETHANE</u>	<u></u>	0.005
<u>1,1,2,2-TE</u>	TRACHLOROETHANE	ND	0.005
TETRACHLOR	OETHENE (PCE)	ND	0.005
TOLUENE		ND	0.005
<u>1,2,3-TRIC</u>	HLOROBENZENE	ND	_0.005
<u>1,2,4-TRIC</u>	HLOROBENZÊNÊ	ND	0.005
<u>1,1,1-TRIC</u>	HLOR <u>OETHANE</u>	ND	_0.005
<u>1,1,2-TRIC</u>	HLOROETHANE	ND	0.005
TRICHLOROE	THENE (TCE)	ŅD	0.005
TRICHLOROF	LUOROMETHANE	ND	0.005
1,2,3-TRIC	HLOROPROPANE	ND	0.005
<u>1,2,4-TRIM</u>	ETHYLBENZENE	ND	0.005
<u>1,3,5-TRIM</u>	ETHYLBENZENE	ND	0.005
VINYL CHLO	RIDE	ND	0.005
M/P-XYL <u>ENE</u>		ND	0.010
O-XYLENE		ND	0.005
COMMENTS P	QL = PRACTICAL QUAN'	FITATION LIMIT	
	PROPER OF PRIOR FU		

ND = NON-DETECTED OR BELOW THE PQL DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

			Enviro-Che	am, Inc.				_	_
1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909)590-5905 Fax (909)590-5907									
8260B QA/QC Report									
Date Analyzed: Machine:	<u>9/29/2009</u> <u>C</u>						Matrix: Unit:	<u>Solid/Soll/:</u> mg/Kg (PP	<u>Sludge</u> M)
Matrix Snike (MS)/Matrix Snike Dunlicate (MSD)									
Spiked Sample Lab I D	ix opino be	090925-56	MS/MSD						
Analyte	S.R.	spk conc	MS	%RC	MSD	%RC	%RPD	ACP %RC	ACP RPD
Benzene	0	0.050	0.051	102%	0.056	112%	10%	75-125	0-20
Chlorobenzene	0	0.050	0.050	100%	0.052	104%	4%	75-125	0-20
1.1-Dichloroethene	0	0.050	0.055	110%	0.052	104%	6%	75-125	0-20
Toluene	0	0.050	0.052	104%	0.049	98%	6%	75-125	0-20
Trichloroethene (TCE)	0	0.050	0.052	104%	0.049	98%	6%	75-125	0-20
Lab Control Spike (LCS	S):						-		
Analyte	spk conc	LCS	%RC	ACP %RC					
Benzene	0.050	0.050	100%	75-125					
Chlorobenzene	0.050	0.052	104%	75-125					
Chloroform	0.050	0.050	100%	75-125					ļ
1,1-Dichlorothene	0.050	0.047	94%	75-125					
Ethylbenzene	0.050	0.049	98%	75-125					
o-Xylene	0.050	0.048	96%	75-125					ļ
m,p-Xylene	0.100	0.111	111%	75-125					
Toluene	0.050	0.056	112%	75-125					
1,1,1-Trichloroethane	0.050	0.051	102%	75-125					
Trichloroethene (TCE)	0.050	0.055	110%	75-125]				
Surrogate Recovery	spk conc	ACP %RC	MB %RC	%RC	%RC	%RC	%RC	%RC	%RC
Sample I.D.			M-BLK	090925-55	090925-56	090925-57	090925-58	090925-59	090925-60
Dibromofluoromethane	50.0	70-130	98%	112%	103%	109%	100%	107%	99%
Toluene-d8	50.0	70-130	100%	103%	98%	103%	98%	98%	100%
4-Bromofluorobenzene	50.0	70-130	98%	93%	84%	89%	88%	88%	90%
				-					
Surrogate Recovery	spk conc	ACP %RC	%RC	%RC	%RC	%RC \	KRC	<u>%RC</u>	%RC
Sample I.D.			090925-61	090925-62	090925-63	090925-64	4	<u> </u>	
Dibromofluoromethane	50.0	70-130	100%	95%	97%	104%	Į		
Toluene-d8	50.0	70-130	100%	99%	101%	101%			
4-Bromofluorobenzene	50.0	70-130	90%	93%	91%	85%			
				-		<u> </u>	1 4/00		N DO
Surrogate Recovery	spk conc	ACP %RC	<u>%RC</u>	%RC	NRC	%RC	<u> %RC</u>	%RC	%RC
Sample I.D.		-	<u> </u>		L		<u> </u>		<u> </u>
Dibromofluoromethane	50.0	70-130							
Toluene-d8	50.0	70-130							
4-Bromofluorobenzene	50.0	70-130							
* = Surrogate fail due to matrix interference; LCS, MS, MSD are in control therefore the analysis is in control. S.R. = Sample Results %RC = Percent Recovery spk conc = Spike Concentration ACP %RC = Accepted Percent Recovery MS = Matrix Spike MSD = Matrix Spike Duplicate									
Analyzed/Reviewed By		~~\							
Final Neviewer:	<u> </u>								

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER :	Kleinfelder	
	620 W. 16th Street, Unit #F	
	Long Beach, CA 90813	
	Tel(562)432-1696 Fax(562)432-17	196
PROJECT: A	RTIC	
PROJECT No	.: 103567/Env 2	
MATRIX: SOI	L	DATE RECEIVED: 09/25/09
DATE SAMPL	ED: <u>09/24/09</u>	DATE ANALYZED: <u>09/28/09</u>
REPORT TO:	Mr. BERT VOGLER	DATE REPORTED: <u>10/02/09</u>
	- * • • • • • • • • • • • • • • • • • •	
ONNELE Y D		XXD X D 000005 51

SAMPLE I.D.: B-2-1.5

LAB I.D.: 090925-51

.

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	24.0	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	3.88	0.5	1	2,500	560/5@	6010B
Chromium VI (Cr6)		0.1	1	500	5.0	7196A
Cobalt(Co)	ND	1.0	1	8,000	80	6010B
Copper(Cu)	2.87	1.0	1	2,500	25	6010B
Lead(Pb)	1.07	0.5	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	2.19	2.5	l	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(Tl)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	11.0	5.0	1	2,400	24	6010B
Zinc(Zn)	16.1	0.5	1	5,000	250	6010B

COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal is recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested Data Reviewed and Approved by:_

CAL-DHS ELAP CERTIFICATE No.: 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: ARTIC PROJECT No.: 103567/Env 2 MATRIX:SOIL DATE RECEIVED:09/25/09 DATE SAMPLED:09/24/09 REPORT TO:Mr. BERT VOGLER DATE REPORTED:10/02/09

SAMPLE I.D.: B-2-5

LAB I.D.: 090925-52

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

					~	
ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	17.9	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	3.03	0.5	1	2,500	560/5@	6010B
Chromium VI (Cr6)		0.1	l	500	5.0	7196A
Cobalt(Co)	ND	1.0	1	8,000	80	6010B
Copper(Cu)	2.94	1.0	1	2,500	25	6010B
Lead(Pb)	0.760	0.5	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	ND	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	l	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(Tl)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	8.01	5.0	1	2,400	24	6010B
Zinc(Zn)	12.9	0.5	1	5,000	250	6010B

COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER :	Kleinfelder	
	620 W. 16th Street, Unit #F	
	Long Beach, CA 90813	
	Tel(562)432-1696 Fax(562)432-1796	
PROJECT: A	RTIC	
PROJECT No	.: 103567/Env 2	
MATRIX: SOI	L DAT	TE RECEIVED: 09/25/09
DATE SAMPL	ED: 09/24/09 DAT	TE ANALYZED:09/28/09
REPORT TO:	Mr. BERT VOGLER DAT	TE REPORTED: 10/02/09

SAMPLE I.D.: B-2-10

LAB I.D.: 090925-53

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	33.4	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	l	75	0.75	6010B
Cadmium(Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	5.40	0.5	1	2,500	560/5@	6010B
Chromium VI (Cr6)		0.1	l	500	5.0	7196A
Cobalt(Co)	ND	1.0	1	8,000	80	6010B
Copper(Cu)	6.54	1.0	1	2,500	25	6010B
Lead(Pb)	14.3	0.5	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	3.63	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(T1)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	10.4	5.0	1	2,400	24	6010B
Zinc(Zn)	54.8	0.5	1	5,000	250	6010B

COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested

CAL-DHS ELAP CERTIFICATE No.: 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER:	Kleinfelder		
	620 W. 16th Street, Unit #F		
	Long Beach, CA 90813		
	Tel(562)432-1696 Fax(562)432-179	6	
PROJECT: A	RTIC		
PROJECT No	: 103567/Env 2		
MATRIX: SOI		DATE	RECEIVED: 09/25/09
DATE SAMPLE	ED: <u>09/24/09</u>	DATE	ANALYZED: 09/28/09
REPORT TO:	1r. BERT VOGLER	DATE	REPORTED: 10/02/09

SAMPLE I.D.: B-2-20

LAB I.D.: 090925-54

> TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

														-			-																										
	-	 _	_	_	_											_	_	_											_	_	_	_	_	_					 		_	_	_
_	_	 _	_	-		_	 _	_	_	_	-	 	 		_	_	-	-	_	-	-	_	_	 	 	 -	~ ~	_	_	_	_	_	_	_	 _	_	_	-	 _	_	_	_	_

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	112	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium(Cd)	NĎ	0.5	1	100	1.0	6010B
Chromium Total(Cr)	22.7	0.5	1	2,500	560/5@	6010B
Chromium VI (Cr6)		0.1	1	500	5.0	7196A
Cobalt(Co)	ND	1.0	1	8,000	80	6010B
Copper(Cu)	23.8	1.0	1	2,500	25	6010B
Lead(Pb)	16.5	0.5	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	14.7	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(Tl)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	43.8	5.0	1	2,400	24	6010B
Zinc(Zn)	73.1	0.5	1	5,000	250	6010B

COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER:	Kleinfelder	
	620 W. 16th Street, Unit #F	
	Long Beach, CA 90813	
	Tel(562)432-1696 Fax(562)432-1	796
PROJECT: A	RTIC	
PROJECT No	.: 103567/Env 2	
MATRIX: SOI	<u>Г</u>	DATE RECEIVED:09/25/09
DATE SAMPL	ED: <u>09/24/09</u>	DATE ANALYZED: <u>09/28/09</u>
REPORT TO:	Mr. BERT VOGLER	DATE REPORTED: <u>10/02/09</u>
CAMPLE T D	P 0 00	

SAMPLE I.D.: 8-2-30

LAB I.D.: 090925-55

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	NĎ	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	60108
Barium(Ba)	66.5	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	17.9	0.5	1	2,500	560/5@	6010B
Chromium VI (Cr6)		0.1	1	500	5.0	7196A
Cobalt(Co)	ND	1.0	1	8,000	80	6010B
Copper(Cu)	14.4	1.0	1	2,500	25	6010B
Lead(Pb)	2.86	0.5	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	11.7	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(Tl)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	32.4	5.0	1	2,400	24	6010B
Zinc(Zn)	51.2	0.5	1	5,000	250	6010B

COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal *is* recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER :	Kleinfelder	
	620 W. 16th Street, Unit #F	
	Long Beach, CA 90813	
	Tel(562)432-1696 Fax(562)432-1	796
PROJECT: AF	RTIC	
PROJECT No.	.: 103567/Env 2	
MATRIX: <u>SOII</u>	_	DAT
DATE SAMPLE	3D: <u>09/24/09</u>	DAI
REPORT TO: N	<u>1r. BERT VOGLER</u>	DA'I

DATE RECEIVED:<u>09/25/09</u> DATE ANALYZED:<u>09/28/09</u> DATE REPORTED:<u>10/02/09</u>

SAMPLE 1.D.: B-2-40

LAB I.D.: 090925-56

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	51.0	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	11.6	0.5	1	2,500	560/5@	6010B
Chromium VI (Cr6)		0.1	1	500	5.0	7196A
Cobalt(Co)	ND	1.0	1	8,000	80	6010B
Copper (Cu)	57.1	1.0	l	2,500	25	6010B
Lead(Pb)	4.47	0.5	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	11.1	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(Tl)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	22.6	5.0	1	2,400	24	6010B
Zinc(Zn)	52.0	0.5	l	5,000	250	6010B
				~ ~		

COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested

Data Reviewed and Approved by: 2 CAL-DHS ELAP CERTIFICATE No.: 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: ARTIC PROJECT No.: 103567/Env 2 MATRIX:SOIL DATE RECEIVED:09/25/09 DATE SAMPLED:09/24/09 REPORT TO:Mr. BERT VOGLER DATE REPORTED:10/02/09

SAMPLE I.D.: B-2-50

LAB I.D.: 090925-57

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	l	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	122	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	14.1	0.5	1	2,500	560/5@	6010B
Chromium VI (Cr6)		0.1	1	500	5.0	7196A
Cobalt(Co)	ND	1.0	1	8,000	80	6010B
Copper(Cu)	21.6	1.0	1	2,500	25	6010B
Lead(Pb)	7.93	0.5	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	1	3,500	350	6010B
Nickel (Ni)	15.4	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(Tl)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	29.0	5.0	1	2,400	24	6010B
Zinc(Zn)	73.4	0.5	1	5,000	250	6010B

COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested

Data Reviewed and Approved by: _____ CAL-DHS ELAP CERTIFICATE No.: 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER:	Kleinfelder	
	620 W. 16th Street, Unit #F	
	Long Beach, CA 90813	
	Tel(562)432-1696 Fax(562)432	-1796
PROJECT: A	RTIC	
PROJECT No	.: 103567/Env 2	
MATRIX: SOI	Ŀ	DATE RECEIVED: <u>09/25/09</u>
DATE SAMPLI	ED: <u>09/24/09</u>	DATE ANALYZED: <u>09/28/09</u>
REPORT TO:	Mr. BERT VOGLER	DATE REPORTED: <u>10/02/09</u>

SAMPLE I.D.: B-1-1.5

LAB I.D.: 090925-58

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

|--|--|

SAMPLE			TTLC	STLC	EPA
RESULT	PQL	DF	LIMIT	LIMIT	METHOD
ND	1.0	1	500	15	6010B
ND	0.3	1	500	5.0	6010B
30.6	5.0	1	10,000	100	6010B
ND	0.5	1	75	0.75	6010B
ND	0.5	1	100	1.0	6010B
6.16	0.5	1	2,500	560/5@	6010B
	0.1	1	500	5.0	7196A
ND	1.0	1	8,000	80	6010B
4.53	1.0	1	2,500	25	6010B
1.87	0.5	1	1,000	5.0	6010B
ND	0.01	1	20	0.2	7471A
ND	5.0	1	3,500	350	6010B
3.72	2.5	1	2,000	20	6010B
ND	1.0	1	100	1.0	6010B
ND	1.0	1	500	5.0	6010B
ND	1.0	1	700	7.0	6010B
13.5	5.0	1	2,400	24	6010B
25.2	0.5	1	5,000	250	6010B
	SAMPLE RESULT ND 30.6 ND 6.16 ND 4.53 1.87 ND ND 3.72 ND ND 3.72 ND ND 13.5 25.2	SAMPLE RESULT PQL ND 1.0 ND 0.3 30.6 5.0 ND 0.5 ND 0.5 ND 0.5 ND 0.5 ND 0.5 MD 0.5 0.16 0.5 0.1 ND 1.0 4.53 1.0 1.87 0.5 ND 0.01 ND 5.0 3.72 2.5 ND 1.0 13.5 5.0 25.2 0.5	SAMPLE RESULT PQL DF ND 1.0 1 ND 0.3 1 30.6 5.0 1 ND 0.5 1 ND 0.5 1 ND 0.5 1 ND 0.5 1 0.1 1 ND 1.0 1 ND 1.0 1 ND 0.01 1 ND 5.0 1 ND 5.0 1 ND 1.0 1 13.5 5.0 1 25.2 0.5 1	SAMPLE TTLC RESULT PQL DF LIMIT ND 1.0 1 500 ND 0.3 1 500 30.6 5.0 1 10,000 ND 0.5 1 10,000 ND 0.5 1 100 6.16 0.5 1 2,500 0.1 1 500 ND 1.0 1 8,000 4.53 1.0 1 2,500 1.87 0.5 1 1,000 ND 0.01 20 ND ND 0.01 20 ND 5.0 1 3,500 3.72 2.5 1 2,000 ND 1.0 1 100 ND 1.0 1 500 ND 1.0 1 700 ND 1.0 1 700 13.5 5.0 <t< td=""><td>SAMPLE TTLC STLC RESULT PQL DF LIMIT LIMIT ND 1.0 1 500 15 ND 0.3 1 500 5.0 30.6 5.0 1 10,000 100 ND 0.5 1 75 0.75 ND 0.5 1 2,500 560/5@ 0.1 1 2,500 25 ND 1.0 1 8,000 80 4.53 1.0 1 2,500 25 1.87 0.5 1 1,000 5.0 ND 0.01 20 0.2 ND 5.0 1 3,500 350 3.72 2.5 1 2,000 20 ND 1.0 1 100 1.0 ND 1.0 1 500 5.0 ND 1.0 1 700 7.0</td></t<>	SAMPLE TTLC STLC RESULT PQL DF LIMIT LIMIT ND 1.0 1 500 15 ND 0.3 1 500 5.0 30.6 5.0 1 10,000 100 ND 0.5 1 75 0.75 ND 0.5 1 2,500 560/5@ 0.1 1 2,500 25 ND 1.0 1 8,000 80 4.53 1.0 1 2,500 25 1.87 0.5 1 1,000 5.0 ND 0.01 20 0.2 ND 5.0 1 3,500 350 3.72 2.5 1 2,000 20 ND 1.0 1 100 1.0 ND 1.0 1 500 5.0 ND 1.0 1 700 7.0

COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER:	Kleinfelder			
	620 W. 16th Street, Unit #	F		
	Long Beach, CA 90813			
	Tel(562)432-1696 Fax(562)4	32-1796		
PROJECT: AF	TIC			
PROJECT No.	: 103567/Env 2			
MATRIX: <u>SOII</u>	<u>.</u>	DATE	RECEIVED:09/25/09	
DATE SAMPLE	ED: <u>09/24/09</u>	DATE	ANALYZED: <u>09/28/09</u>	
REPORT TO: N	<u>ir. BERT VOGLER</u>	DATE	REPORTED: <u>10/02/09</u>	

SAMPLE I.D.: B-1-5

LAB I.D.: 090925-59

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	41.2	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	7.64	0.5	1	2,500	560/5@	6010B
Chromium VI (Cr6)		0.1	1	500	5.0	7196A
Cobalt(Co)	ND	1.0	1	8,000	80	6010B
Copper(Cu)	5.50	1.0	1	2,500	25	6010B
Lead(Pb)	2.80	0.5	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	4.78	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(Tl)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	16.6	5.0	1	2,400	24	6010B
Zinc(Zn)	46.6	0.5	1	5,000	250	6010B
						

COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal is recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER:	Kleinfelder
	620 W. 16th Street, Unit #F
	Long Beach, CA 90813
	Tel(562)432-1696 Fax(562)432-1796
PROJECT: A	RTIC
PROJECT No	: 103567/Env 2
MATRIX: SOIL	DATE RECEIVED: 09/25/09
DATE SAMPLI	D: <u>09/24/09</u> DATE ANALYZED: <u>09/28/09</u>
REPORT TO:	<u>ir. BERT VOGLER</u> DATE REPORTED: <u>10/02/09</u>

SAMPLE I.D.: B-1-10

LAB I.D.: 090925-60

------TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	27.5	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium(Cd)	NĎ	0.5	1	100	1.0	6010B
Chromium Total(Cr)	4.07	0.5	1	2,500	560/5@	6010B
Chromium VI (Cr6)		0.1	l	500	5.0	7196A
Cobalt(Co)	ND	1.0	1	8,000	80	6010B
Copper(Cu)	5.56	1.0	1	2,500	25	6010B
Lead(Pb)	0.634	0.5	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	ND	2.5	1	2,000	20	6010B
Selenium(Se)	NĎ	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(Tl)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	9.79	5.0	1	2,400	24	6010B
Zinc(Zn)	22.8	0.5	1	5,000	250	6010B

COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER :	Kleinfelder	
	620 W. 16th Street, Unit #B	÷
	Long Beach, CA 90813	
	Tel(562)432-1696 Fax(562)43	32-1796
PROJECT: A	RTIC	
PROJECT No	.: 103567/Env 2	
MATRIX: SOI	L	DATE RECEIVED: <u>09/25/09</u>
DATE SAMPL	ED: <u>09/24/09</u>	DATE ANALYZED: <u>09/28/09</u>
REPORT TO:	<u>Mr. BERT VOGLER</u>	DATE REPORTED: <u>10/02/09</u>
		~~~~~~~~~~~
OWNER TO T D	<b>D</b> 1 00	T NO T D 000005 (1

SAMPLE I.D.: B-1-20

- - - - - - - - - - - - -

. . . . . . . . . . . . . . . . . .

LAB I.D.: 090925-61

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM


ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	17.0	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	3.41	0.5	1	2,500	560/5@	6010B
Chromium VI (Cr6)		0.1	1	500	5.0	7196A
Cobalt(Co)	ND	1.0	1	8,000	80	6010B
Copper(Cu)	2.29	1.0	1	2,500	25	6010B
Lead(Pb)	ND	0.5	l	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	2.68	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(Tl)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	8.72	5.0	1	2,400	24	6010B
Zinc(Zn)	11.7	0.5	1	5,000	250	6010B

#### COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested

Data Reviewed and Approved by: <u>2</u> CAL-DHS ELAP CERTIFICATE No.: 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

### LABORATORY REPORT

CUSTOMER:	Kleinfelder		
	620 W. 16th Street, Uni	t #F	
	Long Beach, CA 90813		
	Tel(562)432-1696 Fax(56	2)432-1796	
PROJECT: A	TIC		
PROJECT No	: 103567/Env 2		
MATRIX: SOIL	<u>.</u>	DATE	RECEIVED:09/25/09
DATE SAMPLE	SD: <u>09/24/09</u>	DATE	ANALYZED: 09/28/09
REPORT TO:	<u>1r. BERT VOGLER</u>	DATE	REPORTED: 10/02/09

SAMPLE I.D.: B-1-30

LAB I.D.: 090925-62

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	26.2	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	5.83	0.5	1	2,500	560/5@	6010B
Chromium VI (Cr6)		0.1	1	500	5.0	7196A
Cobalt(Co)	ND	1.0	1	8,000	80	6010B
Copper(Cu)	7.63	1.0	1	2,500	25	6010B
Lead(Pb)	0.668	0.5	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	3.31	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(Tl)	ND	1.0	l	700	7.0	6010B
Vanadium(V)	12.5	5.0	1	2,400	24	6010B
Zinc(Zn)	20.7	0.5	1	5,000	250	6010B

#### COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested

Data Reviewed and Approved by: <u></u> CAL-DHS ELAP CERTIFICATE No.: 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

### LABORATORY REPORT

CUSTOMER:	Kleinfelder	
	620 W. 16th Street, Unit #F	
	Long Beach, CA 90813	
	Tel(562)432-1696 Fax(562)432-1	796
PROJECT: A	RTIC	
PROJECT No.	.: 103567/Env 2	
MATRIX: SOII	L	DA
DATE SAMPLE	ED: <u>09/24/09</u>	DAT

DATE RECEIVED: 09/25/09 DATE ANALYZED: 09/28/09 DATE REPORTED: 10/02/09

REPORT TO: Mr. BERT VOGLER DATE REPORTED: 10/02/09

-----

SAMPLE I.D.: B-1-40

LAB I.D.: 090925-63

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

-----

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	14.8	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	2.69	0.5	1	2,500	560/5@	6010B
Chromium VI (Cr6)		0.1	1	500	5.0	7196A
Cobalt(Co)	ND	1.0	1	8,000	80	6010B
Copper(Cu)	12.4	1.0	1	2,500	25	6010B
Lead(Pb)	ND	0.5	l	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	ND	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(Tl)	NĎ	1.0	1	700	7.0	6010B
Vanadium(V)	6.74	5.0	1	2,400	24	60108
Zinc(Zn)	12.7	0.5	1	5,000	250	6010B

#### COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

### LABORATORY REPORT

CUSTOMER :	Kleinfelder
	620 W. 16th Street, Unit #F
	Long Beach, CA 90813
	Tel(562)432-1696 Fax(562)432-1796
PROJECT: A	RTIC
PROJECT No	.: 103567/Env 2
MATRIX: SOIL	DATE RECEIVED:09/25/09
DATE SAMPL	ED: <u>09/24/09</u> DATE ANALYZED: <u>09/28/09</u>
REPORT TO:	<u>Ar. BERT VOGLER</u> DATE REPORTED: <u>10/02/09</u>

SAMPLE I.D.: B-1-50

_____

LAB I.D.: 090925-64

-----

## TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	136	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	17.8	0.5	1	2,500	560/5@	6010B
Chromium VI (Cr6)		0.1	1	500	5.0	7196A
Cobalt(Co)	ND	1.0	1	8,000	80	6010B
Copper(Cu)	23.4	1.0	l	2,500	25	60108
Lead(Pb)	7.83	0.5	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	18.1	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	60108
Thallium(Tl)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	36.8	5.0	1	2,400	24	6010B
Zinc (Zn)	73.8	0.5	l	5,000	250	6010B

#### COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested

Data Reviewed and Approved by: _____ CAL-DHS ELAP CERTIFICATE No.: 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

### METHOD BLANK REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: ARTIC PROJECT No.: 103567/Env 2

MATRIX: SOIL

DATE SAMPLED: 09/24/09 REPORT TO: Mr. BERT VOGLER DATE RECEIVED: 09/25/09 DATE ANALYZED: 09/28/09

DATE REPORTED: 10/02/09

METHOD BLANK FOR LAB I.D.: 090925-51 THROUGH -64

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	NĎ	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	ND	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	ND	0.5	1	2,500	560/5@	6010B
Chromium VI (Cr6)		0.1	1	500	5.0	7196A
Cobalt(Co)	ND	1.0	1	8,000	80	6010B
Copper(Cu)	ND	1.0	1	2,500	25	6010B
Lead(Pb)	ND	0.5	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	ND	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(Tl)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	ND	5.0	1	2,400	24	6010B
Zinc(Zn)	ND	0.5	1	5,000	250	60108

#### COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested

Data Reviewed and Approved by: <u>2</u> CAL-DHS ELAP CERTIFICATE No.: 1555

	04	/QC fo	r Meta	ls Anal	L sisk	LTLCS	OLID/SC	OIL MATH	XIX		
<u>Matrix Spike/ M</u>	<u>atrix Spike</u>	<u>. Duplicat</u>	e/ LCS :								
ANAL	YSIS DATE:	9/28/2009							Unit	: <u>mg/Kq(p</u>	(ma
Analysis	Spk.Sample	rcs	SCI	rcs	Sample	Spike	WS	% Rec	MSD	% Rec	% RPD
	Q	CONC.	%Rec.	STATUS	Result	Conc.		MS		MSD	
Copper (Cu)	090925-52	1.00	101	PASS	2.94	50.0	59.2	113%	60.7	116%	3%
Lead (Pb)	090925-52	1.00	100	PASS	0.760	50.0	53.7	106%	53.1	105%	1%
Zinc (Zn)	090925-52	1.00	100	PASS	12.9	50.0	66.4	107%	67.4	109%	2%
ANAL	YSIS DATE. :	9/28/2009									
Analysis	Spk.Sample ID	LCS CONC.	LCS %Rec.	LCS STATUS	Sample Result	Spike Conc.	SM	% Rec MS	MSD	% Rec MSD	% RPD
Mercury (Hg)	090924-179	0.125	92.6	PASS	0	0.125	0.102	82%	0.104	83%	2%
MS/MSD Status											
Analysis	SM%	0SM%	%CCS	%RPD							
Copper (Cu)	PASS	PASS	PASS	PASS							
Lead (Pb)	PASS	PASS	PASS	PASS							
Zinc (Zn)	PASS	PASS	PASS	PASS							
Mercury (Hg)	PASS	PASS	PASS	PASS		NALVET.	de				
Accepted Range	75 ~ 125	75 ~ 125	85~115	$0 \sim 20$	-		>			ļ	
					ш	FINAL REVIE	WER				
			ţ	{·	؛ ا	State of the second sec		2			

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER: Kleinfelder			
620 W. 16th Stre	et, Unit #F		
Long Beach, CA 9			
Tel (562) 432-1696	Fax(562)432-1796		
PROJECT: ARTIC			
PROJECT No.: 103567/Env 2	DATE RECE	IVED: <u>09/25/09</u>	-
MATRIX: SOIL	DATE EXTR	ACTED: 09/25/0	9
DATE SAMPLED: 09/24/09	DATE ANAL	YZED: 09/26/09	}
REPORT TO: Mr. BERT VOGLER	DATE REPC	RTED: <u>10/02/09</u>	-
SAMPLE I.D.: B-2-1.5	LAB I.D.:	090925-51	
Organochlori	ne Pesticides & PCBs Analy	vsis	
Me	thod: EPA 8081A/8082		
Unit: Mg/Kg =	Milligram per Kilogram =	PPM	
PARAMETER	SAMPLE RESULT	PQL	DF
Aldrín	ND	0.001	1
alpha-BHC	ND	0.001	1
beta-BHC	<u>NĎ</u>	0.001	1
<u>gamma-BHC (Lindane)</u>	<u>ND</u>	0.001	1
<u>delta-BHC</u>	ND	0.001	1
alpha-Chlordane	<u>ND</u>	0.001	1
<u>qamma-Chlordane</u>	<u>ND</u>	0.001	1
Total Chlordane (Technical)	<u>ND</u>	0.005	1
<u>4,4'-DDD</u>	ND	0.001	1
<u>4,4'-DDE</u>	ND	0.001	1
4,4'-DDT	<u>ND</u>	0.001	1
Diel <u>drin</u>	ND	0.001	1
<u>Endosulfan I</u>	ND	0.001	1
<u>Endosulfan II</u>	ND	0.001	1
<u>Endosulfan Sulfate</u>	ND	0.001	1
Endrin	ND	0.001	1
Endrin Aldehyde	ND	0.001	1
Endrin Ketone	ND	0.001	1
Heptachlor Epoxide	<u>ND</u>	0.001	1
Heptachlor	<u>ND</u>	0.001	<u> </u>
Methoxyclor	<u>ND</u>	0.001	1
Toxaphene	<u>ND</u>	0.020	1
PCB-1016	<u>ND</u>	0.010	
<u>PCB-1221</u>	<u>ND</u>	0.010	1
<u>PCB-1232</u>	<u>ND</u>	0.010	
<u>PCB-1242</u>		0.010	1
PCB-1248	<u>ND</u>	0.010	
<u>PCB-1254</u>		0.010	
PCB-1260		0.010	
COMMENTS			

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Non detected or below the Actual Detection Limit

A

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER: Kleinfelder			
620 W. 16th Street	t, Unit #F		
Long Beach, CA 908	813		
Tel(562)432-1696 I	Fax(562)432-1796		
PROJECT: ARTIC			
PROJECT No.: 103567/Env 2	DATE RECE	IVED: <u>09/25/09</u>	
MATRIX: SOIL	DATE EXTRA	ACTED:09/25/0	9
DATE SAMPLED:09/24/09	DATE ANAL	YZED:09/26/09	, ,
REPORT TO:Mr. BERT VOGLER	DATE REPOR	RTED: 10/02/09	-
SAMPLE I.D.: B-2-5	LAB I.D.:	090925-52	
Organochlorine	e Pesticides & PCBs Analy	sis	
Meth	od: EPA 8081A/8082		
Unit: Mg/Kg = M	Milligram per Kilogram =	PPM	
PARAMETER	SAMPLE RESULT	PQL	DF
<u>Aldrin</u>	ND	0.001	1
alpha-BHC	ND	0.001	1
beta-BHC	ND	0.001	1
gamma-BHC (Lindane)	ND	0.001	1
delta-BHC	ND	0.001	1
alpha-Chlordane	ND	0.001	1
gamma-Chlordane	ND	0.001	1
Total Chlordane (Technical)	ND	0.005	1
4,4'-DDD	ND	0.001	1
<u>4,4'-DDE</u>	<u>ND</u>	0.001	1
<u>4,4'-DDT</u>	ND	0.001	1
<u>Dieldrin</u>	<u>ND</u>	0.001	1
<u>Endosulfan I</u>	ND	0.001	1
Endosulfan II	ND	0.001	1
<u>Endosulfan Sulfate</u>	ND	0.001	1
Endrin	<u>ND</u>	0.001	<u> </u>
Endrin Aldehyde	<u>ND</u>	0.001	1
Endrin Ketone	ND	0.001	1
<u>Heptachlor Epoxide</u>	ND	0.0 <u>01</u>	<u> </u>
Heptachlor	ND	0.001	1
Methoxyclor	ND	0.001	<u> </u>
Toxaphene	ND	0.020	1
PCB-1016	ND	0.010	1
<u>PCB-1221</u>		0.010	1
PCB-1232	ND	0.010	1
PCB-1242	ND	0.010	1
PCB-1248	ND	0.010	1
<u>PCB-1254</u>	<u>ND</u>	0.010	1
<u>PCB-1260</u>	ND	0.010	1
COMMENTS			
DF = Dilution Factor			

PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF

ND = Non detected or below the Actual Detection Limit

### 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

### LABORATORY REPORT

CUSTOMER:	Kleinfelder		
	620 W. 16th Street, Unit #F		
	Long Beach, CA 90813		
	Tel(562)432-1696 Fax(562)432	-1796	
PROJECT: A	RTIC		
PROJECT No	.: 103567/Env 2	DATE	]
MATRIX: <u>SOI</u>	L	DATE	1
DATE SAMPL	ED: <u>09/24/09</u>	DATE	i

DATE RECEIVED:<u>09/25/09</u> DATE EXTRACTED:<u>09/25/09</u> DATE ANALYZED:<u>09/26/09</u> DATE REPORTED:10/02/09

SAMPLE I.D.: **B-2-10** 

REPORT TO: Mr. BERT VOGLER

LAB I.D.: 090925-53

### 

### Organochlorine Pesticides & PCBs Analysis Method: EPA 8081A/8082

Unit: Mg/Kg = Milligram per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
Aldrin	ND	0.001	1
alpha-BHC	ND	0.001	1
beta-BHC	ND	0.001	1
gamma-BHC (Lindane)	ND	0.001	1
delta-BHC	ND	0.001	1
alpha-Chlordane	ND	0.001	1
gamma-Chlordane	ND	0.001	1
Total Chlordane (Technical)	ND	0.005	1
4,4'-DDD	ND	0.001	1
4,4'-DDE	0.002	0.001	1
4,4'-DDT	ND	0.001	1
Dieldrin	ND	0.001	1
Endosulfan I	ND	0.001	1
Endosulfan II	ND	0.001	1
Endosulfan Sulfate	ND	0.001	1
Endrin	ND	0.001	1
Endrin Aldehyde	ND	0.001	1
Endrin Ketone	ND	0.001	1
Heptachlor Epoxide	ND	0.001	1
Heptachlor	ND	0.001	1
Methoxyclor	ND	0.001	1
Toxaphene	ND	0.020	1
PCB-1016	ND	0.010	1
PCB-1221		0.010	1
PCB-1232	ND	0.010	1
PCB-1242	ND	0.010	1
PCB-1248	ND	0.010	1
PCB-1254	ND	0.010	1
PCB-1260	ND ND	0.010	1

#### COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Non detected or below the Actual Detection Limit

# 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

### LABORATORY REPORT

CUSTOMER: Kleinfelder			
620 W. 16th Street, Ur	nit #F		
Long Beach, CA 90813			
Tel(562)432-1696 Fax(	562)432-1796		
PROJECT: ARTIC			
PROJECT No.: 103567/Env 2	DATE REC	CEIVED: <u>09/25/09</u>	
MATRIX: <u>SOIL</u>	DATE EXT	FRACTED: <u>09/25/0</u>	<u>9</u>
DATE SAMPLED: <u>09/24/09</u>	DATE ANA	ALYZED: <u>09/26/09</u>	
REPORT TO: Mr. BERT VOGLER	DATE REI	PORTED: <u>10/02/09</u>	
SAMPLE I.D.: B-2-20	LAB I.D	.: 090925-54	
Organochlorine Pe	sticides & PCBs Ana	lysis	
Method:	EPA 8081A/8082	-	
Unit: Mg/Kg = Mill:	igram per Kilogram	= PPM	
		POL	
Aldrin S.	ND	0 001	1
alpha-BHC	ND	0.001	1
beta-BHC		0.001	1
gamma-BHC (Lindane)	ND	0.001	1
delta-BHC	ND	0.001	1
alpha-Chlordane	ND	0.001	1
gamma~Chlordane	ND	0.001	1
Total Chlordane (Technical)	ND	0.005	1
<u>4,4'-DDD</u>	ND	0.001	1
<u>4,4'-DDE</u>	ND	0.00 <u>1</u>	1
<u>4,4'-DDT</u>	ND	0.001	1
Dieldrin	ND	0.001	1
Endosulfan I	ND	<u> </u>	1
Endosultan II	ND	0.001	1
Endosultan Sultate	ND	0.001	<u> </u>
Endrin Aldebude		0.001	<u> </u>
Endrin Katono	ND	0.001	<u> </u>
Hentachlor Frovide	ND	0.001	<u> </u>
Heptachlor Bookide		0.001	<u> </u>
Methoxyclor	ND	0.001	1
Toxaphene	ND	0.020	1
PCB-1016	ND	0.010	1
PCB-1221	ND	0.010	1
PCB-1232	ND	0.010	1
PCB-1242	ND	0.010	1
PCB-1248	ND	0.010	1
PCB-1254	ND	0.010	1
PCB-1260	ND	0.010	1

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Non detected or below the Actual Detection Limit

Data Reviewed and Approved by: CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER: Kleinfelder				
620 W. 16th Stree	t, Unit #F			
Long Beach, CA 90	813			
Tel(562)432-1696	Fax (562) 432-1796			
PROJECT: ARTIC				
PROJECT No.: 103567/Env 2	DATE RE	DATE RECEIVED: <u>09/25/09</u>		
MATRIX: <u>SOIL</u>	TRACTED: 09/25/0	9		
DATE SAMPLED: 09/24/09 DATE ANALYZED: 09/26				
REPORT TO: Mr. BERT_VOGLER	DATE RE	PORTED: <u>10/02/09</u>	-	
SAMPLE I.D.: B-2-30	LAB I.D.: 090925-55			
Organochlorin	e Pesticides & PCBs Ana	alysis		
Unit: Mg/Kg =	Milligram per Kilogram	= PPM		
PARAMETER	SAMPLE RESULT	POL	DF	
Aldrin	ND	0.001	1	
alpha-BHC	ND	0.001	1	
beta-BHC	ND	0.001	1	
gamma-BHC (Lindane)	ND	0.001	1	
delta-BHC	ND	0.001	1	
alpha-Chlordane	ND	0.001	1	
gamma-Chlordane	ND	0.001	1	
Total Chlordane (Technical)	ND	0.005	1	
<u>4,4'-DDD</u>	ND	0.001	1	
4,4'-DDE	ND	0.001	1	
4,4'-DDT	ND	<u> </u>	1	
Dieldrin	<u>ND</u>	0.001	1	
Endosulfan I	ND	0.0 <u>01</u>	<u>1</u>	
Endosulfan II	<u>ND</u>	0.001	1	
Endosulfan Sulfate	ND	0.001	<u> </u>	
Endrin	ND	0.001		
Endrin Aldenyde	<u>ND</u>	0.001	1	
Endrin Ketone	<u>ND</u>	0.001	1	
Heptachior Epoxide	<u>ND</u>	0.001	<u> </u>	
<u>Heptachior</u>		0.001	<u>1</u>	
Methoxyclor		0.001	<u> </u>	
DOR 1016	<u>ND</u>	0.020	<u> </u>	
PCB-1016	ND	0.010	<u> </u>	
PCB-1222		0.010	<u>_</u>	
PCB-1232		0.010	<u> </u>	
PCB-1248		0.010	<u>_</u>	
PCB-1254		0.010		
PCB-1260		0.010	1	
COMMENTS			÷	

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Non detected or below the Actual Detection Limit

Data Reviewed and Approved by: CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER: Kleinfelder			
620 W. 16th Stre	et, Unit #F		
Long Beach, CA 9	0813		
Tel (562) 432-1696	Fax(562)432-1796		
PROJECT: ARTIC			
PROJECT No.: 103567/Env 2	DATE REC	EIVED: <u>09/25/09</u>	
MATRIX: <u>SOIL</u>	RACTED: <u>09/25/0</u>	9	
DATE SAMPLED: 09/24/09	DATE ANALYZED: <u>09/26/09</u>		
REPORT TO: Mr. BERT VOGLER	DATE REP	ORTED: <u>10/02/09</u>	
SAMPLE I.D.: B-2-40	LAB I.D.: 090925-56		
Organochlori	ne Pesticides & PCBs Anal	lysis	
Met	thod: EPA 8081A/8082		
Unit: Mg/Kg =	Milligram per Kilogram =	= PPM	
PARAMETER	SAMPLE RESULT	PQL	DF
Aldrin	ND	0.001	1
alpha-BHC	ND	0.001	1
beta-BHC	ND	0.001	1
gamma-BHC (Lindane)	ND	0.001	1
delta-BHC	ND	0.001	1
<u>alpha-Chlordane</u>	ND	0.001	1
qamma-Chlordane	ND	0.001	1
Total Chlordane (Technical)	ND	0.005	1
<u>4,4'-DDD</u>	ND	0.001	1
4,4'-DDE	ND	0.001	1
<u>4,4'-DDT</u>	ND	0.001	1
Dieldrin	ND	0.001	1
Endosulfan I	ND	<u>0.001</u>	1
Endosulfan II	<u></u>	0.001	1
Endosulfan Sulfate	ND	0.001	1
Endrin	<u>ND</u>	0.001	1
Endrin Aldehyde	ND	0.001	1
Endrin Ketone	ND	0.001	1
Heptachlor Epoxide	ND	0.001	1
Heptachlor	ND	0.001	1
Methoxyclor	ND	<u> </u>	1
Toxaphene	ND	0.020	1
PCB-1016	ND	0.010	1
PCB-1221	ND	<u>0.010</u>	1
PCB-1232	ND	0.010	1
PCB-1242	ND	0.010	1
PCB-1248	ND	0.010	1
PCB-1254	<u>ND</u>	0.010	
<u>PCB-1260</u>	ND	0. <u>010</u>	1
COMMENTS			

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Non detected or below the Actual Detection Limit

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER: Kleinfelder						
620 W. 16th Street	, Unit #F					
Long Beach, CA 908	13					
Tel (562) 432-1696 F	el (562) 432-1696 Fax (562) 432-1796					
PROJECT: ARTIC						
PROJECT No.: 103567/Env 2	DATE RECE	IVED:09/25/09				
MATRIX:SOIL DATE EX		TRACTED:09/25/09				
DATE SAMPLED:09/24/09	DATE ANAL	LYZED: <u>09/26/09</u> DRTED: <u>10/02/09</u>				
REPORT TO:Mr. BERT VOGLER	DATE REPO					
SAMPLE I.D.: B-2-50	LAB I.D.: 090925-57					
Organochlorine	Pesticides & PCBs Analy	rsis				
Metho Unit: Mg/Kg = M	illigram per Kilogram =	PPM				
Aldrin	ND	6 001	1			
alpha_BUC		0.001	1			
beta-BHC		0.001	1			
gamma-BHC (Lindane)		0.001	<u>1</u>			
delta-BHC ( <u>Bindane)</u>		0.001	<u> </u>			
alpha-Chlordane		0.001	1			
gamma-Chlordane		0.001	<u></u> 1			
Total Chlordane (Technical)	ND	0.005	1			
4,4'-DDD		0,001	1			
4.4'-DDE	ND	0.001	1			
4.4'-DDT	ND	0.001	1			
Dieldrin	ND	0.001	1			
Endosulfan I	ND	0.001	1			
Endosulfan II	ND	0.001	1			
Endosulfan Sulfate	ND	0.001	1			
Endrin	ND	0.001	1			
Endrin Aldehyde	ND	0.001	1			
Endrin Ketone	ND	0.001	1			
Heptachlor Epoxide	ND	0.001	1			
Heptachlor	ND	0.001	1			
Methoxyclor	ND	0.001	1			
Toxaphene	ND	0.020	1			
PCB-1016	ND	0.010	1			
PCB-1221	ND	0.010	1			
PCB-1232		0.010	1			
PCB-1242	ND	0. <u>010</u>	1			
<u>PCB-1248</u>	ND	0.010	1			
PCB-1254	ND	0.010	1			
PCB-1260	ND	0.010	1			
COMMENTS						
DF = Dilution Factor						
PQL = Practical Quantitation	Limit					

Actual Detection Limit = PQL X DF

ND = Non detected or below the Actual Detection Limit
1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

### LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Stree Long Boach Ch 90	≥t, Unit #F		
Tel (562) 432-1696	Fax (562) 432-1796		
PROJECT: ARTIC			
PROJECT No.: 103567/Env 2	DATE RECE	[VED:09/25/09	
MATRIX: SOIL	DATE EXTRA	ACTED:09/25/0	9
DATE SAMPLED:09/24/09	DATE ANALY	ZED: 09/26/09	
REPORT TO: Mr. BERT VOGLER	DATE REPOR	RTED: <u>10/02/09</u>	
SAMDLE T D . B-1-1 5		000025-59	
Organochlorin Met Unit: Mg/Kg =	ne Pesticides & PCBs Analy hod: EPA 8081A/8082 Milligram per Kilogram =	sis PPM	
PARAMETER	SAMPLE RESULT	PQL	DF
Aldrin	ND	0.001	1
alpha-BHC	<u>N</u> D	0.001	1
beta-BHC	ND	0.001	1
<u>gamma-BHC (Lindane)</u>	<u>ND</u>	0.001	<u> </u>
<u>delta-BHC</u>	ND	0.001	1
alpha-Chlordane	<u>ND</u>	0.001	<u>1</u>
gamma-Chlordane	<u>ND</u>	0.001	<u> </u>
<u>Total Chlordane (Technical)</u>	ND	0.005	<u> </u>
<u>4,4'-DDD</u>		0.001	<u> </u>
$\frac{4}{4} \frac{4}{4} = DDE$			<u> </u>
<u>lieldrin</u>	ND	0.001	<u> </u>
Endosulfan I	ND	0.001	1
Endosulfan II		0.001	1
Endosulfan Sulfate	ND	0.001	1
Endrín	ND	0.001	1
Endrin Aldehyde	ND	0.001	1
Endrin Ketone	ND	0.001	1
<u>Heptachlor Epoxide</u>	ND	0.001	1
Heptachlor	ND	0.001	1
Methoxyclor	<u>ND</u>	0.001	1
Toxaphene	ND	0.020	1
PCB-1016	<u>ND</u>	0.010	1
<u>PCB-1221</u>	<u>ND</u>	0.010	1
PCB-1232	ND	0.010	
<u>PCB-1242</u>		0.010	1
<u>PCB-1248</u>	ND	0.010	1
<u>PUB-1254</u>		0.010	<u></u>
PCB-1260	<u>ND</u>	0.010	
COMMENTS			

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Non detected or below the Actual Detection Limit

Data Reviewed and Approved by: CAL-DHS CERTIFICATE # 1555

N

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER :	Kleinfelder			
	620 W. 16th Street	, Unit #F		
	Long Beach, CA 908	13		
	Tel(562)432-1696 F	ax (562) 432-1796		
PROJECT: A	ARTIC			
PROJECT NO	.: 103567/Env 2	DATE RECE	IVED:09/25/09	
MATRIX: SOI	L	DATE EXTR	ACTED:09/25/0	9
DATE SAMPI		DATE ANAL	YZED:09/26/09	_
REPORT TO:	Mr. BERT VOGLER	DATE REPO	RTED: 10/02/09	
SAMPLE I.I	D.: B-1-5	LAB I.D.:	090925-59	
	Organachlaning	Posticidas ( DCPs Apply		
	organochiorine	d. TDA GOGIA (GOG)	(515	
	Metho Unit: Ma/Ka - N	illignen non Kilognen -	DDM	
	OHIC: Mg/Kg = R	iiiigram per Kilogram -	<i>F E M</i>	
PARAMETER		SAMPLE RESULT	POL	DF
Aldrin		ND	0.001	10*
alpha-BHC			0.001	10*
beta~BHC		ND	0.001	10*
gamma-BHC	(Lindane)	ND	0.001	10*
delta-BHC		ND	0.001	10*
alpha-Chlo	ordane	ND	0.001	10*
gamma-Chlo	ordane	ND	0.001	10*
Total Chlo	ordane (Technical)	ND	0.005	10*
4,4'-DDD		ND	0.001	10*
4,4'-DDE		ND	0.001	10*
4,4'-DDT		ND	0.001	10*
Dieldrin		ND	0.001	10*
Endosulfa	n I	ND	0.001	10*
Endosulfa	n II	ND	0. <u>001</u>	10*
<u>Endosulfa</u>	n Sulfate	ND	0.001	10*
Endrin		ND	0.001	10*
Endrin Ale	dehyde	ND	0.001	10*
<u>Endrín Ke</u>	tone	ND	0.001	10*
<u>Heptachlo</u>	r Epoxide	ND	0.001	<u>10*</u>
<u>Heptachlo</u>	r	ND	0.001	10*
<u>Methoxycl</u>	or	ND	0.001	10*
<u>Toxaphene</u>		ND	0.020	10*
PCB-1016		ND	0.010	10*
<u>PCB-1221</u>		<u>ND</u>	0.010	10*
PCB-1232		ND	0.010	10*
PCB-1242		<u>ND</u>	0.010	10*
PCB-1248		ND	0.010	10*
PCB-1254		<u>ND</u>	0.010	10*
<u>PCB-1260</u>			0.010	10*
COMMENTS				
116° - 111 111	ELOD KACEOY			

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF * = Actual detection limit raised due to matrix interference ND = Non detected or below the Actual Detection Limit

### 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

### LABORATORY REPORT

CUSTOMER:	Kleinfelder		
	620 W. 16th Street, Unit #F		
	Long Beach, CA 90813		
	Tel(562)432-1696 Fax(562)432-17	96	
PROJECT: A	RTIC		
PROJECT No	.: 103567/Env 2	DATE	RECEIVED: <u>09/25/09</u>
MATRIX: SOI	<u>L</u>	DATE	EXTRACTED: 09/25/09
DATE SAMPL	ED: <u>09/24/09</u>	DATE	ANALYZED: <u>09/26/09</u>
REPORT TO:	Mr. BERT VOGLER	DATE	REPORTED: <u>10/02/09</u>

SAMPLE I.D.: B-1-10

LAB I.D.: 090925-60

-----

# 

Organochlorine Pesticides & PCBs Analysis Method: EPA 8081A/8082

Unit: Mg/Kg = Milligram per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
<u>Aldrin</u>	ND	0.001	1
alpha-BHC	ND	0.001	1
beta-BHC	ND	0.001	1
gamma-BHC (Lindane)	ND	0.001	1
delta-BHC	ND	0.001	1
alpha-Chlordane	ND	0.001	1
gamma-Chlordane	ND	0.001	1
Total Chlordane (Technical)	ND	0.005	1
4,4'-DDD	ND	0.001	1
4,4'-DDE	ND	0.001	1
4,4'-DDT	ND	0.001	1
<u>Dieldrin</u>	ND	0.001	1
Endosulfan I	ND	0.001	1
Endosulfan II	ND	0.001	1
Endosulfan Sulfate	ND	0.001	1
Endrín	ND	0.001	1
Endrin Aldehyde	ND	0.001	1
Endrin Ketone	ND	0.001	1
Heptachlor Epoxide	ND	0.001	1
<u>Heptachlor</u>	ND	0.001	1
Methoxyclor	ND	0.001	1
Toxaphene	ND	0.020	1
PCB-1016	ND	_ 0.010	1
PCB-1221	ND	0.010	1
PCB-1232	ND	0.010	1
PCB-1242	ND	0.010	1
<u>PCB-1248</u>	ND	0.010	1
PCB-1254	ND	0.010	1
PCB-1260	ND	0.010	1

#### COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF

ND = Non detected or below the Actual Detection Limit

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER: Kleinfelder			
620 W. 16th Stree	t, Unit #F		
Long Beach, CA 90	813		
Tel(562)432-1696	Fax(562)432-1796		
PROJECT: ARTIC	(		
PROJECT No.: 103567/Env 2	DATE RECE	TVED:09/25/09	)
MATRIX: SOIL	DATE EXTR	ACTED: 09/25/0	9
DATE SAMPLED:09/24/09	DATE ANAL	YZED: 09/26/09	2
REPORT TO:Mr. BERT VOGLER	DATE REPO	RTED: 10/02/09	-
SAMPLE I.D.: B-1-20	LAB I.D.:	090925-61	
And the second sec			
Organochiorin	e Pesticides & PCBS Analy	/515	
Metr	10d: EPA 8081A/8082	5.514	
Unit: Mg/Kg =	Milligram per Kilogram =	PPM	
PARAMETER	SAMPLE RESULT	POL	DF
Aldrin	ND	0.001	
alpha-BHC	ND	0.001	1
beta-BHC	ND	0.001	1
gamma-BHC (Lindane)	ND	0.001	1
delta-BHC	ND	0.001	1
alpha-Chlordane	ND	0.001	1
gamma-Chlordane	ND	0.001	1
Total Chlordane (Technical)	ND	0.005	1
<u>4,4'~DDD</u>	ND _	0.001	1
<u>4,4'-DDE</u>	ND	0.001	1
<u>4,4'-DDT</u>	ND	0.001	1
Dieldrin	<u>ND</u>	<u>0.001</u>	1
<u>Endosulfan I</u>	ND	0.001	1
<u>Endosulfan II</u>	ND	0.001	1
<u>Endosulfan Sulfate</u>	ND	0.001	1
Endrin	ND	0.001	1
Endrin Aldehyde	ND	<u>0.001</u>	1
Endrin Ketone	ND	0.001	1
<u>Heptachlor Epoxide</u>	ND	0.001	1
<u>Heptachlor</u>	ND	0.001	1_
Methoxyclor	<u>ND</u>	0. <u>001</u>	<u> </u>
Toxaphene	ND	0.020	1
PCB-1016	ND	0.010	1
<u>PCB-1221</u>	ND	0.010	1
<u>PCB-1232</u>	ND	0.010	1
<u>PCB-1242</u>	<u>ND</u>	0.010	<u> </u>
<u>PCB-1248</u>	<u>ND</u>	0.010	1
PCB-1254	ND	0.010	1
<u>PCB-1260</u>	<u>ND</u>	0.010	1
COMMENTS			
$u_{R} \rightarrow u_{1} u_{1} u_{1} u_{1} u_{1} u_{2} u_{3} u_{6} u_{7} u_$			

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Non detected or below the Actual Detection Limit

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER:	Kleinfelder		
	620 W. 16th Street, U	nit #F	
	Long Beach, CA 90813		
	Tel(562)432-1696 Fax(	562)432-1796	
PROJECT: A	RTIC		
PROJECT No	.: 103567/Env 2	DATE	RECEIVED: <u>09/25/09</u>
MATRIX: SOI	<u>[</u>	DATE	EXTRACTED: <u>09/25/09</u>
DATE SAMPLE	ED: <u>09/24/09</u>	DATE	ANALYZED: <u>09/26/09</u>
REPORT TO:	Mr. BERT VOGLER	DATE	REPORTED: <u>10/02/09</u>

SAMPLE I.D.: B-1-30

_____

LAB I.D.: 090925-62

_____ Organochlorine Pesticides & PCBs Analysis Method: EPA 8081A/8082

Unit: Mg/Kg = Milligram per Kilogram = PPM

_____

PARAMETER	SAMPLE RESULT	PQL	DF
Aldrin	ND	0.001	1
<u>alpha-BHC</u>	ND	0.001	1
beta-BHC	ND	0.001	1
gamma-BHC (Lindane)	ND	0.001	1
delta-BHC	ND	0.001	1
alpha-Chlordane	ND	0.001	1
gamma-Chlordane	ND	0.001	1
Total Chlordane (Technical)	ND	0.005	1
4,4'-DDD	ND	0.001	1
<u>4,4'-DDE</u>	<u>ND</u>	0.001	1
<u>4,4'-DDT</u>	ND	0.001	1
Dieldrin	ND	0.001	1
Endosulfan I	ND	0.001	1
Endosulfan II	ND	0. <u>001</u>	1
Endosulfan Sulfate	ND	0.001	1_
Endrin	ND	0.001	1
Endrín Aldehyde	ND	<u>0.001</u>	1
Endrin_Ketone	ND	0.001	1
<u>Heptachlor Epoxide</u>	ND	0.001	1
Heptachlor	ND	0.001	1
Methoxyclor	ND	0.001	1
Toxaphene	ND	0.020	1
PCB-1016	ND	0.010	1
PCB-1221	ND	<u>0.010</u>	1
PCB-1232	ND	0.010	1
PCB-1242	ND	0.010	1
PCB-1248	ND	0.010	1
PCB-1254	ND	0.010	1
PCB-1260	ND	0.010	1

COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Non detected or below the Actual Detection Limit

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

### LABORATORY REPORT

CUSTOMER :	Kleinfelder	
	620 W. 16th Street, Unit #F	
	Long Beach, CA 90813	
	Tel(562)432-1696 Fax(562)432-179	6
PROJECT: AF	RTIC	
PROJECT No.	: 103567/Env 2	DATE RECEIVED:09/25/09
MATRIX: SOII	<u>.</u>	DATE EXTRACTED:09/25/09
DATE SAMPLE	3D: <u>09/24/09</u>	DATE ANALYZED: <u>09/26/09</u>
REPORT TO: N	1r. BERT VOGLER	DATE REPORTED: <u>10/02/09</u>
SAMPLE I.D.	.: B-1-40	LAB I.D.: 090925-63

Organochlorine Pesticides & PCBs Analysis Method: EPA 8081A/8082

Unit: Mg/Kg = Milligram per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
Aldrin	ND	0. <u>001</u>	1
alpha-BHC	ND	0.001	1
beta-BHC	ND	0.001	1
gamma-BHC (Lindane)	ND	0.001	1
delta-BHC	ND	0.001	1
alpha-Chlordane	ND	0.001	1
gamma-Chlordane	ND	0.001	1
Total Chlordane (Technical)	ND	0.005	1
4,4'-DDD	ND	0.001	1
4,4'-DDE	ND	0.001	1
4,4'-DDT	ND	0.001	1
Dieldrin	ND	0.001	1
Endosulfan I	ND	0.001	1
Endosulfan II	ND	0.001	1
Endosulfan Sulfate	ND	0.001	1
Endrin	ND	0.001	1
Endrin Aldehyde	ND	0.001	1
Endrin Ketone	ND	0.001	<u> </u>
Heptachlor Epoxide	ND	0.001	1
Heptachlor	ND	0.0 <u>01</u>	1
Methoxyclor	ND	0.001	<u>1</u>
Toxaphene	ND	0.020	1
PCB-1016	ND	0.010	1
PCB-1221	ND	0.010	1
PCB-1232	ND	0.010	1
PCB-1242	ND	0.010	1
PCB~1248	NĎ	0.010	1
PCB-1254	ND	0.010	1
PCB-1260	ND	0.010	1

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Non detected or below the Actual Detection Limit

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER: Kleinfelder			
620 W. 16th Street	, Unit #F		
Long Beach, CA 908	313		
Tel(562)432-1696 H	Tax (562) 432-1796		
PROJECT: ARTIC	. ,		
PROJECT No.: 103567/Env 2	DATE RECE	IVED:09/25/09	)
MATRIX:SOIL	DATE EXTR	ACTED: 09/25/0	9
DATE SAMPLED:09/24/09	DATE ANAL	YZED:09/26/09	}
REPORT TO: Mr. BERT VOGLER	DATE REPO	RTED: 10/02/09	)
SAMPLE I.D.: B-1-50	LAB I.D.:	090925-64	
Organochlorine	Pesticides & PCBs Analy	ysis	
Meth	od: EPA 8081A/8082		
Unit: Mg/Kg = N	Ailligram per Kilogram =	РРМ 	
PARAMETER	SAMPLE RESULT	PQL	DF
Aldrin	<u>ND</u>	0.001	1
alpha-BHC	ND	0.001	1
beta-BHC	ND	0.001	1
gamma-BHC (Lindane)	<u>ND</u>	0.001	1
<u>delta-BHC</u>	ND	0.001	1
alpha-Chlordane	ND	0.001	1
gamma-Chlordane	ND	0.001	1
<u> Total Chlordane (Technical)</u>	ND	0.005	<u> </u>
4,4'-DDD	ND	0.001	1
4,4'-DDE	ND	0.001	1
<u>4,4'-DDT</u>	ND	0.001	1
Dieldrin	ND	0.001	1
<u>Endosulfan I</u>	ND	0.001	1
Endosulfan II	ND	0.001	1
Endosulfan Sulfate	ND	0.001	1
Endrin	<u>D</u>	0.001	<u> </u>
Endrin Aldehyde	ND	0.001	1
Endrin Ketone	<u>ND</u>	0.001	1
Heptachlor Epoxide	ND	0.001	
Heptachior	ND	0.001	1
Methoxyclor	<u>ND</u>	0.001	
Toxaphene		0.020	l
PCB-1016		0.010	
PCB-1221	<u>ND</u>	0.010	1
PCB-1232	ND	0.010	<u> </u>
PCB-1242		0.010	<u> </u>
<u>PCD-1254</u>		0.010	 
<u>PCD-1204</u>		0.010	 1
			J
COMMENTS			
Dr = Dilucion Factor	Timit		
FOD = FIACUICAL QUANTICATION			

Actual Detection Limit = PQL X DF

ND = Non detected or below the Actual Detection Limit

U

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

### METHOD BLANK REPORT

CUSTOMER :	Kleinfelder	
	620 W. 16th Street, Unit #F	
	Long Beach, CA 90813	
	Tel(562)432-1696 Fax(562)432-1	796
PROJECT: A	RTIC	
PROJECT No	).: 103567/Env 2	D
MATRIX:SOI	L	D

DATE SAMPLED: 09/24/09

REPORT TO: Mr. BERT VOGLER

ATE RECEIVED: 09/25/09 DATE EXTRACTED: 09/25/09

DATE ANALYZED: 09/26/09

DATE REPORTED: 10/02/09 

METHOD BLANK FOR LAB I.D.: 090925-51 THROUGH -64

. . . . . . . . . . . . . . . . . . . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

> Organochlorine Pesticides & PCBs Analysis Method: EPA 8081A/8082

Unit: Mg/Kg = Milligram per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
Aldrin	ND	0.001	1
<u>alpha-BHC</u>	ND	0.001	1
beta-BHC	ND	0.001	1_
gamma-BHC (Lindane)	ND	0.001	1
delta-BHC	ND	0.001	1
alpha-Chlordane	ND	0.0 <u>01</u>	1
gamma-Chlordane	ND	0.001	1
Total Chlordane (Technical)	ND	0.005	1
4,4'-DDD	ND	0.001	1
4,4'-DDE	ND	0.001	1
<u>4,4'-DDT</u>	ND	0.001	1
Dieldrin	ND	0.001	1
Endosulfan I	ND	0.001	1
Endosulfan II	ND	0.001	1
Endosulfan Sulfate	ND	0.001	1
Endrin	<u>ND</u>	0.001	1
Endrin Aldehyde	ND	0.001	1
Endrin Ketone	ND	0.001	1
Heptachlor Epoxide	ND	0.001	1
Heptachlor	ND	0.001	1
Methoxyclor	ND	0.001	1
Toxaphene	ND	0.020	1
PCB-1016	ND	0.010	1
PCB-1221	ND	0.010	1
PCB-1232	ND	0.010	1
PCB-1242	ND	0.01 <u>0</u>	1
PCB-1248	ND	0.010	1
PCB-1254	ND _	0.010	1
PCB-1260	ND	0.010	1

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Non detected or below the Actual Detection Limit

#### Enviro-Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909)590-5905 Fax (909)590-5907 EPA 8081 QA/QC Report Soil/Solid Matrix: Date Analyzed: 9/26/2009 mg/Kg Matrix Spike (MS)/Matrix Spike Duplicate (MSD) 090925-51 MS/MSD Spiked Sample Lab I.D.: %RPD %REC %REC ACP %RPDACP %REC Analyte S.R. spk conc MS MSD 2% Gamma-BHC 0.000 0.0500 0.0437 87% 0.0445 89% 0-20% 70-130 0.0507 101% 0-20% 70-130 0.000 0.0500 0.0517 103% 2% 4,4~DDE 0.000 0.0500 0.0356 71% 0.0376 75% 5% 0-20% 70-130 Lab Control Spike (LCS) Recovery: % REC ACP %REC LCS Analyte spk conc Gamma-BHC 0.00500 0.00443 89% 75-125 0.00500 0.00560 112% 75-125 4,4-DDE 0.00448 90% 75-125 0.00500 Dieldrin 0.00500 0.00564 113% 75-125 ACP% %REC %REC %REC %REC %REC %REC %REC Surrogate Recovery 090925-51 090925-52 090925-53 090925-54 090925-55 090925-56 MB Sample I.D. Tetra-chioro-meta-xylene 50-150 98% 85% 87% 93% 88% 87% 97% 74% 87% 85% Decachlorobiphenyl 50-150 81% 68% 60% 85% Surrogate Recovery %REC %REC %REC %REC %REC %REC %REC %REC 090925-58 090925-59 090925-60 090925-61 090925-62 090925-63 090925-64 090925-57 Sample I.D. 102% 100% 103% 105% 107% 103% 91% 112% Tetra-chloro-meta-xylene 77% 64% 100% 88% 88% 98% 90% Decachlorobiphenyl 95% %REC %REC %REC %REC %REC %REC Surrogate Recovery Sample I.D. Tetra-chloro-meta-xylene Decachlorobiphenyl * = Surrogate fail due to matrix interference (if Marked) Note: LCS, MS, MSD are in control therefore results are in control. spk conc = Spike Concentration %REC = Percent Recovery ACP %RPD = Acceptable Percent RPD Range ACP %REC = Acceptable Percent Recovery Range $\sim$ Analyzed and Reviewed By:

Unit:

Aldrin

Aldrin

Final Reviewer:

S.R. = Sample Result

1214 E.	Lexington A	venue, Po	Enviro mona, CA S	-Chem, Inc 91766	Tel (909)59	0-5905 Fa	ax (909)590-5	907
QA/QC Report								
Analysis: EPA 8082 (PCB)								
Matrix:	Soil/Se	olid			Date Analy	zed:	<u>9/26/2009</u>	
Unit:	<u>mg/Kg (PP</u>	<u>M)</u>						
Matrix Spike (N	IS)/Matrix S	Spike Dup	licate (MSD	))				
Spiked Sample	Lab I.D.:		09092	<u>5-51 IV</u>	12/11/21	<u>,</u>		
Analyte	spk conc	MS	%REC	MSD	%REC	%RPD	ACP % RPD	ACP %REC
PCB (1016+1260)	1.00	0.901	90%	0.971	97%	7%	0-20%	70-130
LCS STD RECC	SPK CONC	LCS	% REC	ACP	%REC	]		
PCB (1016+1260)	0.100	0.104	104%		125			
spk conc = Spike Concentration %REC = Percent Recovery ACP %RPD = Acceptable Percent RPD Range ACP %REC = Acceptable Percent Recovery Range								
Final Reviewer	:: <u>(</u> e	<u>ر</u>	_					

																					T				
	RECEIVING LAB	INSTRUCTIONS/REMARKS	AT Tak ID	15-52600	-52	-53	trs-	75-	50	セア	78	45	-60	-61	-62	-63	<i>t9</i> -						Send Results To: KUEANFTEADER	1000 DEACH , CA 90815 MIN REPCT VOLUER	COC NO DAFA
(4	1111																								Pink - Lab Copy
	1 1 20 200	12 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 2 2 2 2 2 H	XXXX	1 1 1 1												444						Instructions/Remarks:	standed tait	rry - Return Copy To Shipper
		 	UERS TAINERS	ting / was	VITE VITE	1	-		1	+	Jughan .	Succes Vola	E.				+					+		D antines	Cana
			MATRIX	SO1- 5	1												*						A Contraction	wed by: (Signature)	- Sampler
	PROJECT NAME APTIC	nature/Number)	SAMPLE I.D	8-2-1.5	8-2-5	6-2-10	B-2-20	B-2-30	04-2-8	05-2-8	8-1-1.5	8-1-5	8-1-10	02-1-51	8-1-2	01-1-0	05-1-20						9 hullon 1.54	9/XGO (2:0) Rec	White
LDER Aght Solvnom	LUZ	SAMPLERS: (Sigr	SAMPLE I.D. TIMÉ HH-MM-SS	SEit	7:53	bsit	6:00	8:15	8:28	8:39	13:40	13:56	50.hl	er: hi	jul: Ko	08: HI	Sh:hl						gnature)	jnature) gnature)	
KLEINFE	PROJECT NO	LP. NO.	DATE MM/DD/YY	9/2-1/24											_		t						Reinquished by: (Sig	Reinquished by (Sig Reinquished by: (Sig	ENV-02 REV 05/08
				-	~	Ľ.	4	ŝ	Ŷ	<u> </u>	^w	5	10	:	12	13	7	15	16	17	8	9 0	20	$\lor$ $\lor$	

c

### Enviro – Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

Date: October 2, 2009

Mr. Bert Vogler Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796

Project: ARTIC Project No.: 103567/Env 2 Lab I.D.: 090928-204 through -210

Dear Mr. Vogler:

The **analytical results** for the soil samples, received by our lab on September 25, 2009, are attached. The samples were received chilled, intact and accompanying chain of custody.

Enviro-Chem appreciates the opportunity to provide you and your company this and other services. Please do not hesitate to call us if you have any questions.

Sincerely,

Curtis Desilets Vice President/Program Manager

Andy Wang Laboratory Manager

Eric Lu, Ph.D. Chief Chemist

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER: Klei	infelder								
620	W. 16th Street,	Unit #F							
Long	g Beach, CA 90813	3							
Tel	(562)432-1696 Fax	(562) 432-1	796						
PROJECT: ARTIC									
PROJECT No.: 10	03567/Env 2		DATE REC	EIVED: 09/2	5/09				
MATRIX: <u>SOIL</u>			DATE EXI	RACTED: 09/	28/09				
DATE SAMPLED: 09/25/09 DATE ANALYZED: 09/28/09									
REPORT TO:Mr. BERT VOGLER DATE REPORTED: 10/02/09									
TOTAL PETROLEUM HYDROCARBONS(TPH) - CARBON CHAIN ANALYSIS METHOD: EPA 8015B UNIT: MG/KG = MILLIGRAM PER KILOGRAM = PPM									
SAMPLE I.D.	LAB I.D.	C4-C10	c11-c22	C23-C35	DF				
W-1-1.5	090928-204	ND	_ND	ND	1				
W-1-5	090928-205	ND	<u>ND</u>	ND	1				
W-1-10	090928-206	ND	ND	ND	1				
W-1-20	<u>090928-207</u>	ND	ND	ND	1				
W-1-30	090928-208	ND	ND	ND	1				
<u>W-1-40</u>	090928- <u>209</u>	ND	ND	<u>ND</u>	1				
<u>w-1-50</u>	<u>090928-210</u>	ND	ND	ND	1				
METHOD BLANK		NĎ	ND	ND	1				
	PQL	10	10	50					
COMMENTS									
C4-C10 = GASOL	INE RANGE								
C11-C22 = DIES	EL RANGE								
C23-C35 = MOTOR OIL RANGE									
DF = DILUTION	DF = DILUTION FACTOR								
PQL = PRACTICAL QUANTITATION LIMIT									
ACTUAL DETECTION LIMIT = DF X PQL									
ND = NON-DETECTED OR BELOW THE ACTUAL DETECTION LIMIT									
Dobo Deviews	and Annuared be-	py							
CAL-DHS FLAD	ERTIFICATE No.	1555							
CUD-DUG DUVE (	DUITERCUTE NO.:	1000							

	Enviro Chem, Inc								
1214 E. Lexington Avenue, 1			Pomona, CA 91766			Tel (909)590-5905 Fax (909)590-5907			
	8015B Soil/Solid QC								
Date Analyzed: <u>9/28/2009</u>							Units:	mg/Kg (P	PM)
Matrix:	<u>Solid</u>	/Slud	ge						
Matrix Spike (	MS)/Matr	ix Spike	Duplicate	e (MSD)					
Spiked Sample Lab I.D.: 090928-210 MS/MSD									
Analyte	SR	spk conc	MS	%MS	MSD	%MSD	%RPD	ACP %MS	ACP RPD
C11~C22 Range	0	2500	2466	99%	2332	93%	6%	75-125	0-20%
LCS STD REC Analyte C11~C22 Range	SOVERY: spk conc 200	LCS 227	% REC	ACP 75-125					
Surrogato Recovery	ACP%	W REC	%.PEC	% P50	W REC		% PEC	% PEC	% PGC
Sample LD		MB	000028-204	000028-205	000028-206	000028-207	000028-208	000028-200	090928-210
O-Techenyl	60-140%	101%	100%	98%	99%	105%	103%	110%	108%
Octacosane	60-140%	101%	92%	95%	98%	103%	105%	105%	110%
								-	
Surrogate Recovery	ACP%	%REC	%REC	%REC	%REC	%REC	%REC	%REC	%REC
Sample I.D.									
O-Terphenyl	60-140%								
Octacosane	60-140%								
Surrogate Recovery	ACP%	%REC	%REC	%REC	%REC	%REC			
Sample I.D.									
O-Terphenyl	60-140%								
Octacosane	60-140%								
Analyzed and	Analyzed and Reviewed By:								
Final Reviewe	Final Reviewer: * = Surrogate fail due to matrix interference Note: LCS, MS, MSD are in control therefore results are in control.								

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel (562) 432-1696 Fax (562) 432-1796								
	TET (302) 432-1	090 Pax(3	02/452 1	/30				
DROIDCI: A	. 102567/Env /	<b>°</b>						
MATDIY, COL	., 105567/ынv л т.	2		יס ידיגה		19/25/09		
DATE CAMOL	ED.00/25/09			DATE AL	JALVZED.C	19/28/09		
REPORT TO.	Mr. BERT VOGLE	R		DATE RE	RETED: 1	0/02/09		
		<u>.</u> 						
EPA 5035/8260B FOR FUEL OXYGENATES UNITS: MG/KG = MILLIGRAM PER KILOGRAM = PPM								
SAMPLE		ETBE	DIPE	MTBE	TAME	TBA	DF	
I.D.	LAB I.D.							
₩-1-1.5	090928-204	ND	NĎ	ND	ND	ND	1	
W-1-5	090928-205	ND	ND	ND	ND	סא	1	
W-1-10	090928-206	ND	ND	ND	ND	ND	1	
W-1-20	090928-207	NĎ	ND	ND	ND	ND	1	
W-1-30	090928-208	ND	ND	ND	ND _	ND	1	
W-1-40	090928-209	ND	ND	ND	ND	ND	1	
W-1-50	090928-210	ND	ND	ND	ND	ND	1	
Method Bla	ink	ND	ND	ND	ND	ND	1	
	PQL	0.01	0.01	0.005	0.01	0.05		
COMMENTS: DF = DILUT PQL = PRAC ACTUAL DET ND = NON-E ETBE = ETF MTBE = MET TBA = TERT Data Revie CAL-DHS EI	CION FACTOR CTICAL QUANTITA ECTION LIMIT = DETECTED OR BEL HYL tert-BUTYL THYL tert-BUTYL TIARY BUTYL ALC Ewed and Approv	TION LIMI DF X PQI OW THE AC ETHER ETHER OHOL red by: No.: 15	TUAL DE DIPE TAME	TECTION LI = ISOPROPY = TERT-AMY	MIT IL ETHER IL METHYL	. ETHER		

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street Long Beach, CA 9083 Tel(562)432-1696 Fa	, Unit #F 13 ax(562)432-1796	
PROJECT: ARTIC		
PROJECT No.: 103567/Env 2		
MATRIX: SOIL	I	DATE RECEIVED:09/25/09
DATE SAMPLED:09/25/09	I	DATE ANALYZED:09/28/09
REPORT TO:Mr. BERT VOGLER	]	DATE REPORTED: 10/02/09
SAMPLE I.D.: W-1-1.5	]	LAB I.D.: 090928-204
ANALYSTS VOLATTLE ORGANI	CS. EPA METHOD	5035/8260B PAGE 1 OF 2
UNIT: $mg/Kg = M$	ILLIGRAM PER KI	LOGRAM = PPM
PARAMETER	SAMPLE RESULT	POL X1
ACETONE	ND	0 020
BENZENE	ND	0.005
BROMOBENZENE		0.005
BROMOCHLOROMETHANE		0.005
BROMODICHLOROMETHANE		0.005
BROMODICHEOKOMEINANE		0.005
BROMOMETHANE		0.005
2-BUTANONE (MEK)		0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE		0.005
		0.005
CARBON DISULFIDE		0.010
CARBON TETRACHLORIDE		0.005
CHLODOBENZENE		0.005
CHLOROFTHANE		
	ND	0.005
		0.005
4 - CHLOROTOLUENE		0.005
DIBROMOCHLOROMETHANE		0.005
1 2-DIBROMO-3-CHLOROPROPANE		
1 2-DIBROMOETHANE		
		0.005
1 2-DICHLOROBENZENE		0.005
1 3-DICHLOROBENZENE		
1 4-DICHLOROBENZENE		0,005
DICHLORODIFLUOROMETHANE		0,005
1.1-DICHLOROETHANE	ND	0.005
1.2-DICHLOROETHANE	ND	0,005
1.1-DICHLOROETHENS		0.005
CIS-1.2-DICHLOROETHENE	ND	0.005
TRANS-1 2-DICHLOROFTHENE		0,005
1.2-DICHLOROPROPANE	ND	0.005

----- TO BE CONTINUED ON PAGE #2 -----

DATA REVIEWED AND APPROVED BY:

# 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

620 W. 16th Street, Unit #F           Long Beach, CA 90813           Tel (562) 432-1696 Fax (562) 432-1796           PROJECT NO.: 103567/Env 2           MATRIX.SOIL         DATE RECEIVED:09/25/09           DATE SAMPLED:09/25/09         DATE ANALYZED:09/28/09           REPORT TO:Mr. BERT VOGLER         DATE REPORTED:10/02/09           SAMPLE I.D.: W-I-1.5         LAB I.D.: 090928-204           ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2           UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM           PARAMETER         SAMPLE RESULT           2.2-DICHLOROPROPANE         ND           ND         0.005           2.2-DICHLOROPROPANE         ND           ND         0.005           CIS-1.3 -DICHLOROPROPENE         ND           ND         0.005           Z-HEXANONE         ND           ND         0.005           Z-HEXANONE         ND           ND         0.005           2-HEXANONE         ND           ND         0.005           4-ISOPROPYLENZENE         ND           ND         0.005           4-ISOPROPYLENZENE         ND           ND         0.005           HEXACHLOROPOTADIENE         ND	CUSTOMER:	Kleinfelder		
Long Beach, CA 90813           Tel (562) 432-1696 Fax (562) 432-1796           PROJECT NO.: 103567/Env 2           MATRIX:SOIL         DATE RECEIVED:09/25/09           DATE SAMPLED:09/25/09         DATE ANALYZED:09/28/09           REPORT TO.Mr. BERT VOGLER         DATE REPORTED:10/02/09           SAMPLE I.D.: W-1-1.5         LAB I.D.: 090928-204           ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/82608, PAGE 2 OF 2           UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM           PARAMETER           SAMPLE RESULT           PQL X1           1.3-DICHLOROPROPANE           ND           0.005           LISANONE           ND           0.005           CIRANS.1.3-DICHLOROPROPENE           ND         0.005           CIRANS.1.3-DICHLOROPROPENE           ND         0.005           CIRANS.1.3-DICHLOROPROPENE           ND         0.005           CIRANS.1.3-DICHLOROPROPENE           ND         0.005           CIRANS.1.3-DICHLOROPROPENE           ND         0.005           CIRANS.1.3-DICHLOROPOPOPENE		620 W. 16th Street,	Unit #F	
Tel (562) 432-1696 Fax (562) 432-1796           PROJECT: ARTIC           PROJECT: ARTIC           PROJECT No.: 103567/Env 2           MATRIX:SOIL           DATE RECEIVED:09/25/09           DATE RANALYZED:09/25/09           DATE RANALYZED:09/28/09           DATE REPORTED:10/02/09           SAMPLE I.D.: w-1-1.5           LAB I.D.: 090928-204           ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/82608, PAGE 2 OF 2           UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM           PRAMATER         SAMPLE RESULT         PQL X1           1,3-DICHLOROPROPANE         ND         0.005           1,3-DICHLOROPROPENE         ND         0.005           TRANS-1,3-DICHLOROPROPENE         ND         0.005           TRANS-1,3-DICHLOROPROPENE         ND         0.005           TRANS-1,3-DICHLOROPROPENE         ND         0.005           LAB I.ND.         0.005         1.1-DICHLOROPROPENE         ND           VLBACHLOROPROPUTOLUENE         ND         0.005           TANS-1,3-DICHLOROPROPENE         ND         0.005           TANSONON         ND         0.005		Long Beach, CA 9081	3	
PROJECT: ARTIC         PROJECT No.: 103567/Env 2         MATRIX:SOIL       DATE RECEIVED:09/25/09         DATE SAMPLED:09/25/09       DATE ANALYZED:09/28/09         REPORT TO:Mr. BERT VOGLER       DATE REPORTED:10/02/09         SAMPLE I.D.: w-1-1.5       LAB I.D.: 090928-204         ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2         UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM         PARAMETER       SAMPLE RESULT         1.3-DICHLOROPROPANE       ND         0.005		Tel(562)432-1696 Fa	x (562) 432-179	6
PROJECT No.: 103567/Env 2         MATRIX:SOIL       DATE SAPLED:09/25/09         DATE SAPLED:09/25/09       DATE ANALYZED:09/28/09         REPORT TO:Mr. BERT VOGLER       DATE REPORTED:10/02/09         SAMPLE I.D.: W-1-1.5       LAB I.D.: 090928-204         ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2         UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM         PARMETR         SAMPLE RESULT         QL X1         1,3-DICHLOROPROPANE       ND         ND       0.005         2,2-DICHLOROPROPENE       ND         ND       0.005         CIS-1,3-DICHLOROPROPENE       ND         0.005       CIS-1,3-DICHLOROPROPENE         ND       0.005         CIS-1,3-DICHLOROPROPENE       ND         0.005       CIS-1,3-DICHLOROPROPENE         ND       0.005         CIS-1,3-DICHLOROPROPENE       ND         0.005       CIS-1,2-DICHLOROPROPENE         ND       0.005         CIS-1,2-DICHLOROPROPENE       ND         0.005       CIS-1         SAPROPUTOLUENE       ND         1.3-DICHLOROPROPENE       ND         1.4-ISOPROPYLIFOLUENE       ND </td <td>PROJECT: A</td> <td>RTIC</td> <td></td> <td>-</td>	PROJECT: A	RTIC		-
MATRIX: SOIL         DATE         RECEIVED: 09/25/09           DATE         SAMPLED: 09/25/09         DATE         ANALYSED: 09/26/09           DATE         NALYSIS:         DATE         REPORTED: 10/02/09           SAMPLE         I.D.:         W-1-1.5         LAB         I.D.: 090928-204           ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/82608, PAGE 2 OF 2           UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM           PARAMETER         SAMPLE RESULT         PQL X1           1,3-DICHLOROPROPANE         ND         0.005           2,2-DICHLOROPROPANE         ND         0.005           2,2-DICHLOROPROPENE         ND         0.005           ETHYLBENZENE         ND         0.005           ETHYLBENZENE         ND         0.005           SOPROPYLENZENE         ND         0.005           LSOPROPYLENZENE         ND         0.005           4-METHYL C2-PENTANONE (MIBK)         ND         0.020           METHYL Lett-BUTYL ETHER (MTBE)         ND         0.005           4-METHYLENE CHLOROPETHANE         ND         0.005           METHYL Lett-BUTYL ETHER (MTBE)         ND         0.005           METHYL Lett-BUTYL ETHER (MTBE)         ND         0.005	PROJECT No	.: 103567/Env 2		
DATE         SAMPLED:         09/25/09         DATE         ANALYSE:         09/28/09           REPORT         TO:Mr.         BERT         VOGLER         DATE         REPORTED:         10/02/09           SAMPLE         I.D.:         W-1-1.5         LAB         I.D.:         090928-204           ANALYSIS: VOLATILE ORGANICS, EPA METHOD         5035/82608, PAGE 2 OF 2           UNIT:         mg/Kg         MILLIGRAM PER         NLO         0.005           1.3-DICHLOROPROPANE         ND         0.005         0.005           1.1-DICHLOROPROPENE         ND         0.005         0.005           TRANS-1.3-DICHLOROPROPENE         ND         0.005         0.005           TRANS-1.3-DICHLOROPROPENE         ND         0.005         0.005           TRANS-1.3-DICHLOROPROPENE         ND         0.005         0.005           LHEXACHOROBUTADIENE         ND         0.005         0.005           LHEXACHOROBUTADIENE         ND         0.005         0.005           LHEXACHOROBUTADIENE         ND         0.005         0.005           LHEXACHOROBUTADIENE         ND         0.005         0.005           SUPPOPULEBURZENE         ND         0.005         0.005           L	MATRIX: SOI	Γ,		DATE RECEIVED.09/25/09
REPORT TO:Mr. BERT VOGLER     DATE REPORTED:10/02/09       SAMPLE I.D.: W-1-1.5     LAB I.D.: 090928-204       ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/82608, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM       PARAMETER     SAMPLE RESULT     PQL X1       1,3-DICHLOROPROPANE     ND     0.005       2,2-DICHLOROPROPANE     ND     0.005       I,1-DICHLOROPROPANE     ND     0.005       IRANS.1.3-DICHLOROPROPENE     ND     0.005       Z-HEXANONE     ND     0.005       HEXACHLOROBUTADIENE     ND     0.005       Z-HEXANONE     ND     0.005       HEXACHLOROBUTADIENE     ND     0.005       SQPROPYLEBNZENE     ND     0.005       4-ISOPROPYLDQUENE     ND     0.005       4-ISOPROPYLDQUENE     ND     0.005       4-METHYL-2-PENTANONE (MIBK)     ND     0.005       METHYLER CHLOROETHANE     ND     0.005       NPROPYLBENZENE     ND     0.005       NPROPYLBENZENE     ND     0.005       STYRENE     ND     0.005       STYRENE     ND     0.005       1.1.2-TETRACHLOROETHANE     ND     0.005       1.1.2-TETRACHLOROETHANE     ND     0.005       1.1.2-TETRACHLOROETHANE     ND     0.005       1.1.1-TR	DATE SAMPL	= ED:09/25/09		DATE ANALYZED 09/28/09
SAMPLE I.D.: W-1-1.5       LAB I.D.: 090928-204         ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM         PARAMETER       SAMPLE RESULT       PQL X1         1,3-DICHLOROPROPANE       ND       0.005         2,2-DICHLOROPROPANE       ND       0.005         1,1-DICHLOROPROPANE       ND       0.005         CIS-1,3-DICHLOROPROPENE       ND       0.005         2-HEXANONE       ND       0.005         2-HEXANONE       ND       0.005         2-HEXANONE       ND       0.005         1SOPROPYLEBNZENE       ND       0.005         4-ISOPROPYLEDUENE       ND       0.005         METHYLEME CHLORIDE       ND       0.005         METHYLENE CHLORIDE       ND       0.005         METHYLENE CHLOROETHANE       ND       0.005         STYRENE       ND       0.005         1,1,2-TETRACHLOROETHANE       ND       0.005         1,1,2,2-TETRACHLOROETHANE	REPORT TO:	Mr. BERT VOGLER		DATE REPORTED $10/02/09$
ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = FPM         PARAMETER       SAMPLE RESULT       PQL X1         1,3-DICHLOROPROPANE       ND       0.005         2.2-DICHLOROPROPANE       ND       0.005         1,1-DICHLOROPROPANE       ND       0.005         1,1-DICHLOROPROPENE       ND       0.005         TRANS-1,3-DICHLOROPROPENE       ND       0.005         TRANS-1,3-DICHLOROPROPENE       ND       0.005         TRANS-1,3-DICHLOROPROPENE       ND       0.005         ETHYLENZENE       ND       0.005         2-HEXANONE       ND       0.005         ISOPROPYLBENZENE       ND       0.005         ISOPROPYLDENZENE       ND       0.005         4-ISOPROPYLDENZENE       ND       0.005         4-METHYL-2-PENTANONE (MIBK)       ND       0.005         METHYLENE CHLORIDE       ND       0.005         METHYLENE       ND       0.005         METHYLENE       ND       0.005         STYRENE       ND       0.005         ND       0.005       1.1.2.2-TETRACHLOROETHANE       ND         ND       0.005       1.1.2.2-TETRACHLOROETHANE       ND       0.005	SAMPLE T.D	$\cdot w_{-1-1} = 5$		LAB T D $i$ 090928-204
ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM         PARAMETER       SAMPLE RESULT       PQL X1         1, 3-DICHLOROPROPANE       ND       0.005         2.2-DICHLOROPROPANE       ND       0.005         1, 1-DICHLOROPROPANE       ND       0.005         CIS-1, 3-DICHLOROPROPENE       ND       0.005         TRANS-1, 3-DICHLOROPROPENE       ND       0.005         ETHYLBENZENE       ND       0.005         ETHYLBENZENE       ND       0.005         LEXACHLOROBUTADIENE       ND       0.005         LSOPROPYLENZENE       ND       0.005         4-ISOPROPYLENZENE       ND       0.005         4-ISOPROPYLENZENE       ND       0.005         METHYLL-2-PENTANONE (MIBK)       ND       0.005         METHYLLENE CHLORIDE       ND       0.005         METHYLENE       ND       0.005         STYRENE       ND       0.005         1, 1, 2-TETRACHLOROETHANE       ND       0.005         STYRENE       ND       0.005         1, 1, 2-TETRACHLOROETHANE       ND       0.005         1, 1, 2-TETRACHLOROETHANE       ND       0.005         1, 1, 2-TRICHLOROBENZENE				BRD 1.D 090920-204
UNIT:         mg/Kg = MILLIGRAM PER KILOGRAM = PPM           PARAMETER         SAMPLE RESULT         PQL X1           1,3-DICHLOROPROPANE         ND         0.005           2,2-DICHLOROPROPANE         ND         0.005           1,1-DICHLOROPROPENE         ND         0.005           CIS-1,3-DICHLOROPROPENE         ND         0.005           CIS-1,3-DICHLOROPROPENE         ND         0.005           ETHYLBENZENE         ND         0.005           ETHYLBENZENE         ND         0.005           2-HEXANONE         ND         0.005           4-ISOPROPYLEBNZENE         ND         0.005           4-ISOPROPYLENZENE         ND         0.005           4-SCPROPYLTOLUENE         ND         0.005           4-METHYL-2-PENTANONE (MIBK)         ND         0.005           METHYL text-BUTYL ETHER (MTBE)         ND         0.005           METHYLENE CHLORIDE         ND         0.005           STYRENE         ND         0.005           NPPOPYLBENZENE         ND         0.005           STYRENE         ND         0.005           1,1,2-ZTETRACHLOROETHANE         ND         0.005           1,1,2,2-TETRACHLOROETHANE         ND         0.005 </td <td>ANALYS</td> <td>IS: VOLATILE ORGANIC</td> <td>S. EPA METHOD</td> <td>5035/8260B PAGE 2 OF 2</td>	ANALYS	IS: VOLATILE ORGANIC	S. EPA METHOD	5035/8260B PAGE 2 OF 2
PARAMETERSAMPLERESULTPQL X11,3-DICHLOROPROPANEND0.0052.2-DICHLOROPROPANEND0.0051,1-DICHLOROPROPANEND0.005(IS-1,3-DICHLOROPROPENEND0.005TRANS-1,3-DICHLOROPROPENEND0.005ETHYLBENZENEND0.0052-HEXANONEND0.0054-EXACHLOROBUTADIENEND0.0054-ISOPROPYLENZENEND0.0054-ISOPROPYLENZENEND0.0054-ISOPROPYLOLUENEND0.0054-METHYL tert-BUTYL ETHER (MTBE)ND0.005METHYL tert-BUTYL ETHER (MTBE)ND0.005NPROPYLENZENEND0.005STYRENEND0.0051,1,2-TETRACHLOROETHANEND0.0051,1,2-TETRACHLOROETHANEND0.0051,1,2-TETRACHLOROETHANEND0.0051,2,3-TRICHLOROETHANEND0.0051,2,4-TRICHLOROETHANEND0.0051,2,4-TRICHLOROETHANEND0.0051,1,2-TETRACHLOROETHANEND0.0051,2,4-TRICHLOROBENZENEND0.0051,1,2-TRICHLOROBENZENEND0.0051,1,2-TRICHLOROETHANEND0.0051,1,2-TRICHLOROBENZENEND0.0051,1,2-TRICHLOROBENZENEND0.0051,2,4-TRICHLOROBENZENEND0.0051,1,2-TRICHLOROBENZENEND0.0051,2,4-TRICHLOROBENZENEND0.0051,2,4-TRICHLOROBENZENEND0.005<		UNIT: $m\alpha/K\alpha = M$	LLIGRAM PER P	TLOGRAM = PPM
1,3-DICHLOROPROPANEND0.0052.2-DICHLOROPROPANEND0.0051,1-DICHLOROPROPENEND0.005TRANS-1,3-DICHLOROPROPENEND0.005TRANS-1,3-DICHLOROPROPENEND0.005ETHYLBENZENEND0.0052-HEXANONEND0.005SOPROPYLBENZENEND0.0054-ISOPROPYLDUENEND0.0054-METHYL-2-PENTANONE (MIBK)ND0.005METHYL Lett-BUTYL ETHER (MTBE)ND0.005METHYL LENE CHLORIDEND0.0051,1,2-TETRACHLOROETHANEND0.0051,1,2-TETRACHLOROETHANEND0.0051,1,2-TETRACHLOROETHANEND0.0051,1,1-TRICHLOROETHANEND0.0051,2,3-TRICHLOROETHANEND0.0051,1,1-TRICHLOROETHANEND0.0051,1,2-TRICHLOROETHANEND0.0051,1,2-TRICHLOROETHANEND0.0051,1,1-TRICHLOROETHANEND0.0051,1,2-TRICHLOROETHANEND0.0051,1,1-TRICHLOROETHANEND0.0051,1,2-TRICHLOROETHANEND0.0051,1,1-TRICHLOROETHANEND0.0051,1,2-TRICHLOROETHANEND0.0051,1,2-TRICHLOROETHANEND0.0051,1,2-TRICHLOROETHANEND0.0051,2,3-TRICHLOROETHANEND0.0051,1,2-TRICHLOROETHANEND0.0051,1,2-TRICHLOROETHANEND0.0051,1,2-TRICHLOROETHANEND0.005 <td>PARAMETER</td> <td>······································</td> <td>SAMPLE RESUL</td> <td>T POI, X1</td>	PARAMETER	······································	SAMPLE RESUL	T POI, X1
ND         0.005           1.1-DICHLOROPROPANE         ND         0.005           1.1-DICHLOROPROPENE         ND         0.005           CIS-1.3-DICHLOROPROPENE         ND         0.005           TRANS-1.3-DICHLOROPROPENE         ND         0.005           ETHYLBEMZENE         ND         0.005           2-HEXANONE         ND         0.005           HEXACHLOROBUTADIENE         ND         0.005           1.SOPROPYLEENZENE         ND         0.005           4-ISOPROPYLTOLUENE         ND         0.005           4-METHYL-2-PENTANONE (MIBK)         ND         0.005           METHYL text-BUTYL ETHER (MTBE)         ND         0.005           METHYLENE CHLORIDE         ND         0.005           METHYLENE CHLORIDE         ND         0.005           N-PROPYLBENZENE         ND         0.005           STYRENE         ND         0.005           1.1.1.2-TETRACHLOROETHANE         ND         0.005           1.2.3-TRICHLOROBENZENE         ND         0.005           1.2.3-TRICHLOROBENZENE         ND         0.005           1.2.4-TRICHLOROETHANE         ND         0.005           1.2.3-TRICHLOROBENZENE         ND         0.005	1.3-DICHLO	ROPROPANE	ND	0 005
ND         0.005           CIS-1, 3-DICHLOROPROPENE         ND         0.005           CIS-1, 3-DICHLOROPROPENE         ND         0.005           ETHYLBENZENE         ND         0.005           ETHYLBENZENE         ND         0.005           2-HEXANONE         ND         0.005           Y=HEXANONE         ND         0.005           2-HEXANONE         ND         0.005           2-HEXANONE         ND         0.005           4-ISOPROPYLBENZENE         ND         0.005           4-ISOPROPYLTOLUENE         ND         0.005           4-METHYL -2-PENTANONE (MIBK)         ND         0.005           METHYL Lert-BUTYL ETHER (MTBE)         ND         0.005           METHYLENE CHLORIDE         ND         0.005           METHYLENE CHLOROETHANE         ND         0.005           NPPOPYLBENZENE         ND         0.005           STYRENE         ND         0.005           1,1,2.2-TETRACHLOROETHANE         ND         0.005           1,1,1,2-TETRACHLOROETHANE         ND         0.005           1,2,3-TRICHLOROBENZENE         ND         0.005           1,2,4-TRICHLOROBENZENE         ND         0.005	2.2-DICHLO	ROPROPANE		0.005
III DEFINICATION         ND         0.005           ITRANS-1, 3-DICHLOROPROPENE         ND         0.005           TRANS-1, 3-DICHLOROPROPENE         ND         0.005           ETHYLBENZENE         ND         0.005           2-HEXANONE         ND         0.005           HEXACHLOROBUTADIENE         ND         0.005           2-HEXANONE         ND         0.005           4-EXACHLOROBUTADIENE         ND         0.005           4-ISOPROPYLEBNZENE         ND         0.005           4-ISOPROPYLEDUENE         ND         0.005           4-METHYL-2-PENTANONE (MIBK)         ND         0.005           METHYL text-BUTYL ETHER (MTBE)         ND         0.005           METHYL Lext-BUTYL ETHER (MTBE)         ND         0.005           NPROPYLBENZENE         ND         0.005           NPROPYLBENZENE         ND         0.005           NPROPYLBENZENE         ND         0.005           1.1, 2-TETRACHLOROETHANE         ND         0.005           1.1, 2.2-TETRACHLOROETHANE         ND         0.005           1.1, 2.2-TETRACHLOROETHANE         ND         0.005           1.1, 2.3-TRICHLOROBENZENE         ND         0.005           1.1, 2.3-TRICHLORO	1.1-DICHLO	ROPROPENE	ND	0.005
Ind         Ind <thind< th=""> <thind< th=""> <thind< th=""></thind<></thind<></thind<>	CIS-1.3-DI	CHLOROPROPENE		0.005
Inits of Not	TRANS-1.3-	DICHLOROPROPENE		0.005
Internal NDND0.0002-HEXANONEND0.005ISOPROPYLBENZENEND0.0054-ISOPROPYLTOLUENEND0.0054-METHYL-2-PENTANONE (MIBK)ND0.0054-METHYL tert-BUTYL ETHER (MTBE)ND0.005METHYL tert-BUTYL ETHER (MTBE)ND0.005METHYL LENE CHLORIDEND0.005NAPHTHALENEND0.005N-PROPYLBENZENEND0.0051.1.2.2-TETRACHLOROETHANEND0.0051.1.2.2-TETRACHLOROETHANEND0.0051.1.2.2-TETRACHLOROETHANEND0.0051.2.3-TRICHLOROBENZENEND0.0051.2.4-TRICHLOROBENZENEND0.0051.1.2-TRICHLOROBENZENEND0.0051.1.2-TRICHLOROETHANEND0.0051.2.3-TRICHLOROETHANEND0.0051.2.4-TRICHLOROBENZENEND0.0051.1.2-TRICHLOROETHANEND0.0051.2.3-TRICHLOROETHANEND0.0051.2.3-TRICHLOROETHANEND0.0051.2.3-TRICHLOROETHANEND0.0051.2.3-TRICHLOROETHANEND0.0051.2.3-TRICHLOROETHANEND0.0051.2.3-TRICHLOROPROPANEND0.0051.2.3-TRICHLOROPROPANEND0.0051.2.4-TRIMETHYLBENZENEND0.0051.3.5-TRIMETHYLBENZENEND0.0051.3.5-TRIMETHYLBENZENEND0.0051.3.5-TRIMETHYLBENZENEND0.005	ETHYLBENZE	NE	ND	0.005
INDIANCND0.020HEXACHLOROBUTADIENEND0.005ISOPROPYLBENZENEND0.0054-ISOPROPYLTOLUENEND0.0054-METHYL-2-PENTANONE (MIBK)ND0.005METHYL tert-BUTYL ETHER (MTBE)ND0.005METHYL ENE CHLORIDEND0.005NAPHTHALENEND0.005N-PROPYLBENZENEND0.005STYRENEND0.0051, 1, 2-TETRACHLOROETHANEND0.0051, 1, 2, 2-TETRACHLOROETHANEND0.005TOLUENEND0.0051, 2, 3-TRICHLOROBENZENEND0.0051, 1, -TRICHLOROBENZENEND0.0051, 1, 2-TRICHLOROBENZENEND0.0051, 2, 3-TRICHLOROBENZENEND0.0051, 1, 2-TRICHLOROETHANEND0.0051, 2, 3-TRICHLOROBENZENEND0.0051, 1, 2-TRICHLOROETHANEND0.0051, 2, 3-TRICHLOROETHANEND0.0051, 1, 2-TRICHLOROETHANEND0.0051, 1, 2-TRICHLOROETHANEND0.0051, 2, 4-TRICHLOROETHANEND0.0051, 2, 3-TRICHLOROPRANEND0.0051, 2, 3-TRICHLOROPRANEND0.0051, 2, 4-TRIMETHYLBENZENEND0.0051, 3, 5-TRIMETHYLBENZENEND0.0051, 3, 5-TRIMETHYLBENZENEND0.0051, 3, 5-TRIMETHYLBENZENEND0.0051, 3, 5-TRIMETHYLBENZENEND0.005	2-HEXANONE		ND	0.020
ISOPROPYLESTER         ND         0.005           4-ISOPROPYLEENZENE         ND         0.005           4-METHYL-2-PENTANONE (MIBK)         ND         0.005           4-METHYL-2-PENTANONE (MIBK)         ND         0.005           METHYL tert-BUTYL ETHER (MTBE)         ND         0.005           METHYL tert-BUTYL ETHER (MTBE)         ND         0.005           METHYLENE CHLORIDE         ND         0.005           NPROPYLBENZENE         ND         0.005           STYRENE         ND         0.005           1, 1, 2-TETRACHLOROETHANE         ND         0.005           1, 1, 2-TETRACHLOROETHANE         ND         0.005           1, 1, 2, TETRACHLOROETHANE         ND         0.005           1, 1, 2, TETRACHLOROETHANE         ND         0.005           1, 1, 2, TETRACHLOROETHANE         ND         0.005           1, 2, 3-TRICHLOROBENZENE         ND         0.005           1, 2, 3-TRICHLOROBENZENE         ND         0.005           1, 1, 1-TRICHLOROETHANE         ND         0.005           1, 1, 2-TRICHLOROETHANE         ND         0.005           1, 1, 2-TRICHLOROETHANE         ND         0.005           1, 1, 2-TRICHLOROETHANE         ND         0.005	HEXACHLORO	BUTADIENE		0.005
ND         0.005           4-ISOPROPYLTOLUENE         ND         0.005           4-METHYL-2-PENTANONE (MIBK)         ND         0.020           METHYL tert-BUTYL ETHER (MTBE)         ND         0.005           METHYL Lert-BUTYL ETHER (MTBE)         ND         0.005           METHYLENE CHLORIDE         ND         0.005           MAPHTHALENE         ND         0.005           N-PROPYLBENZENE         ND         0.005           STYRENE         ND         0.005           1.1.2-TETRACHLOROETHANE         ND         0.005           1.1.2.2-TETRACHLOROETHANE         ND         0.005           TOLUENE         ND         0.005           1.2.3-TRICHLOROBENZENE         ND         0.005           1.2.4-TRICHLOROBENZENE         ND         0.005           1.2.4-TRICHLOROBENZENE         ND         0.005           1.2.4-TRICHLOROETHANE         ND         0.005           1.1.2-TRICHLOROETHANE         ND         0.005           1.2.4-TRICHLOROETHANE         ND         0.005           1.1.2-TRICHLOROETHANE         ND         0.005           1.1.2-TRICHLOROETHANE         ND         0.005           1.2.3-TRICHLOROETHANE         ND	TSOPROPYLB	ENZENE	ND	0.005
Indefinition         Imp         0.003           4-METHYL-2-PENTANONE (MIBK)         ND         0.020           METHYL tert-BUTYL ETHER (MTBE)         ND         0.005           METHYLENE CHLORIDE         ND         0.005           NAPHTHALENE         ND         0.005           N-PROPYLBENZENE         ND         0.005           STYRENE         ND         0.005           1,1,2-TETRACHLOROETHANE         ND         0.005           1,1,2,2-TETRACHLOROETHANE         ND         0.005           1,1,2,2-TETRACHLOROETHANE         ND         0.005           1,1,2,2-TETRACHLOROETHANE         ND         0.005           1,1,2,3-TRICHLOROETHANE         ND         0.005           TOLUENE         ND         0.005           1,2,3-TRICHLOROBENZENE         ND         0.005           1,2,4-TRICHLOROETHANE         ND         0.005           1,1,1-TRICHLOROETHANE         ND         0.005           1,1,2-TRICHLOROETHANE         ND         0.005           1,1,2-TRICHLOROETHANE         ND         0.005           1,1,2-TRICHLOROETHANE         ND         0.005           1,2,4-TRICHLOROETHANE         ND         0.0005           1,2,3-TRICHLOROETHANE <td>4 - TSOPROPY</td> <td>LTOLUENE</td> <td>ND</td> <td>0.005</td>	4 - TSOPROPY	LTOLUENE	ND	0.005
METHYL D T FBARKOND (MTDA)ND0.0020METHYL Lert - BUTYL ETHER (MTBE)ND0.005METHYLENE CHLORIDEND0.005NAPHTHALENEND0.005N-PROPYLBENZENEND0.005STYRENEND0.0051, 1, 2 - TETRACHLOROETHANEND0.0051, 1, 2 - TETRACHLOROETHANEND0.0051, 1, 2 - TETRACHLOROETHANEND0.0051, 1, 2, 2 - TETRACHLOROETHANEND0.0051, 1, 2, 3 - TRICHLOROETHANEND0.0051, 2, 3 - TRICHLOROBENZENEND0.0051, 1, 1 - TRICHLOROBENZENEND0.0051, 1, 2 - TRICHLOROETHANEND0.0051, 2, 3 - TRICHLOROETHANEND0.0051, 2, 3 - TRICHLOROPROPANEND0.0051, 2, 4 - TRIMETHYLBENZENEND0.0051, 3, 5 - TRIMETHYLBENZENEND0.0051, 3, 5 - TRIMETHYLBENZENEND0.0051, 3, 5 - TRIMETHYLBENZENEND0.005	4-METHYL-2	- PENTANONE (MIBK)	<u>ND</u>	0.020
METHYL ENE CHLORIDE         ND         0.000           NAPHTHALENE         ND         0.010           NAPHTHALENE         ND         0.005           N-PROPYLBENZENE         ND         0.005           STYRENE         ND         0.005           1,1,2.7ETRACHLOROETHANE         ND         0.005           1,1,2.2-TETRACHLOROETHANE         ND         0.005           1,1,2.2-TETRACHLOROETHANE         ND         0.005           TETRACHLOROETHENE (PCE)         ND         0.005           TOLUENE         ND         0.005           1,2,3-TRICHLOROBENZENE         ND         0.005           1,2,4-TRICHLOROBENZENE         ND         0.005           1,1,1-TRICHLOROETHANE         ND         0.005           1,1,2-TRICHLOROETHANE         ND         0.005           1,2,3-TRICHLOROPROPANE         ND         0.005           1,2,3-TRICHLOROPROPANE         ND         0.005           1,2,4-TRIMETHYLBENZENE         ND<	METHYL ter	t-BUTYL ETHER (MTBE)	NĎ	0.005
NAPHTHALENE         ND         0.010           NAPHTHALENE         ND         0.005           N-PROPYLBENZENE         ND         0.005           STYRENE         ND         0.005           1, 1, 1, 2-TETRACHLOROETHANE         ND         0.005           1, 1, 2, 2-TETRACHLOROETHANE         ND         0.005           1, 1, 2, 2-TETRACHLOROETHANE         ND         0.005           TETRACHLOROETHENE (PCE)         ND         0.005           TOLUENE         ND         0.005           1, 2, 3-TRICHLOROBENZENE         ND         0.005           1, 2, 4-TRICHLOROBENZENE         ND         0.005           1, 1, 1-TRICHLOROETHANE         ND         0.005           1, 1, 1-TRICHLOROETHANE         ND         0.005           1, 1, 2-TRICHLOROETHANE         ND         0.005           1, 2, 3-TRICHLOROPROPANE         ND         0.005           1, 2, 3-TRICHLOROPROPANE         ND         0.005           1, 2, 4-	METHYLENE	CHLORIDE		0.010
N PROPYLBENZENE         ND         0.005           STYRENE         ND         0.005           1, 1, 2-TETRACHLOROETHANE         ND         0.005           1, 1, 2.2-TETRACHLOROETHANE         ND         0.005           1, 1, 2.2-TETRACHLOROETHANE         ND         0.005           TETRACHLOROETHANE         ND         0.005           TETRACHLOROETHANE         ND         0.005           TOLUENE         ND         0.005           1, 2, 3-TRICHLOROBENZENE         ND         0.005           1, 2, 4-TRICHLOROBENZENE         ND         0.005           1, 1, 1-TRICHLOROETHANE         ND         0.005           1, 1, 2-TRICHLOROETHANE         ND         0.005           1, 1, 2, 3-TRICHLOROETHANE         ND         0.005           1, 2, 3-TRICHLOROPROPANE         ND         0.005           1, 2, 3-TRICHLOROPROPANE         ND         0.005           1, 2, 4-TRIMETHYLBENZENE         ND         0.005	NAPHTHALEN	R	ND	0.005
ND         0.005           STYRENE         ND         0.005           1, 1, 2, 2-TETRACHLOROETHANE         ND         0.005           1, 1, 2, 2-TETRACHLOROETHANE         ND         0.005           1, 1, 2, 2-TETRACHLOROETHANE         ND         0.005           TETRACHLOROETHENE (PCE)         ND         0.005           TOLUENE         ND         0.005           1, 2, 3-TRICHLOROBENZENE         ND         0.005           1, 2, 4-TRICHLOROBENZENE         ND         0.005           1, 1, 1-TRICHLOROETHANE         ND         0.005           1, 1, 2-TRICHLOROETHANE         ND         0.005           1, 2, 3-TRICHLOROFLUOROMETHANE         ND         0.005           1, 2, 3-TRICHLOROPROPANE         ND         0.005           1, 2, 4-TRIMETHYLBENZENE         ND         0.005           1, 3, 5-TRIMETHYLBENZENE         ND         0.005           1, 3, 5-TRIMETHYLBENZENE         ND         0.005	N-PROPYLEE	NZENE	ND	0.005
International         Indext ND         0.005           1, 1, 1, 2 - TETRACHLOROETHANE         ND         0.005           1, 1, 2, 2 - TETRACHLOROETHANE         ND         0.005           TETRACHLOROETHANE         ND         0.005           TETRACHLOROETHENE (PCE)         ND         0.005           TOLUENE         ND         0.005           1, 2, 3 - TRICHLOROBENZENE         ND         0.005           1, 2, 4 - TRICHLOROBENZENE         ND         0.005           1, 1, 1 - TRICHLOROETHANE         ND         0.005           1, 1, 1 - TRICHLOROBENZENE         ND         0.005           1, 1, 1 - TRICHLOROETHANE         ND         0.005           1, 1, 2 - TRICHLOROETHANE         ND         0.005           1, 1, 2 - TRICHLOROETHANE         ND         0.005           1, 1, 2 - TRICHLOROETHANE         ND         0.005           1, 2, 3 - TRICHLOROETHANE         ND         0.005           1, 2, 3 - TRICHLOROPROPANE         ND         0.005           1, 2, 4 - TRIMETHYLBENZENE         ND         0.005           1, 3, 5 - TRIMETHYLBENZENE         ND         0.005           VINYL CHLORIDE         ND         0.005	STYRENE	100110	ND	0.005
I.1.2.2-TETRACHLOROETHANEND0.0051.1.2.2-TETRACHLOROETHANEND0.005TETRACHLOROETHENE (PCE)ND0.005TOLUENEND0.0051.2.3-TRICHLOROBENZENEND0.0051.2.4-TRICHLOROBENZENEND0.0051.1.1-TRICHLOROETHANEND0.0051.1.2-TRICHLOROETHANEND0.0051.1.2-TRICHLOROETHANEND0.0051.1.2-TRICHLOROETHANEND0.0051.2.3-TRICHLOROETHANEND0.0051.2.3-TRICHLOROETHANEND0.0051.2.3-TRICHLOROPROPANEND0.0051.2.4-TRIMETHYLBENZENEND0.0051.3.5-TRIMETHYLBENZENEND0.005VINYL CHLORIDEND0.005	$\frac{01100000}{1.1.1.2-TE}$	TRACHLOROETHANE		0.005
TETRACHLOROETHENEND0.005TOLUENEND0.0051,2,3-TRICHLOROBENZENEND0.0051,2,4-TRICHLOROBENZENEND0.0051,1,1-TRICHLOROETHANEND0.0051,1,2-TRICHLOROETHANEND0.0051,1,2-TRICHLOROETHANEND0.0051,1,2-TRICHLOROETHANEND0.0051,2,3-TRICHLOROETHANEND0.0051,2,3-TRICHLOROETHANEND0.0051,2,3-TRICHLOROPROPANEND0.0051,2,4-TRIMETHYLBENZENEND0.0051,3,5-TRIMETHYLBENZENEND0.005VINYL CHLORIDEND0.005	1 1 2 2 - TE	TRACHLOROETHANE	ND	0.005
TOLUENE         ND         0.005           1,2,3-TRICHLOROBENZENE         ND         0.005           1,2,4-TRICHLOROBENZENE         ND         0.005           1,1,1-TRICHLOROBENZENE         ND         0.005           1,1,2-TRICHLOROETHANE         ND         0.005           1,1,2-TRICHLOROETHANE         ND         0.005           1,1,2-TRICHLOROETHANE         ND         0.005           TRICHLOROETHENE (TCE)         ND         0.005           TRICHLOROFLUOROMETHANE         ND         0.005           1,2,3-TRICHLOROPROPANE         ND         0.005           1,2,4-TRIMETHYLBENZENE         ND         0.005           1,3,5-TRIMETHYLBENZENE         ND         0.005           VINYL CHLORIDE         ND         0.005	TETRACHLOR	OFTHENE (PCE)	ND	0.005
ND         0.005           1,2,3-TRICHLOROBENZENE         ND         0.005           1,2,4-TRICHLOROBENZENE         ND         0.005           1,1,1-TRICHLOROETHANE         ND         0.005           1,1,2-TRICHLOROETHANE         ND         0.005           1,1,2-TRICHLOROETHANE         ND         0.005           TRICHLOROETHENE (TCE)         ND         0.005           TRICHLOROFLUOROMETHANE         ND         0.005           1,2,3-TRICHLOROPROPANE         ND         0.005           1,2,4-TRIMETHYLBENZENE         ND         0.005           1,3,5-TRIMETHYLBENZENE         ND         0.005           VINYL CHLORIDE         ND         0.005	TOLUENE		ND ND	0.005
1,2,4-TRICHLOROBENZENE       ND       0.005         1,1,1-TRICHLOROETHANE       ND       0.005         1,1,2-TRICHLOROETHANE       ND       0.005         1,1,2-TRICHLOROETHANE       ND       0.005         TRICHLOROETHENE (TCE)       ND       0.005         TRICHLOROFLUOROMETHANE       ND       0.005         1,2,3-TRICHLOROPROPANE       ND       0.005         1,2,4-TRIMETHYLBENZENE       ND       0.005         1,3,5-TRIMETHYLBENZENE       ND       0.005         VINYL CHLORIDE       ND       0.005	1.2.3-TRIC	HLOROBENZENE		0.005
I, I, I - TRICHLOROETHANEND0.0051, 1, 1 - TRICHLOROETHANEND0.0051, 1, 2 - TRICHLOROETHANEND0.005TRICHLOROETHENE (TCE)ND0.005TRICHLOROFLUOROMETHANEND0.0051, 2, 3 - TRICHLOROPROPANEND0.0051, 2, 4 - TRIMETHYLBENZENEND0.0051, 3, 5 - TRIMETHYLBENZENEND0.005VINYL CHLORIDEND0.005	1, 2, 4 - TRIC	HLOROBENZENE	ND	0.005
I, 1, 2-TRICHLOROETHANE     ND     0.005       TRICHLOROETHENE (TCE)     ND     0.005       TRICHLOROFLUOROMETHANE     ND     0.005       1, 2, 3-TRICHLOROPROPANE     ND     0.005       1, 2, 4-TRIMETHYLBENZENE     ND     0.005       1, 3, 5-TRIMETHYLBENZENE     ND     0.005       VINYL     CHLORIDE     ND     0.005	1, 1, 1 - TRTC	HLOROETHANE		0.005
TRICHLOROETHENE         ICCE         ND         0.005           TRICHLOROFLUOROMETHANE         ND         0.005           1,2,3-TRICHLOROPROPANE         ND         0.005           1,2,4-TRIMETHYLBENZENE         ND         0.005           1,3,5-TRIMETHYLBENZENE         ND         0.005           VINYL         CHLORIDE         ND         0.005	$\frac{1}{1}, \frac{1}{2}, \frac{2}{7}$	HLOROETHANE	ND	0.005
TRICHLOROFLUOROMETHANE         ND         0.005           1,2,3-TRICHLOROPROPANE         ND         0.005           1,2,4-TRIMETHYLBENZENE         ND         0.005           1,3,5-TRIMETHYLBENZENE         ND         0.005           VINYL         CHLORIDE         ND         0.005	TRICHLOROE	THENE (TCE)	ND	0.005
I.2.3-TRICHLOROPROPANE         ND         0.005           1,2.4-TRIMETHYLBENZENE         ND         0.005           1,3.5-TRIMETHYLBENZENE         ND         0.005           VINYL         CHLORIDE         ND         0.005	TRICHLOROF	LUOROMETHANE	ND	0.005
1,2,4-TRIMETHYLBENZENE         ND         0.005           1,3,5-TRIMETHYLBENZENE         ND         0.005           VINYL CHLORIDE         ND         0.005	1.2.3-TRIC	HLOROPROPANE		0.005
1,3,5-TRIMETHYLBENZENE     ND     0.005       VINYL CHLORIDE     ND     0.005	$\frac{1}{2}, \frac{2}{3}, \frac{3}{7}$	ETHYLBENZENE	ND	0.005
VINYL CHLORIDE ND 0.005	1.3.5-TRIM	ETHYLBENZENE		0.005
	VINYL CHLO	RIDE	ND	0.005
M/P-XYLENE ND 0.010	M/P-XYLENE			0 010
0-XYLENE ND 0.005	O-XYLENE	·		0.005
$\frac{1}{1} = \frac{1}{1} = \frac{1}$	COMMENTS P	OL = PRACTICAL OUAN	TTATION LIMIT	<u> </u>

ND = NON-DETECTED OR BELOW THE PQL

DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER: Kleinfelder		
620 W. 16th Street	t, Unit #F	
Long Beach, CA 908	313	
Tel(562)432-1696 H	Fax (562) 432-1796	
PROJECT: ARTIC		
PROJECT No.: 103567/Env 2		
MATRIX SOIL	מת	TE RECEIVED 09/25/09
DATE SAMPLED:09/25/09		TE ANAL V7ED $09/28/09$
REPORT TO MY BERT VOGLER		TE PEPOPTED 10/02/09
SAMPLE T D · W-1-5	L'A	$B \neq D + 090928-205$
ANALYSTS · VOLATTLE ORGAN	ICS EPA METHOD 50	135/8260B PAGE 1 OF 2
	MILLIGRAM DER KIL	OGRAM = PPM
DARAMETER	SAMPLE DEGILT	DOL VI
ACEPONE	ND	0 020
BENZENE		0.005
BROMOBENZENE		0.005
BROMOCHLOROMETHANE		0.005
BROMODICHLOROMETHANE		0.005
BROMOFORM		0.005
	ND	0.005
2-BUTANONE (MEK)	ND	0.000
		0.020
SEC- BUTYL BENZENE		0.005
		0.005
CARRON DIGULETDE		0.010
CARBON TETRACHLORIDE		0.005
CHLOROBENZENE	ND ND	0.005
CHLOROFTHANE		0.005
CHLOROFORM		
CHLOROMETHANE		0.005
		0.005
4 - CHLOROTOLUENE		0.005
DIBROMOCHLOROMETHANE		0.005
1.2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1.2-DIBROMOETHANE		0.005
DIBROMOMETHANE		0.005
1.2-DICHLOROBENZENE	ND ND	0.005
1.3-DICHLOROBENZENE		0.005
1 4-DICHLOROBENZENE		0.005
DICHLORODIFLUOROMETHANR		0.005
1 1-DICHLOROETHANE		0.005
1 2-DICHLOROETHANE		
1,1-DICHLOROETHENE		0.005
CIS-1.2-DICHLOROETHENE		0.005
TRANS-1 2-DICHLOROETHENE		0.005
1.2-DICHLOROPROPANE	ND	0.005

----- TO BE CONTINUED ON PAGE #2 -----

____

DATA REVIEWED AND APPROVED BY:

# 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER :	Kleinfelder		
	620 W. 16th Street,	Unit #F	
	Long Beach, CA 90813	3	
	Tel(562)432-1696 Fax	x (562) 432-1796	
PROJECT: A	RTIC		
PROJECT No	.: 103567/Env 2		
MATRIX: SOI	L	I	DATE RECEIVED:09/25/09
DATE SAMPL	ED: <u>09/25/09</u>	I	DATE ANALYZED: <u>09/28/09</u>
REPORT TO:	Mr. BERT_VOGLER	I	DATE REPORTED: <u>10/02/09</u>
SAMPLE I.D	.: W-1-5	1	LAB I.D.: 090928-205
ANALYS	IS: VOLATILE ORGANIC:	S, EPA METHOD	5035/8260B, PAGE 2 OF 2
	UNIT: mg/Kg = MI	LLIGRAM PER KI	ILOGRAM = PPM
PARAMETER		SAMPLE RESULT	PQL X1
<u>1,3-DICHLO</u>	ROPROPANE	ND	0.005
2,2-DICHLO	ROPROPANE	ND	0.005
<u>1,1-DICHLO</u>	ROPROPENE	ND	0.005
<u>CIS-1,3-DI</u>	CHLOROPROPENE	<u>ND</u>	0.005
TRANS-1, 3-	DICHLOROPROPENE	ND	0.005
ETHYLBENZE	NE	ND	0.005
Z-HEXANONE	DITTADIENC		0.020
I CODDODVI D			0.005
A-TSOPROPIES	LTOLUENE		0.005
4-METHYL-2	- PENTANONE (MIBK)		0.020
METHYL ter	t-BUTYL ETHER (MTBE)	ND ND	0.005
METHYLENE	CHLORIDE	ND	0.010
NAPHTHALEN	E	ND	0.005
N-PROPYLBE	NZENE	ND	0.005
STYRENE		NĎ	0.005
<u>1,1,1,2-TE</u>	TRACHLOROETHANE	ND	_0.005
<u>1,1,2,2-TE</u>	TRACHLOROETHANE	ND	0.005
TETRACHLOR	OETHENE (PCE)	ND	0.005
<u>TOLUENE</u>		ND	0.005
<u>1,2,3-TRIC</u>	HLOROBENZENE	ND	0.005
<u>1,2,4-TRIC</u>	HLOROBENZENE	ND	0.005
<u>1,1,1-TRIC</u>	HLOROETHANE	<u>ND</u>	0.005
1, 1, 2-TRIC	HLOROETHANE	<u>ND</u>	0.005
TRICHLOROE	TRENE (TCE)	<u>ND</u>	0.005
1 2 2 TRICHLORUF	LUOROMETHANE		0.005
1, 2, 3 - 1 KIC			0.005
1, 2, 4 - 1 X I M	ETHYLBENZENE		0.005
VINYI CHIC	RIDE		0.005
M/P-XYLENE			0,010
O-XYLENE		ND	0.005
COMMENTS F	POL = PRACTICAL OUANT	ITATION LIMIT	

ND = NON-DETECTED OR BELOW THE PQL

DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

Y:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER: Kleinfelder		
620 W. 16th Street	t. Unit #F	
Long Beach, CA 90	813	
Tel(562)432-16961	 Fax (562) 432-1796	
PROJECT ARTIC		
PROJECT No : 103567/Env 2		
MATDIX COLL	D	
DATE CAMPLED. 00/25/00		ATE RECEIVED: $09/20/09$
$\frac{09725705}{25000}$		ATE ANALIZED: <u>09720702</u>
$\frac{1}{2} \frac{1}{2} \frac{1}$	L L	$\frac{A16}{20} \times \frac{600029}{200} = 200$
SAMPLE I.D.: W-1-10	ں	AB 1.D.: 090928-208
ANALYSTS VOLATILE OPCAN	109 EDA METHOD 5	035/8260B PAGE 1 OF 2
INTE: mg/Kg =	MILLICOAM DED KT	1033/8200B, FROM I OF 2
DADAMETED	CANDLE DECILLE	DOI VI
ACETONE	SAMPLE RESULT	POD XI
DENGENE		0.020
BROMOBENZENE		0.005
		0.005
BROMODICHLOROMETHANE		0.005
	ND ND	0.005
BROMOMETHANE	<u>ND</u>	
2-BUTANONE (MEK)		0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	<u>ND</u>	
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	<u>ND</u>	0.010
CARBON TETRACHLORIDE	<u>ND</u>	0.005
CHLOROBENZENE	ND	0.005
<u>CHLOROETHANE</u>		0.005
CHLOROFORM	ND	0.005
		0.005
2-CHLOROTOLUENE		0.005
4-CHLOROTOLUENE	<u>ND</u>	0.005
DIBROMOCHLOROMETHANE		0.005
1, 2-DIBROMO-3-CHLOROPROPANE		
I, Z-DIBROMOETHANE	<u>ND</u>	0.005
DIBROMOMETHANE		0.005
1, 2-DICHLOROBENZENE		0.005
1, 3-DICHLOROBENZENE	<u>ND</u>	0.005
1,4-DICHLOROBENZENE		0.005
DICHLORODIFLUOROMETHANE	<u>UN</u>	0.005
1, 1-DICHLOROETHANE	<u>ND</u>	0.005
1, 2-DICHLOROETHANE	<u>ND</u>	0.005
1, 1-DICHLOROETHENE	<u>ND</u>	
CIS-1, 2-DICHLOROETHENE	<u>ND</u>	0.005
TRANS-1, 2-DICHLOROETHENE	<u>ND</u>	0.005
1.2-DICHLOROPROPANE	ND	0.005

---- TO BE CONTINUED ON PAGE #2 -----Dr

Λ

DATA REVIEWED AND APPROVED BY:_

# 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER :	Kleinfelder					
	620 W. 16th Street,	Unit #F				
	Long Beach, CA 90813	3				
	Tel(562)432-1696 Fax	(562)432-1796				
PROJECT: A	RTIC					
PROJECT No	.: 103567/Env 2					
MATRIX:SOI	Г.	DA	TE RECEIVED:09/25/09			
DATE SAMPL		DA	TE ANALYZED: $09/28/09$			
REPORT TO:	Mr. BERT VOGLER	DA	TE REPORTED: $10/02/09$			
SAMPLE I.D	.: W-1-10	L/4	AB I.D.: 090928-206			
ANALYS	IS: VOLATILE ORGANICS	S. EPA METHOD 5	035/8260B, PAGE 2 OF 2			
	UNIT: $ma/Ka = MI$	LLIGRAM PER KII	OGRAM = PPM			
PARAMETER		SAMPLE RESULT	POL X1			
1,3-DICHLO	ROPROPANE	NĎ	0.005			
2,2-DICHLO	ROPROPANE	ND	0.005			
1,1-DICHLO	ROPROPENE	NĎ	0.005			
CIS-1,3-DI	CHLOROPROPENE	ND	0.005			
TRANS-1,3-	DICHLOROPROPENE	ND	0.005			
<u>ETHYL8ENZE</u>	NE	ND	0.005			
2-HEXANONE		ND	0.020			
<b>HEXACHLORO</b>	BUTADIENE	ND	0.005			
ISOPROPYLB	ENZENE	ND	0.005			
<u>4-ISOPROPY</u>	LTOLUENE	ND	0.005			
<u>4-METHYL-2</u>	-PENTANONE (MIBK)	ND	0.020			
METHYL ter	<u>t-BUTYL ETHER (MTBE)</u>	<u>ND</u>	0.005			
METHYLENE	CHLORIDE	ND	0.010			
<u>NAPHTHALEN</u>	E	ND	0.005			
<u>N-PRÓPYLBE</u>	NZÉNÉ	<u>ND</u>	0 <u>.005</u>			
<u>STYRENE</u>		ND	0.005			
<u>1,1,1,2-TE</u>	TRACHLOROETHANE	ND	0.005			
<u>1,1,2,2-TE</u>	TRACHLOROETHANE	<u>ND</u>	0.005			
TETRACHLOR	OETHENE (PCE)	ND	0.005			
TOLUENE		ND	0.005			
<u>1,2,3-TRIC</u>	HLOROBENZENE	ND	0.005			
<u>1,2,4-TRIC</u>	HLOROBENZENE	<u>ND</u>	0.005			
<u>1,1,1-TRIC</u>	HLOROETHANE	ND	0.005			
<u>1,1,2-TRIC</u>	HLOROETHANE	<u>ND</u>	0,005			
TRICHLOROE	THENE (TCE)	ND	0.005			
<u>TRICHLOROF</u>	LUOROMETHANE	ND	0.005			
<u>1,2,3-TRIC</u>	HLOROPROPANE	ND	0.005			
<u>1,2,4-TRIM</u>	IETHY <u>LBENZENE</u>	ND	0.005			
<u>1,3,5-TRIM</u>	ETHYLBENZENE		0.0 <u>0</u> 5			
VINYL CHLC	DRIDE	<u>ND</u>	0.005			
M/P-XYLENE		ND	0.010			
O-XYLENE		<u></u> D <u></u>	0.005			
COMMENTS PQL = PRACTICAL QUANTITATION LIMIT						
ND = NON-D	ETECTED OR BELOW THE	PQL /				

DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

pl

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER :	Kleinfelder	
	620 W. 16th Street, Unit #F	
	Long Beach, CA 90813	
	Tel(562)432-1696 Fax(562)432-1	796
PROJECT: AF	RTIC	
PROJECT No.	: 103567/Env 2	
MATRIX: SOII	2	DATE RECEIVED: <u>09/25/09</u>
DATE SAMPLE	SD: <u>09/25/09</u>	DATE ANALYZED:09/28/09
REPORT TO: N	<u>ír. BERT VOGLER</u>	DATE REPORTED: 10/02/09
SAMPLE I.D.	: W-1-20	LAB I.D.: 090928-207
ANALYSI	S: VOLATILE ORGANICS, EPA METH	HOD 5035/8260B, PAGE 1 OF 2
	UNIT: mg/Kg = MILLIGRAM PE	R KILOGRAM = PPM
PARAMETER	SAMPLE RES	SULT PQL X1

PARAMETER	SAMPLE RESULT	PQL X1	
ACETONE	ND	0.020	
BENZENE	ND	0.005	
BROMOBENZENE	ND	0.005	
BROMOCHLOROMETHANE	ND	0.005	
BROMODICHLOROMETHANE	ND	0.005	
BROMOFORM	ND	0.005	
BROMOMETHANE	ND	0.005	
2-BUTANONE (MEK)	ND	0.020	
<u>N-BUTYLBENZENE</u>	ND	_0.005	
SEC-BUTYLBENZENE	ND	0.005	
TERT-BUTYLBENZÈNÈ	ND	0.005	
CARBON DISULFIDE	ND	0.010	
CARBON TETRACHLORIDE	ND	0.005	
CHLOROBENZENE	ND	0.005	
CHLOROETHANE	ND	0.005	
CHLOROFORM	ND	0.005	
CHLOROMETHANE	_ND	0.005	
2-CHLOROTOLUENE	ND	_0.005	
<u>4 - CHLOROTOLUENE</u>	ND_	0.005	
DIBROMOCHLOROMETHANE	ND	0.005	
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005	
1,2-DIBROMOETHANE	ND	0.005	
DIBROMOMETHANE	ND	0.005	
1,2-DICHLOROBENZENE	ND	0.005	
1,3-DICHLOROBENZENE	ND	0.005	
1,4-DICHLOROBENZENE	ND	0.005	
DICHLORODIFLUOROMETHANE	_ND	0.005	
1,1-DICHLOROETHANE	ND	0.005	
1,2-DICHLOROETHANE	ND	0.005	
1,1-DICHLOROETHENE	ND	0.005	
CIS-1, 2-DICHLOROETHENE	ND	0.005	
TRANS-1,2-DICHLOROETHENE	ND	0.005	
1,2-DICHLOROPROPANE	ND	0.005	

----- TO BE CONTINUED ON PAGE #2 -----

DATA REVIEWED AND APPROVED BY:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Long Beach, CA 90813 Tel(562)432-1696 Fax	Unit #F 3 2 (562) 432-1796	5
PROJECT: ARTIC		
PROJECT No $\cdot$ 103567/Epg 2		
MATRIX-SOIL		
DATE SAMPLED.09/25/09		DATE RECEIVED. $09/20/09$
$\frac{DATE}{DATE} \frac{DATE}{DATE} \frac{DBD}{DBD} $		DATE ANADIZED. 00/20/09
SAMPLE I.D.: W-1-20		LAB I.D.: 090928-207
ANALYSIS: VOLATILE ORGANICS	, EPA METHOD	5035/8260B, PAGE 2 OF 2
UNIT: $mq/Kq = MI$	LLIGRAM PER K	ILOGRAM = PPM
PARAMETER	SAMPLE RESULT	POL X1
1.3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1.1-DICHLOROPROPENE	ND	0.005
CIS-1.3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4 - I SOPROPYLITOLUENE	<u></u>	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1, 1, 1, 2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1, 1, 1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005
COMMENTS PQL = PRACTICAL QUANT	ITATION LIMIT	
ND = NON-DETECTED OR BELOW THE	PQL 1	
DATA REVIEWED AND APPROVED BY:	1XX	
	11	

CAL-DHS CERTIFICATE # 1555

# 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER:	Kleinfelder		
	620 W. 16th Street,	, Unit #F	
	Long Beach, CA 9081	13	
	Tel (562) 432-1696 Fa	ax (562) 432-179	6
PROJECT: A	RTIC		
PROJECT No	: 103567/Env 2		
MATRIX: SOIL	L		DATE RECEIVED:09/25/09
DATE SAMPLI	= ED:09/25/09		DATE ANALYZED: $09/28/09$
REPORT TO:N	Mr. BERT VOGLER		DATE REPORTED: 10/02/09
SAMPLE I.D	.: W-1-30		LAB I.D.: 090928-208
ANALYS	IS: VOLATILE ORGANIO	CS. EPA METHOD	5035/8260B, PAGE 1 OF 2
	UNIT: $mg/Kg = M$	ILLIGRAM PER	KILOGRAM = PPM
PARAMETER		SAMPLE RESUL	T POL X1
ACETONE		ND	0.020
BENZENE		ND	0.005
BROMOBENZEI	NE	NĎ	0.005
BROMOCHLOR	OMETHANE	ND	0.005
BROMODICHL	OROMETHANE	ND	0.005
BROMOFORM		ND	0.005
BROMOMETHAL	NE	ND	0.005
2-BUTANONE	(MEK)	ND	0.020
<u>N-BUTYLBÊN</u>	ZEN <u>E</u>	ND	0.005
SEC-BUTYLB	ENZENE	ND	0_005
TERT-BUTYL	BENZENE	ND	0.005
CARBON DIS	ULFIDE	ND	0.010
CARBON TET	RACHLORIDE	<u>ND</u>	0.005
CHLOROBENZ	ENE	ND	0.005
<u>CHLOROETHA</u>	<u>NE</u>	ND	0.005
<u>CHLOROFORM</u>		ND	0.005
<u>CHLOROMETH</u>	ANE	<u>ND</u>	0.005
<u>2 - CHLOROTO</u>	LUENE	ND	0.005
<u>4 - CHLOROTO</u>	LUENE	ND	0.005
<u>DIBROMOCHL</u>	OROMETHANE	<u>ND</u>	0.005
<u>1,2-DIBROM</u>	0-3-CHLOROPROPANE	ND	0.005
<u>1,2-DIBROM</u>	<u>OETHANE</u>	ND	0.005
DIBROMOMET	HANE	ND	0.005
<u>1,2-DICHLO</u>	<u>ROBENZENE</u>	ND	0.005
<u>1,3-DICHLO</u>	ROBENZENÉ	<u>ND</u>	0.005
<u>1,4-DICHLO</u>	ROBENZE <u>NE</u>	ND	0.005
<u>DICHLORODI</u>	FLUOROMETHANE	<u>ND</u>	0.005
<u>1,1-DICHLO</u>	ROETHANE	<u>ND</u>	0.005
<u>1,2-DICHLO</u>	ROETHANE	ND	0.005
<u>1,1-DICHLO</u>	ROETHENE	ND	0.005
<u>CIS-1,2-DI</u>	CHLOROETHENE	ND	0.005
<u>TRANS-1,2-</u>	DICHLOROETHENE	NĎ	0.005
<u>1,2-DICHLO</u>	ROPROPANE	<u>ND</u>	0.005

---- TO BE CONTINUED ON PAGE #2 -----

DATA REVIEWED AND APPROVED BY:__

# 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER :	Kleinfelder		
	620 W. 16th Street,	Unit #F	
	Long Beach, CA 90813	}	
	Tel (562) 432-1696 Fax	(562) 432-179	96
PROJECT: A	RTIC		
PROJECT No	.: 103567/Env 2		
MATRIX: SOI	Б		DATE RECEIVED:09/25/09
DATE SAMPL			DATE ANALYZED: $09/28/09$
REPORT TO:	Mr. BERT VOGLER		DATE REPORTED: $10/02/09$
SAMPLE I.D	.: W-1-30		LAB I.D.: $090928-208$
ANALYS	IS: VOLATILE ORGANICS	. EPA METHON	D 5035/8260B, PAGE 2 OF 2
	UNIT: mg/Kg = MI	LLIGRAM PER	KILOGRAM = PPM
PARAMETER		SAMPLE RESUL	LT POL X1
1.3-DICHLO	ROPROPANE	מא	0,005
2.2-DICHLO	ROPROPANE	ND	0,005
1.1-DICHLO	ROPROPENE	ND	0.005
CIS-1.3-DI	CHLOROPROPENE	ND	0.005
TRANS-1.3-1	DICHLOROPROPENE		0.005
ETHYLBENZE	NE	ND	0.005
2-HEXANONE		ND	0,020
HEXACHLORO	BUTADIENE	ND	0.005
ISOPROPYLB	ENZENE	ND	0.005
4 - ISOPROPY	LTOLUENE	ND	0.005
4-METHYL-2	-PENTANONE (MIBK)	ND	0.020
METHYL ter	t-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE	CHLORIDE	ND	0.010
NAPHTHALEN	E	ND	0.005
N-PROPYLBE	NZENE	ND	0,005
STYRENE			0.005
1,1,1, <u>2-TE</u>	TRACHLOROETHANE	ND	0.005
1,1,2,2-TE	TRACHLOROET <u>HANE</u>	ND	0.005
TETRACHLOR	OETHENE (PCE)	ND	0.005
TOLUENE		ND	0.005
1,2,3-TRIC	HLOROBENZENE	ND	0,005
<u>1,2,4-TRIC</u>	HLOROBENZENE	ND	0.005
1,1,1-TRIC	HLOROETHANE	ND	0.005
<u>1,1,2-TRIC</u>	HLOROETHANE	ND	0.005
TRICHLOROE	THENE (TCE)	ND	0.005
TRICHLOROF	LUOROMETHANE	ND	0.005
<u>1,2,3-TRIC</u>	HLOROPROPANE	ND	0.005
<u>1,2,4-TRIM</u>	ETHYLBENZENE	ND	0.005
1,3,5-TRIM	ETHYLBENZENE	ND	0.0 <u>05</u>
VINYL CHLO	RIDE	ND	0.005
M/P-XYLENE		ND	0.010
O-XYLENE		ND	0.005
COMMENTS D	OL - PRACTICAL OUANT	TTATION LINT	TT

COMMENTS PQL PRACTICAL QUANTI ነገለተገ TALL

ND = NON-DETECTED OR BELOW THE PQL N

DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER:	Kleinfelder		
	620 W. 16th Street	, Unit #F	
	Long Beach, CA 908	13	
	Tel (562) 432-1696 F	$\frac{-7}{3}$ (562) 432 - 1796	
PROJECT: A	RTIC	AR (002) 402 2700	
PROJECT No	.: 103567/Env 2		
MATRIX	Τ.	Т	DATE RECEIVED-09/25/09
DATE SAMPL	₩ £D·09/25/09	I	DATE ANALYZED $09/28/09$
REPORT TO	Mr BERT VOGLER	Ĩ	DATE REPORTED $10/02/09$
SAMPLE T D	W = 1 - 40	1	LAB T D + 090928-209
ANALYS	TS: VOLATILE ORGANI	CS. EPA METHOD	5035/8260B, PAGE 1 OF 2
	INTT: $ma/Ka = M$	ITLITORAM DER KI	FLOGRAM = PPM
PARAMETER		SAMPLE RESILT	POI, X1
ACETONE			0 020
BENZENE			0.005
BROMOBENZE	`NF		0.005
BROMOCHLOR	OMETHANE		0.005
BROMODICHI	OROMETHANE		0.005
BRÓMORÓPM			0.005
BROMOMETHA		ND	0.005
	2 (MEK)		
N-BUTYLERN			0.005
SEC-BUTYLE	PN7ENE		0.005
TEPT-BUTY	BENZENE		0.005
CARBON DIS			0.000
CARBON TET	PACHLOPIDE		0.005
CHLOROBENZ	ENE		0.005
CHLOROFTHE	NF		0.005
CHLOROFORM	1 1		0.005
CHLOROMETH	HANE		0.005
2-CHLOROTO	ULIENE	ND	0.005
4 - CHLOROTO	ULUENE		0.005
1.2-DIBRON	10-3-CHLOROPROPANE		0.005
1, 2 - DIBRON	AOETHANE		0.005
DIBROMOME			0,005
1.2-DICHLO	DROBENZENE		0.005
1.3-DICHL	ROBENZENE		0.005
1.4 - DICHLO	ROBENZENE		0.005
DICHLOROD	FLUOROMETHANE	ND	0.005
1 1-DICHL	DROETHANE		0.005
1.2-DICHLO	DROETHANE		0.005
1.1-DICHL	DROETHENE	ND	0,005
CIS-1.2-D	ICHLOROETHENE		0.005
$\frac{0.00}{\text{TRANS}-1}$	-DICHLOROETHENE		0.005
1.2-DICHL	DROPROPANE	ND	0.005

----- TO BE CONTINUED ON PAGE #2 -----

DATA REVIEWED AND APPROVED BY:_

# 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER :	Kleinfelder		
	620 W. 16th Street,	Unit #F	
	Long Beach, CA 9081	3	
	Tel(562)432-1696 Fa:	x (562) 432-1796	
PROJECT: A	RTIC		
PROJECT No	.: 103567/Env 2		
MATRIX: SOI		DA	TE RECEIVED: 09/25/09
DATE SAMPL	ED: <u>09/25/09</u>	DA	TE ANALYZED: 09/28/09
REPORT TO:	Mr. BERT VOGLER	DA	TE REPORTED: <u>10/02/09</u>
SAMPLE I.D	.: <b>W-1-40</b>	LA	AB I.D.: 090928-209
ANALYS	IS: VOLATILE ORGANIC	S, EPA METHOD 50	035/8260B, PAGE 2 OF 2
	UNIT: mg/Kg = MI	LLIGRAM PER KIL	OGRAM = PPM
PARAMETER		SAMPLE RESULT	PQL X1
1,3-DICHLO	ROPROPANE	ND	0.005
2,2-DICHLO	ROPROPANE	ND	0.005
1,1-DICHLO	ROPROPENE	ND	0.005
CIS-1,3-DI	CHLOROPROPENE	ND	0.005
TRANS-1,3-	DICHLOROPROPENE	ND	0.005
ETHYLBENZE	NE	ND	0.005
2-HEXANONE		ND	0.020
<b>HEXACHLORO</b>	BUTADIENE	ND	0.005
ISOPROPYLB	ENZENE	ND	0.005
4-ISOPROPY	LTOLUENE	ND	0.005
4-METHYL-2	-PENTANONE (MIBK)	ND	0.020
METHYL ter	t-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE	CHLORIDE	ND	0.010
NAPHTHALEN	E	ND	0.005
N-PROPYLBE	NZENE	ND	0.005
STYRENE		ND	0.005
<u>1,1,1,2-TE</u>	TRACHLOROETHANE	ND	0.005
<u>1,1,2,2-TE</u>	TRACHLOROETHANE	NĎ	0.005
TETRACHLOR	OETHENE (PCE)	ND	0.005
TOLUENE		ND	0.005
1,2,3-TRIC	CHLOROBENZENE	ND	0.005
1,2,4-TRIC	CHLOROBENZENE	ND	0.005
1,1,1-TRIC	HLOROETHANE	ND	0.005
1,1,2-TRIC	HLOROETHANE	ND	0.005
TRICHLOROE	THENE (TCE)	ND	0.005
TRICHLOROF	LUOROMETHANE	ND	0.005
1,2,3-TRIC	CHLOROPROPANE	ND	0.005
<u>1,2,4-TRIM</u>	IETHYLBENZENE	ND	0.005
<u>1,3,5-TRIM</u>	<u>IETHYLBENZENE</u>	ND	0.005
VINYL CHLC	DRIDE	ND	0.005
M/P-XYLÈNE	S	ND	0.010
O-XYLENE		NĎ	0.005
COMMENTS F	PQL = PRACTICAL QUANT	TITATION LIMIT	
ND - NON-D	DETECTED OF BELOW THE	POL A	

ND = NON-DETECTED OR BELOW THE

DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit	#F
Long Beach, CA 90813	
Tel(562)432-1696 Fax(562)	432-1796
PROJECT: ARTIC	
PROJECT No.: 103567/Env 2	
MATRIX: SOIL	DATE RECEIVED: <u>09/25/09</u>
DATE SAMPLED: <u>09/25/09</u>	DATE ANALYZED: <u>09/28/09</u>
REPORT TO: Mr. BERT VOGLER	DATE REPORTED: 10/02/09
SAMPLE I.D.: W-1-50	LAB I.D.: 090928-210
ANALYSIS: VOLATILE ORGANICS, EPA	METHOD 5035/8260B, PAGE 1 OF 2
UNIT: mg/Kg = MILLIGRE	AM PER KILOGRAM = PPM
PARAMETER SAMPI	E RESULT PQL X1
ACETONE	ND 0.020
BENZENE	ND 0.005
BROMOBENZENE	ND 0.005
BROMOCHLOROMETHANE	ND0.005
BROMODICHLOROMETHANE	ND 0.005
BROMOFORM	ND0.005
BROMOMETHANE	ND 0.005
<u>2-BUTANONE (MEK)</u>	ND 0.020
<u>N-BUTYLBENZÉNÉ</u>	ND 0.005
SEC-BUTYLBENZENE	<u>ND 0.005</u>
TERT-BUTYLBENZENE	ND 0.005
CARBON DISULFIDE	<u>ND</u> 0.010
CARBON TETRACHLORIDE	ND 0.005
CHLOROBENZENE	<u>ND 0.005</u>
CHLOROETHANE	ND 0.005
CHLOROFORM	<u>ND0.005</u>
CHLOROMETHANE	ND 0.005
2-CHLOROTOLUENE	ND 0.005
4-CHLOROTOLUENE	ND0.005
DIBROMOCHLOROMETHANE	<u>ND0.005</u>
1,2-DIBROMO-3-CHLOROPROPANE	ND 0.005
1,2-DIBROMOETHANE	ND 0.005
DIBROMOMETHANE	<u>ND</u> 0.005
1,2-DICHLOROBENZENE	ND 0.005
1,3-DICHLOROBENZENE	ND 0.005
<u>1,4-DICHLOROBENZENE</u>	ND 0.005
DICHLORODIFLUOROMETHANE	ND 0.005
1,1-DICHLOROETHANE	ND 0.005
1,2-DICHLOROETHANE	<u>ND0.005</u>
1,1-DICHLOROETHENE	ND 0.005
CIS-1,2-DICHLOROETHENE	ND 0.005
TRANS-1,2-DICHLOROETHENE	<u>ND0.005</u>
1,2-DICHLOROPROPANE	ND 0.005

---- TO BE CONTINUED ON PAGE #2 -----

DATA REVIEWED AND APPROVED BY:_

# 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER: Kleinfelder	
620 W. 16th Street, Unit #F	
Long Beach, CA 90813	
Tel (562) 432-1696 Fax (562) 43	2-1796
PROJECT: ARTIC	
PROJECT No.: 103567/Env 2	
MATRIX: SOIL	DATE RECEIVED:09/25/09
DATE SAMPLED:09/25/09	DATE ANALYZED: $09/28/09$
REPORT TO:Mr. BERT VOGLER	DATE REPORTED: $10/02/09$
SAMPLE T.D. $W-1-50$	LAB T D + 090928-210
ANALYSTS: VOLATILE ORGANICS EPA M	ETHOD 5035/8260B PAGE 2 OF 2
UNIT: ma/Ka = MILLIGRAM	PER KILOGRAM = PPM
PARAMETER SAMPLE	PESULT POL X1
2 2 DICHLOROPROPANE NE	0.005
	0.005
	0.005
	0.005
	0,005
	0.003
	0.020
	0.005
	0.005
4-ISOPROPILIOLOBNE NI A METUVI O DENTRNONE (MIDK) NI	0.005
4-METHIL-Z-PENIANONE (MIBK)     NL       METUVI Fort DUTVI PTURD (MTDR)     NL	0.020
METAID CELC-DUILD BINDK (MIDE) NI	0.005
	0.005
	0.005
	0.005
	0.005
$\frac{1}{1} \frac{1}{2} \frac{1}$	0.005
	0.005
TOLUENE (FCE) NE	0.005
	0.005
	0.005
1 1 1 - TRICHLOPOFTHANE NI	0.005
	0.005
	0.005
	0.005
	0.005
	0.005
	0.005
	0 005
	0.005 0.010
	0.010

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL

DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# METHOD BLANK REPORT

620 W. 16th Street, Unit #F           Long Beach, CA 90813           Tel (562) 432-1696 Fax (562) 432-1796           PROJECT: ARTIC           PROJECT NO.: 103567/Env 2           MATRIX.SOIL         DATE RECEIVED:09/25/09           DATE SAMPLED:09/25/09         DATE REPORTED:10/02/02           REPORT TO: Mr. BERT VOGLER         DATE REPORTED:10/02/02           METHOD BLANK FOR LAB I.D.: 090928-204 THROUGH -210           NAALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2           UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM           PARAMETER         SAMPLE RESULT         PQL X1           ACETONE         ND         0.020           BENZENE         ND         0.005           BROMODICHLOROMETHANE         ND         0.005           CHANNE (MEK)         ND         0.005           SEC-BUTYLBENZENE         ND         0.005           CHAROND TETRACHLORIDE         ND         0.005      <	CUSTOMER:	Kleinfelder		
Long Beach, CA 90813 Tel (562) 432-1696 Fax (562) 432-1796 PROJECT NO.: 103567/Env 2 MATRIX:SOIL DATE RECEIVED:09/25/09 DATE ANALY2ED:09/28/09 REPORT TO:ML. BERT VOCLER METHOD BLANK FOR LAB I.D.: 090928-204 THROUGH -210 ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM PARAMETER SAMPLE RESULT PQL X1 ACETONE ND 0.020 ERMORDER/ZENE ND 0.020 BROMOREN/ZENE ND 0.005 BROMOREN/ZENE ND 0.005 BROMORORM ND 0.005 BROMORORM ND 0.005 SEC-BUTYLBENZENE ND 0.005 SEC-BUTYLBENZENE ND 0.005 SEC-BUTYLBENZENE ND 0.005 CHLOROBETHANE ND 0.005 SEC-BUTYLBENZENE ND 0.005 CHLOROBETHANE ND 0.005 CHLOROBENZENE ND 0.005 CHLOROBENZENE ND 0.005 CHLOROBETHANE ND 0.005 CHLOROBENZENE ND 0.005 CHLOROBENZENE ND 0.005 CHLOROBENZENE ND 0.005 CHLOROBETHANE ND 0.005 CHLOROBENZENE ND 0.005		620 W. 16th Street,	Unit #F	
Tel (562) 432-1696 Fax (562) 432-1796           PROJECT: No.: 103567/Env 2           MATRIX:SQIL         DATE RECEIVED:09/25/09           DATE SAMPLED:09/25/09         DATE NAALYZED:09/28/09           REPORT TO:MX. BERT VOGLER         DATE REPORTED:10/02/09           METHOD BLANK FOR LAB I.D.: 090928-204 THROUGH -210           ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2           UNIT: mg/Kg = MILLIGRAM PER KLIOGRAM = PPM           PARAMETER         SAMPLE RESULT         PQL X1           ACETONE         ND         0.005           BROMORENZENE         ND         0.005           BROMOCHLOROMETHANE         ND         0.005           BROMOCHLOROMETHANE         ND         0.005           BROMOCHLOROMETHANE         ND         0.005           BROMONICHLERNEE         ND         0.005           BROMONICHLERNEE         ND         0.005           SEC-BUTYLEENZENE         ND         0.005           SEC-BUTYLEENZENE         ND         0.005           CARBON TETRACHLORIDE         ND         0.005           CARBON TETRACHLORIDE         ND         0.005           CHARON DISULFIDE         ND         0.005           CHLORORENZENE         ND         0.005 </td <td></td> <td>Long Beach, CA 9081</td> <td>L3</td> <td></td>		Long Beach, CA 9081	L3	
PROJECT: NO.: 103567/Env 2         MATRIX:SOIL       DATE RECEIVED:09/25/09         DATE SAMPLED:09/25/09       DATE RANLYZED:09/28/09         REPORT TO:MT BERT VOGLER       DATE REPORTED:10/02/09         METHOD BLANK FOR LAB I.D.: 090928-204 THROUGH -210         ANALYSE: VOLATILE ORGANICS, EPA METHOD 5035/82608, PAGE 1 OF 2         UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM         PARAMETER         ND         0.005         BROMOENZENE         ND         0.005         BROMOENZENE         ND         0.005         BROMOENZENE         ND         0.005         BROMOENZENE         ND         0.005         BROMOFORM         ND         BROMOFORM         ND         O.005         BROMOFORM         ND         CULYLENZENE         ND         O.005         EC-BUTYLENZENE         ND		Tel(562)432-1696 Fa	ax (562) 432-1796	
PROJECT No.: 103567/Env 2         MATRIX:SOIL       DATE SCHUED:09/25/09         DATE SAMPLED:09/25/09       DATE ANALYZED:09/26/09         REPORT TO:Mr. BERT VOGLER       DATE REPORTED:10/02/09         METHOD BLANK FOR LAB I.D.: 090928-204 THROUGH -210         METHOD BLANK FOR LAB I.D.: 090928-204 THROUGH -210         MATE REPORTED:10/02/09         METHOD BLANK FOR LAB I.D.: 090928-204 THROUGH -210         MATE SAMPLE RESULT POL X1         ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2         UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM         PARAMETER         SAMPLE RESULT POL X1         ACTIONE         ND         0.005         BROMOCHLOROMETHANE         ND         0.005         BROMOCHLOROMETHANE         ND         0.005         EROMONETHANE         ND         0.005         EROMONETHANE         ND         0.005         EROMONETHANE         ND         CHUYLBENZENE	PROJECT: A	RTIC		
MATRIX:     DATE     RECEIVED:09/25/09       DATE     SAMPLED:09/25/09     DATE     ANALYZED:09/28/09       REPORT TO:ML.     DERT     NALYZED:09/28/09       METHOD BLANK FOR LAB I.D.:     090928-204     THROUGH -210       ANALYZED:09/28/09       METHOD BLANK FOR LAB I.D.:     090928-204     THROUGH -210       ANALYZED: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2       UNIT:     mg/Kg = MILLIGRAM PER KILOGRAM = PPM       PARAMETER     SAMPLE RESULT     PQL X1       ACETONE     ND     0.005       BROMODENZENE     ND     0.005       BROMODICHLOROMETHANE     ND     0.005       BROMODICHLOROMETHANE     ND     0.005       BROMOPORM     ND     0.005       BROMOPORM     ND     0.005       BROMOPORM     ND     0.005       BROMOPORM     ND     0.005       CARBON DISULFIDE     ND     0.005       CARBON TETRACHLORIDE     ND     0.005       CARBON TETRACHLORIDE     ND     0.005       CHLOROBENZENE     ND     0.005       CHLOROBENZENE     ND     0.005       CHLOROBENZENE     ND     0.005       CHLOROFTHANE     ND     0.005       CHLOROFTHANE <td>PROJECT No.</td> <td>.: 103567/Env 2</td> <td></td> <td></td>	PROJECT No.	.: 103567/Env 2		
DATE SAMPLED:09/25/09         DATE ANALYZED:09/28/09           REPORT TO:ML. BERT VOGLER         DATE REPORTED:10/02/09           METHOD BLANK FOR LAB I.D.: 090928-204 THROUGH -210           ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2           UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM           PARAMETER         SAMPLE RESULT         PQL X1           ACETONE         ND         0.005           BRMOCHLOROMETHANE         ND         0.005           BROMOBENZENE         ND         0.005           BROMOCHLOROMETHANE         ND         0.005           BROMOCHLOROMETHANE         ND         0.005           BROMOCHLOROMETHANE         ND         0.005           BROMODICHLOROMETHANE         ND         0.005           BROMODICHLOROMETHANE         ND         0.005           SECOLOROME MARE         ND         0.005           SECOLOROME MARE         ND         0.005           SECOLOROME MARE         ND         0.005           CARBON DISULFIDE         ND         0.005           CARBON TETRACHLORIDE         ND         0.005           CHLOROBENZENE         ND         0.005           CHLOROBENZENE         ND         0.005           CHLOROBENZENE	MATRIX: SOID	ն	DATE	RECEIVED:09/25/09
REPORT TO: Mr. BERT VOGLER     DATE REPORTED: 10/02/09       METHOD BLANK FOR LAB I.D.: 090928-204 THROUGH -210       ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2       UNIT: mg/Kg = MILLIGRAM FER KILOGRAM = PPM       PARAMETER     ND       ACETONE     ND       BEMOZENE     ND       BEMOMOBRIZENE     ND       BROMOBRIZENE     ND       BROMOBRIZENE     ND       BROMOBRIZENE     ND       BROMODICHLOROMETHANE     ND       BROMODICHLOROMETHANE     ND       BROMODICHLOROMETHANE     ND       BROMODICHLOROMETHANE     ND       BROMODICHLOROMETHANE     ND       DO     0.005       BROMODICHLOROMETHANE     ND       BROMODICHLOROMETHANE     ND       BROMODICHLOROMETHANE     ND       BROMODICHLOROMETHANE     ND       BROMODICHLOROMETHANE     ND       CARBON DISULFIDE     ND       OLODS     SEC-BUTYLBENZENE       ND     0.005       CARBON TETRACHLORIDE     ND       ND     0.005       CHLOROETHANE     ND       OLODOS     CHLOROETHANE       ND     0.005       CHLOROETHANE     ND       OLODOS     CHLOROETHANE       ND     0.005 </td <td>DATE SAMPLI</td> <td></td> <td>DATE</td> <td>ANALYZED: 09/28/09</td>	DATE SAMPLI		DATE	ANALYZED: 09/28/09
METHOD BLANK FOR LAB I.D.: 090928-204 THROUGH -210         ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM         PARAMETER       SAMPLE RESULT       PQL X1         ACETONE       ND       0.020         BENZENE       ND       0.005         BROMODEMZENE       ND       0.005         BROMOCHLOROMETHANE       ND       0.005         BROMOFICHNE       ND       0.005         BROMOFICHLOROMETHANE       ND       0.005         SEC-BUTYLBENZENE       ND       0.005         SEC-BUTYLBENZENE       ND       0.005         CARBON DISULFIDE       ND       0.005         CHLOROBENZENE       ND       0.005         CHLOROP	REPORT TO:	Mr. BERT VOGLER	DATE	REPORTED: <u>10/02/09</u>
ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM         PARAMETER       SAMPLE RESULT       PQL X1         ACETONE       ND       0.020         BENZENE       ND       0.005         BROMOBENZENE       ND       0.005         BROMODENZENE       ND       0.005         BROMOCHLOROMETHANE       ND       0.005         BROMOCHLOROMETHANE       ND       0.005         BROMODICHLOROMETHANE       ND       0.005         SEC-BUTYLBENZENE       ND       0.005         CARBON DISULFIDE       ND       0.005         CARBON TETRACHLORIDE       ND       0.005         CHLOROBENZENE       ND       0.005         CHLOROFENANE       ND       0.005         CHLOROFENANE       ND       0.005         CHLOROFENANE       ND       0.005         CHLOROFENANE       ND       0.005		METHOD BLANK FOR LA	B I.D.: 090928-204	THROUGH -210
ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM           PARAMETER         SAMPLE RESULT         PQL X1           ACETONE         ND         0.020           EENZENE         ND         0.005           BROMOBENZENE         ND         0.005           BROMODENCHLOROMETHANE         ND         0.005           BROMOFLARME         ND         0.005           BROMOFICHLOROMETHANE         ND         0.005           BROMOFORM         ND         0.005           BROMOFORM         ND         0.005           SECOMMETHANE         ND         0.005           2-BUTANONE (MEK)         ND         0.005           2-BUTYLBENZENE         ND         0.005           CARBON DISULFIDE         ND         0.005           CARBON DISULFIDE         ND         0.005           CHLOROFETHANE         ND         0.005           CHLOROFETHANE         ND         0.005           CHLOROFETHANE         ND         0.005           CARBON DISULFIDE         ND         0.005           CHLOROFENE         ND         0.005           CHLOROFENE         ND         0.005           CHLOROFENANE </td <td></td> <td></td> <td></td> <td></td>				
UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM           PARAMETER         SAMPLE RESULT         PQL X1           ACETONE         ND         0.020           BENZENE         ND         0.005           BROMODENZENE         ND         0.005           BROMOCHLOROMETHANE         ND         0.005           BROMOFORM         ND         0.005           BROMOFORM         ND         0.005           BROMOFORM         ND         0.005           BROMOFORM         ND         0.005           SECMOMETHANE         ND         0.005           SCANDANCH         MEX)         ND         0.005           SECMOMETHANE         ND         0.005         0.005           SEC-BUTYLBENZENE         ND         0.005         0.005           SEC-BUTYLBENZENE         ND         0.005         0.005           CARBON TETRACHLORIDE         ND         0.005         0.005           CHLOROBENZENE         ND         0.005         0.005           CHLOROBENZENE         ND         0.005         0.005           CHLOROBENZENE         ND         0.005         0.005           CHLOROBENZENE         ND         0.005         0.005	ANALYS	IS: VOLATILE ORGANI	CS, EPA METHOD 5035	/8260B, PAGE 1 OF 2
PARAMETER         SAMPLE RESULT         PQL X1           ACETONE         ND         0.020           BENZENE         ND         0.005           BROMOBENZENE         ND         0.005           BROMOCHLOROMETHANE         ND         0.005           BROMOPICHLOROMETHANE         ND         0.005           BROMOPORM         ND         0.005           BROMOPORM         ND         0.005           BROMOPORM         ND         0.005           SEC-BUTYLBENZENE         ND         0.005           SEC-BUTYLBENZENE         ND         0.005           TERT-BUTYLBENZENE         ND         0.005           CARBON DISULFIDE         ND         0.005           CARBON TETRACHLORIDE         ND         0.005           CHLOROBENZENE         ND         0.005           CHLOROBENZENE         ND         0.005           CHLOROFORM         ND         0.005		UNIT: $mg/Kg = M$	ILLIGRAM PER KILOGE	AM = PPM
ACETONE         ND         0.020           EENZENE         ND         0.005           BROMOBENZENE         ND         0.005           BROMOCHLOROMETHANE         ND         0.005           BROMODICHLOROMETHANE         ND         0.005           BROMOFORM         ND         0.005           BROMOFORM         ND         0.005           BROMOFENAME         ND         0.005           2-BUTANONE (MEK)         ND         0.005           SEC-BUTYLBENZENE         ND         0.005           SEC-BUTYLBENZENE         ND         0.005           CARBON DISULFIDE         ND         0.005           CARBON TETRACHLORIDE         ND         0.005           CHLOROFENZENE         ND         0.005           CHLOROFORM         ND         0.005	PARAMETER		SAMPLE RESULT	PQL X1
BENZENE         ND         0,005           BROMOCHLOROMETHANE         ND         0.005           BROMOCHLOROMETHANE         ND         0.005           BROMOCICHLOROMETHANE         ND         0.005           BROMOFORM         ND         0.005           BROMOFORM         ND         0.005           BROMOFORM         ND         0.005           BROMOMETHANE         ND         0.005           2-BUTANONE (MEK)         ND         0.005           SEC-BUTYLBENZENE         ND         0.005           SEC-BUTYLBENZENE         ND         0.005           CARBON TETRACHLORIDE         ND         0.005           CHLOROBENZENE         ND         0.005           CHLOROBENZENE         ND         0.005           CHLOROBENZENE         ND         0.005           CHLOROBENZENE         ND         0.005           CHLOROFORM         ND         0.005           CHLOROFORM         ND         0.005           CHLOROFORM         ND         0.005           CHLOROTOLUENE         ND         0.005           JBROMOCHLOROMETHANE         ND         0.005           JBROMOCHLOROBENZENE         ND         0.	ACETONE		ND	0.020
BROMOBENZENE         ND         0.005           BROMOCHLOROMETHANE         ND         0.005           BROMODICHLOROMETHANE         ND         0.005           BROMOPORM         ND         0.005           BROMOPORM         ND         0.005           BROMOMETHANE         ND         0.005           2-BUTANONE (MEK)         ND         0.005           2-BUTYLBENZENE         ND         0.005           SEC-BUTYLBENZENE         ND         0.005           SEC-BUTYLBENZENE         ND         0.005           CARBON DISULFIDE         ND         0.005           CARBON TETRACHLORIDE         ND         0.005           CHLOROBENZENE         ND         0.005           CHLOROFRM         ND         0.005           CHLOROFRM         ND         0.005           CHLOROTOLUENE         ND         0.005           2-CHLOROTOLUENE         ND         0.005           1.2-DIBROMOETHANE         ND         0.005           1.2-DIBROMOETHANE         ND         0.005           1.2-DIBROMOETHANE         ND         0.005           1.2-DIBROMOETHANE         ND         0.005           1.2-DICHLOROBENZENE         N	BENZENE		ND	0 <u>.005</u>
BROMOCHLOROMETHANE         ND         0.005           BROMODICHLOROMETHANE         ND         0.005           BROMOFORM         ND         0.005           BROMOFORM         ND         0.005           2-BUTANONE (MEK)         ND         0.005           2-BUTXLEENZENE         ND         0.005           SEC-BUTYLBENZENE         ND         0.005           SEC-BUTYLBENZENE         ND         0.005           CARBON DISULFIDE         ND         0.005           CARBON TETRACHLORIDE         ND         0.005           CHLOROBENZENE         ND         0.005           CHLOROFTHANE         ND         0.005           CHLOROFTHANE         ND         0.005           CHLOROFORM         ND         0.005           CHLOROFORM         ND         0.005           CHLOROTOLUENE         ND         0.005           2-CHLOROTOLUENE         ND         0.005           1, 2-DIBROMOCHLOROMETHANE         ND         0.005           1, 2-DIBROMOCHANE         ND         0.005           1, 2-DICHLOROBENZENE         ND         0.005           1, 2-DICHLOROBENZENE         ND         0.005           1, 3-DICHLOROBENZENE </td <td>BROMOBENZE</td> <td>NE</td> <td>ND</td> <td>0.005</td>	BROMOBENZE	NE	ND	0.005
BROMODICHLOROMETHANE         ND         0.005           BROMOFORM         ND         0.005           BROMOMETHANE         ND         0.005           2-BUTANONE (MEK)         ND         0.005           SEC-BUTYLBENZENE         ND         0.005           SEC-BUTYLBENZENE         ND         0.005           CARBON DISULFIDE         ND         0.005           CARBON TETRACHLORIDE         ND         0.005           CHLOROBENZENE         ND         0.005           CHLOROFORM         ND         0.005           CHLOROTOLUENE         ND         0.005           2-CHLOROTOLUENE         ND         0.005           1, 2-DIBROMOCHLOROMETHANE         ND         0.005           1, 2-DIBROMOCHLOROMETHANE         ND         0.005           1, 2-DICHLOROBENZENE         ND         0.005           1, 2-DICHLOROBENZEN	BROMOCHLOR	OMETHANE	ND	0.005
BROMOFORM         ND         0.005           BROMOMETHANE         ND         0.005           2-BUTANONE (MEK)         ND         0.005           2-BUTANONE (MEK)         ND         0.020           N-BUTYLBENZENE         ND         0.005           SEC-BUTYLBENZENE         ND         0.005           CARBON DISULFIDE         ND         0.005           CARBON TETRACHLORIDE         ND         0.005           CHLOROBENZENE         ND         0.005           CHLOROBENZENE         ND         0.005           CHLOROBENZENE         ND         0.005           CHLOROBENZENE         ND         0.005           CHLOROPORM         ND         0.005           CHLOROFORM         ND         0.005           CHLOROPONM         ND         0.005           CHLOROTOLUENE         ND         0.005           1.2-DIBROMOCHLOROMETHANE         ND         0.005           1.2-DIBROMOSICHANE         ND         0.005           1.2-DIBROMOSICHANE         ND         0.005           1.2-DICHLOROBENZENE         ND         0.005           1.2-DIBROMOCHANE         ND         0.005           1.2-DICHLOROBENZENE         <	BROMODICHL	OROMETHANE	ND	0.005
BROMOMETHANE         ND         0.005           2-BUTANONE (MEK)         ND         0.020           N-BUTYLBENZENE         ND         0.005           SEC-BUTYLBENZENE         ND         0.005           TERT-BUTYLBENZENE         ND         0.005           CARBON DISULFIDE         ND         0.005           CARBON TETRACHLORIDE         ND         0.005           CHLOROBENZENE         ND         0.005           CHLOROFORM         ND         0.005           CHLOROFORM         ND         0.005           CHLOROFORM         ND         0.005           CHLOROTOLUENE         ND         0.005           1.2-CHLOROTOLUENE         ND         0.005           JIBROMOCHLOROMETHANE         ND         0.005           JI.2-DIBROMOETHANE         ND         0.005           JI.2-DIBROMOETHANE         ND         0.005           JI.2-DIGNOOSENZENE         ND         0.005           J.3-DICHLOROBENZENE	BROMOFORM		ND	0.005
2-BUTANONE (MEK)         ND         0.020           N-BUTYLBENZENE         ND         0.005           SEC-BUTYLBENZENE         ND         0.005           CARBON DISULFIDE         ND         0.005           CARBON TETRACHLORIDE         ND         0.005           CARBON TETRACHLORIDE         ND         0.005           CHLOROBENZENE         ND         0.005           CHLOROBENZENE         ND         0.005           CHLOROFORM         ND         0.005           CHLOROFORM         ND         0.005           CHLOROFORM         ND         0.005           CHLOROTOLUENE         ND         0.005           2-CHLOROTOLUENE         ND         0.005           2-CHLOROTOLUENE         ND         0.005           1.2-DIBROMOCHLOROMETHANE         ND         0.005           1.2-DIBROMOETHANE         ND         0.005           1.2-DICHLOROBENZENE         ND         0.005           1.2-DICHLOROBENZENE         ND         0.005           1.3-DICHLOROBENZENE         ND         0.005           1.4-DICHLOROBENZENE         ND         0.005           1.4-DICHLOROBENZENE         ND         0.005           1.4-DI	BROMOMETHA	NE	ND	0.005
NBUTYLBENZENE         ND         0.005           SEC-BUTYLBENZENE         ND         0.005           TERT-BUTYLBENZENE         ND         0.005           CARBON DISULFIDE         ND         0.010           CARBON TETRACHLORIDE         ND         0.005           CHLOROBENZENE         ND         0.005           CHLOROETHANE         ND         0.005           CHLOROFORM         ND         0.005           CHLOROFORM         ND         0.005           CHLOROTOLUENE         ND         0.005           2-CHLOROTOLUENE         ND         0.005           1, 2-DIBROMOCHLOROMETHANE         ND         0.005           1, 2-DIBROMO- 3 - CHLOROPROPANE         ND         0.005           1, 2-DIBROMOETHANE         ND         0.005           1, 2-DIBROMOETHANE         ND         0.005           1, 2-DICHLOROBENZENE         ND         0.005           1, 3-DICHLOROBENZENE         ND         0.005           1, 4-DICHLOROBENZENE         ND         0.005           1, 4-DICHLOROBENZENE         ND         0.005           1, 1-DICHLOROBENZENE         ND         0.005           1, 1-DICHLOROETHANE         ND         0.005 <td>2-BUTANONE</td> <td>(MEK)</td> <td>ND</td> <td>0.020</td>	2-BUTANONE	(MEK)	ND	0.020
SEC-BUTYLBENZENE         ND         0.005           TERT-BUTYLBENZENE         ND         0.005           CARBON DISULFIDE         ND         0.010           CARBON TETRACHLORIDE         ND         0.005           CHLOROBENZENE         ND         0.005           CHLOROFTHANE         ND         0.005           CHLOROFORM         ND         0.005           CHLOROFORM         ND         0.005           CHLOROTOLUENE         ND         0.005           2-CHLOROTOLUENE         ND         0.005           4-CHLOROMETHANE         ND         0.005           1, 2-DIBROMOCHLOROMETHANE         ND         0.005           1, 2-DIBROMOC3 - CHLOROPROPANE         ND         0.005           1, 2-DIBROMOSTHANE         ND         0.005           1, 2-DICHLOROBENZENE         ND         0.005           1, 2-DICHLOROBENZENE         ND         0.005           1, 3-DICHLOROBENZENE         ND         0.005           1, 4-DICHLOROBENZENE         ND         0.005           1, 4-DICHLOROBENZENE         ND         0.005           1, 1-DICHLOROBENZENE         ND         0.005           1, 1-DICHLOROETHANE         ND         0.005     <	<u>N-BUTYLBEN</u>	28NE	ND	0.005
TERT-BUTYLBENZENE         ND         0.005           CARBON DISULFIDE         ND         0.010           CARBON TETRACHLORIDE         ND         0.005           CHLOROBENZENE         ND         0.005           CHLOROFTHANE         ND         0.005           CHLOROFORM         ND         0.005           CHLOROTOLUENE         ND         0.005           2-CHLOROTOLUENE         ND         0.005           4-CHLOROTOLUENE         ND         0.005           4-CHLOROTOLUENE         ND         0.005           1, 2-DIBROMO-3-CHLOROPROPANE         ND         0.005           1, 2-DIBROMO-3-CHLOROPROPANE         ND         0.005           1, 2-DIBROMOSTHANE         ND         0.005           1, 2-DICHLOROBENZENE         ND         0.005           1, 2-DICHLOROBENZENE         ND         0.005           1, 3-DICHLOROBENZENE         ND         0.005           1, 4-DICHLOROBENZENE         ND         0.005           1, 4-DICHLOROBENZENE         ND         0.005           1, 4-DICHLOROBENZENE         ND         0.005           1, 1-DICHLOROBENZENE         ND         0.005           1, 1-DICHLOROBENZENE         ND         0.005	SEC-BUTYLB	ENZENE	ND	0.005
CARBON DISULFIDE         ND         0.010           CARBON TETRACHLORIDE         ND         0.005           CHLOROBENZENE         ND         0.005           CHLOROBENZENE         ND         0.005           CHLOROFTHANE         ND         0.005           CHLOROFORM         ND         0.005           CHLOROFORM         ND         0.005           CHLOROTOLUENE         ND         0.005           2-CHLOROTOLUENE         ND         0.005           4-CHLOROTOLUENE         ND         0.005           1, 2-DIBROMOCHLOROMETHANE         ND         0.005           1, 2-DIBROMOCHLOROPROPANE         ND         0.005           1, 2-DIBROMOETHANE         ND         0.005           1, 2-DIBROMOETHANE         ND         0.005           1, 2-DICHLOROBENZENE         ND         0.005           1, 2-DICHLOROBENZENE         ND         0.005           1, 4-DICHLOROBENZENE         ND         0.005           1, 4-DICHLOROBENZENE         ND         0.005           1, 1-DICHLOROBENZENE         ND         0.005           1, 1-DICHLOROBENZENE         ND         0.005           1, 2-DICHLOROBENZENE         ND         0.005	TERT-BUTYL	BENZENE	<u>ND</u>	0.005
CARBON TETRACHLORIDE         ND         0.005           CHLOROBENZENE         ND         0.005           CHLOROETHANE         ND         0.005           CHLOROFORM         ND         0.005           CHLOROFORM         ND         0.005           CHLOROTOLUENE         ND         0.005           2-CHLOROTOLUENE         ND         0.005           4-CHLOROTOLUENE         ND         0.005           1.2-DIBROMOCHLOROMETHANE         ND         0.005           1.2-DIBROMO-3-CHLOROPROPANE         ND         0.005           1.2-DIBROMOETHANE         ND         0.005           1.2-DIBROMOETHANE         ND         0.005           1.2-DICHLOROBENZENE         ND         0.005           1.3-DICHLOROBENZENE         ND         0.005           1.4-DICHLOROBENZENE         ND         0.005           1.4-DICHLOROBENZENE         ND         0.005           1.1-DICHLOROBENZENE         ND         0.005           1.2-DICHLOROBENZENE         ND         0.005           1.1-DICHLOROBENZENE         ND         0.005           1.2-DICHLOROETHANE         ND         0.005           1.2-DICHLOROETHANE         ND         0.005	CARBON DIS	ULFIDE	ND	0.010
CHLOROBENZENE         ND         0.005           CHLOROFORM         ND         0.005           CHLOROFORM         ND         0.005           CHLOROFORM         ND         0.005           CHLOROFORM         ND         0.005           CHLOROTOLUENE         ND         0.005           2-CHLOROTOLUENE         ND         0.005           4-CHLOROTOLUENE         ND         0.005           1,2-DIBROMOCHLOROMETHANE         ND         0.005           1,2-DIBROMO-3-CHLOROPROPANE         ND         0.005           1,2-DIBROMOETHANE         ND         0.005           1,2-DIBROMOETHANE         ND         0.005           1,2-DICHLOROBENZENE         ND         0.005           1,2-DICHLOROBENZENE         ND         0.005           1,4-DICHLOROBENZENE         ND         0.005           1,4-DICHLOROBENZENE         ND         0.005           1,1-DICHLOROETHANE         ND         0.005           1,2-DICHLOROETHANE         ND         0.005           1,2-DICHLOROETHANE         ND         0.005           1,1-DICHLOROETHANE         ND         0.005           1,2-DICHLOROETHENE         ND         0.005	CARBON TET	RACHLORIDE	ND	0.005
CHLOROETHANE         ND         0.005           CHLOROFORM         ND         0.005           CHLOROMETHANE         ND         0.005           2-CHLOROTOLUENE         ND         0.005           4-CHLOROTOLUENE         ND         0.005           1,2-DIBROMOCHLOROMETHANE         ND         0.005           1,2-DIBROMO-3-CHLOROPROPANE         ND         0.005           1,2-DIBROMO-3-CHLOROPROPANE         ND         0.005           1,2-DIBROMOSTHANE         ND         0.005           1,2-DIBROMOETHANE         ND         0.005           1,2-DICHLOROBENZENE         ND         0.005           1,3-DICHLOROBENZENE         ND         0.005           1,4-DICHLOROBENZENE         ND         0.005           1,4-DICHLOROBENZENE         ND         0.005           1,1-DICHLOROBENZENE         ND         0.005           1,1-DICHLOROETHANE         ND         0.005           1,2-DICHLOROETHANE         ND         0.005           1,1-DICHLOROETHANE         ND         0.005           1,2-DICHLOROETHENE         ND         0.005           1,1-DICHLOROETHENE         ND         0.005           1,2-DICHLOROETHENE         ND         0.005	CHLOROBENZ	ENE		0.005
CHLOROFORMND0.005CHLOROMETHANEND0.0052-CHLOROTOLUENEND0.0054-CHLOROTOLUENEND0.005DIBROMOCHLOROMETHANEND0.0051, 2-DIBROMO-3-CHLOROPROPANEND0.0051, 2-DIBROMOETHANEND0.0051, 2-DIBROMOETHANEND0.0051, 2-DICHLOROBENZENEND0.0051, 3-DICHLOROBENZENEND0.0051, 4-DICHLOROBENZENEND0.0051, 1-DICHLOROBENZENEND0.0051, 2-DICHLOROBENZENEND0.0051, 1-DICHLOROETHANEND0.0051, 1-DICHLOROETHANEND0.0051, 2-DICHLOROETHANEND0.0051, 2-DICHLOROETHENEND0.0051, 2-DICHLOROETHENEND0.0051, 2-DICHLOROETHENEND0.0051, 2-DICHLOROETHENEND0.0051, 2-DICHLOROETHENEND0.0051, 2-DICHLOROETHENEND0.0051, 2-DICHLOROETHENEND0.0051, 2-DICHLOROETHENEND0.005	CHLOROETHA	NE	ND	0.005
CHLOROMETHANEND0.0052-CHLOROTOLUENEND0.0054-CHLOROTOLUENEND0.005DIBROMOCHLOROMETHANEND0.0051,2-DIBROMO-3-CHLOROPROPANEND0.0051,2-DIBROMOETHANEND0.0051,2-DIBROMOETHANEND0.0051,2-DICHLOROBENZENEND0.0051,3-DICHLOROBENZENEND0.0051,4-DICHLOROBENZENEND0.0051,1-DICHLOROBENZENEND0.0051,2-DICHLOROBENZENEND0.0051,1-DICHLOROETHANEND0.0051,2-DICHLOROETHANEND0.0051,2-DICHLOROETHENEND0.0051,1-DICHLOROETHENEND0.0051,2-DICHLOROETHENEND0.0051,2-DICHLOROETHENEND0.0051,2-DICHLOROETHENEND0.0051,2-DICHLOROETHENEND0.0051,2-DICHLOROETHENEND0.0051,2-DICHLOROETHENEND0.0051,2-DICHLOROETHENEND0.005	CHLOROFORM	8 XT2		0.005
Z-CHLOROTOLUENEND0.0034-CHLOROTOLUENEND0.005DIBROMOCHLOROMETHANEND0.0051,2-DIBROMO-3-CHLOROPROPANEND0.0051,2-DIBROMOETHANEND0.005DIBROMOMETHANEND0.005DIBROMOMETHANEND0.0051,2-DICHLOROBENZENEND0.0051,3-DICHLOROBENZENEND0.0051,4-DICHLOROBENZENEND0.0051,1-DICHLOROBENZENEND0.0051,2-DICHLOROBENZENEND0.0051,1-DICHLOROETHANEND0.0051,2-DICHLOROETHANEND0.0051,2-DICHLOROETHANEND0.0051,1-DICHLOROETHENEND0.0051,2-DICHLOROETHENEND0.0051,2-DICHLOROETHENEND0.0051,2-DICHLOROETHENEND0.0051,2-DICHLOROETHENEND0.0051,2-DICHLOROETHENEND0.0051,2-DICHLOROETHENEND0.0051,2-DICHLOROETHENEND0.0051,2-DICHLOROETHENEND0.0051,2-DICHLOROETHENEND0.0051,2-DICHLOROETHENEND0.0051,2-DICHLOROETHENEND0.005	CHLOROMETH		ND	0.005
1-CHLOROTOLOGENEND0.005DIBROMOCHLOROMETHANEND0.0051,2-DIBROMO-3-CHLOROPROPANEND0.0051,2-DIBROMOETHANEND0.005DIBROMOMETHANEND0.0051,2-DICHLOROBENZENEND0.0051,3-DICHLOROBENZENEND0.0051,4-DICHLOROBENZENEND0.0051,1-DICHLOROBENZENEND0.0051,1-DICHLOROBENZENEND0.0051,1-DICHLOROETHANEND0.0051,2-DICHLOROETHANEND0.0051,2-DICHLOROETHANEND0.0051,2-DICHLOROETHANEND0.0051,2-DICHLOROETHENEND0.0051,2-DICHLOROETHENEND0.0051,2-DICHLOROETHENEND0.0051,2-DICHLOROETHENEND0.0051,2-DICHLOROETHENEND0.0051,2-DICHLOROETHENEND0.0051,2-DICHLOROETHENEND0.0051,2-DICHLOROETHENEND0.005	<u>2-CHLOROTO</u>	LUENE		0.005
DIBROMOCHDOROMETRANE         ND         0.005           1, 2-DIBROMO-3 - CHLOROPROPANE         ND         0.005           1, 2-DIBROMOETHANE         ND         0.005           DIBROMOMETHANE         ND         0.005           1, 2-DICHLOROBENZENE         ND         0.005           1, 3-DICHLOROBENZENE         ND         0.005           1, 4-DICHLOROBENZENE         ND         0.005           1, 1-DICHLOROBENZENE         ND         0.005           1, 1-DICHLOROETHANE         ND         0.005           1, 2-DICHLOROETHANE         ND         0.005           1, 1-DICHLOROETHENE         ND         0.005           1, 1-DICHLOROETHENE         ND         0.005           1, 2-DICHLOROETHENE         ND         0.005           1, 2-DICHLOROETHENE         ND         0.005           1, 2-DICHLOROETHENE         ND         0.005           1, 2-DICHLOROETHENE         ND         0.005		ADAMETHANE		0.005
1,2-DIBROMOETHANE       ND       0.005         1,2-DIBROMOMETHANE       ND       0.005         DIBROMOMETHANE       ND       0.005         1,2-DICHLOROBENZENE       ND       0.005         1,3-DICHLOROBENZENE       ND       0.005         1,4-DICHLOROBENZENE       ND       0.005         DICHLORODIFLUOROMETHANE       ND       0.005         1,1-DICHLOROETHANE       ND       0.005         1,2-DICHLOROETHANE       ND       0.005         1,1-DICHLOROETHANE       ND       0.005         1,1-DICHLOROETHANE       ND       0.005         1,1-DICHLOROETHENE       ND       0.005         1,1-DICHLOROETHENE       ND       0.005         1,2-DICHLOROETHENE       ND       0.005		O-3-CHLOROPROPANE		0.005
Init 2         Init 2<	1 2 - DIBROM	OETHANE	ND	0.005
DICHLOROBENZENE         ND         0.005           1, 2 - DICHLOROBENZENE         ND         0.005           1, 4 - DICHLOROBENZENE         ND         0.005           1, 4 - DICHLOROBENZENE         ND         0.005           DICHLORODIFLUOROMETHANE         ND         0.005           1, 1 - DICHLOROETHANE         ND         0.005           1, 2 - DICHLOROETHANE         ND         0.005           1, 1 - DICHLOROETHANE         ND         0.005           1, 1 - DICHLOROETHANE         ND         0.005           1, 2 - DICHLOROETHENE         ND         0.005           1, 2 - DICHLOROETHENE         ND         0.005           TRANS - 1, 2 - DICHLOROETHENE         ND         0.005           1, 2 - DICHLOROETHENE         ND         0.005           1, 2 - DICHLOROETHENE         ND         0.005	DIBROMOMET	HANE	ND	0.005
1,3-DICHLOROBENZENEND0.0051,4-DICHLOROBENZENEND0.005DICHLORODIFLUOROMETHANEND0.0051,1-DICHLOROETHANEND0.0051,2-DICHLOROETHANEND0.0051,1-DICHLOROETHENEND0.0051,2-DICHLOROETHENEND0.0051,2-DICHLOROETHENEND0.0051,2-DICHLOROETHENEND0.0051,2-DICHLOROETHENEND0.0051,2-DICHLOROETHENEND0.0051,2-DICHLOROETHENEND0.0051,2-DICHLOROETHENEND0.0051,2-DICHLOROPROPANEND0.005	1.2-DICHLO	ROBENZENE	ND	0.005
1,4-DICHLOROBENZENE         ND         0.005           DICHLORODIFLUOROMETHANE         ND         0.005           1,1-DICHLOROETHANE         ND         0.005           1,2-DICHLOROETHANE         ND         0.005           1,1-DICHLOROETHANE         ND         0.005           1,2-DICHLOROETHANE         ND         0.005           1,1-DICHLOROETHENE         ND         0.005           1,1-DICHLOROETHENE         ND         0.005           1,2-DICHLOROETHENE         ND         0.005           TRANS-1,2-DICHLOROETHENE         ND         0.005           1,2-DICHLOROETHENE         ND         0.005           1,2-DICHLOROETHENE         ND         0.005	1.3-DICHLO	ROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE         ND         0.005           1,1-DICHLOROETHANE         ND         0.005           1,2-DICHLOROETHANE         ND         0.005           1,1-DICHLOROETHANE         ND         0.005           1,1-DICHLOROETHENE         ND         0.005           1,1-DICHLOROETHENE         ND         0.005           1,2-DICHLOROETHENE         ND         0.005           TRANS-1,2-DICHLOROETHENE         ND         0.005           1,2-DICHLOROETHENE         ND         0.005           1,2-DICHLOROPROPANE         ND         0.005	1.4-DICHLO	ROBENZENE	ND	0.005
1,1-DICHLOROETHANE         ND         0.005           1,2-DICHLOROETHANE         ND         0.005           1,1-DICHLOROETHENE         ND         0.005           1,1-DICHLOROETHENE         ND         0.005           CIS-1,2-DICHLOROETHENE         ND         0.005           TRANS-1,2-DICHLOROETHENE         ND         0.005           1,2-DICHLOROPROPANE         ND         0.005	DICHLORODI	FLUOROMETHANE	ND	0.005
1,2-DICHLOROETHANE         ND         0.005           1,1-DICHLOROETHENE         ND         0.005           CIS-1,2-DICHLOROETHENE         ND         0.005           TRANS-1,2-DICHLOROETHENE         ND         0.005           1,2-DICHLOROPROPANE         ND         0.005	1,1-DICHLO	ROETHANE	ND_	0.005
1,1-DICHLOROETHENE         ND         0.005           CIS-1,2-DICHLOROETHENE         ND         0.005           TRANS-1,2-DICHLOROETHENE         ND         0.005           1,2-DICHLOROPROPANE         ND         0.005	1,2-DICHLO	ROETHANE	ND	0.005
CIS-1,2-DICHLOROETHENE         ND         0.005           TRANS-1,2-DICHLOROETHENE         ND         0.005           1,2-DICHLOROPROPANE         ND         0.005	1,1-DICHLC	ROETHENE	ND	0.005
TRANS-1,2-DICHLOROETHENE         ND         0.005           1,2-DICHLOROPROPANE         ND         0.005	CIS-1,2-DI	CHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE ND 0.005	TRANS-1,2-	DICHLOROETHENE	ND	0.00 <u>5</u>
	<u>1,2-DICHLC</u>	ROPROPANE	ND	0.005

----- TO BE CONTINUED ON PAGE #2 -----

DATA REVIEWED AND APPROVED BY:___

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# METHOD BLANK REPORT

CUSTOMER:	Kleinfelder		
	620 W. 16th Street,	Unit #F	
	Long Beach, CA 90813	3	
	Tel(562)432-1696 Fax	x (562) 432-1796	
PROJECT: AF	RTIC		
PROJECT No.	.: 103567/Env 2		
MATRIX: SOIJ	<u>L</u>	DATE	RECEIVED: <u>09/25/09</u>
DATE SAMPLE	ED: <u>09/25/09</u>	DATE	ANALYZED: <u>09/28/09</u>
REPORT TO:1	<u>Mr. BERT VOGLER</u>	DATE	REPORTED: <u>10/02/09</u>
	METHOD BLANK FOR LAB	I.D.: 090928-204	THROUGH -210
ANALYSI	IS: VOLATILE ORGANIC	S, EPA METHOD 5035	/8260B, PAGE 2 OF 2
	UNIT: mg/Kg = MI	LLIGRAM PER KILOG	RAM = PPM
PARAMETER		SAMPLE RESULT	PQL X1
1,3-DICHLON	ROPROPANE	ND	0.005
2,2-DICHLO	ROPROPANE	ND	0.005
1,1-DICHLO	ROPROPENE	<u>ND</u>	0.005
<u>CIS-1,3-DIC</u>	CHLOROPROPENE	ND	0.005
TRANS-1, 3-1	DICHLOROPROPENE	<u>ND</u>	0.005
ELHATPROVE	NE	<u>ND</u>	0.005
Z-HEXANONE			0.020
HEXACREORU	BUTADIENE		0.005
<u>150PROPILBI</u>			0.005
$\frac{4-150PR0P1}{4-METHYL-2}$	- DENTANONE (MIRK)		0.005
METHVI. teri	T-BUTYL ETHER (MTBE)		0.005
METHYLENE (	CHLORIDE	ND	0.010
NAPHTHALEN	E	ND	0,005
N-PROPYLBE	NZENE	ND	0,005
STYRENE		ND	0.005
1,1,1,2-TE	TRACHLOROETHANE	ND	0.005
1,1,2,2-TE	TRACHLOROETHANE		0.005
TETRACHLOR	OETHENE (PCE)	ND	0.005
TOLUENE		ND	0.005
1,2,3-TRIC	HLOROBENZEN <u>E</u>	<u>ND</u>	0.005
<u>1,2,4-TRIC</u>	HLOR <u>OB</u> ENZENE	ND	0.005
<u>1,1,1-TRIC</u>	HLOROETHANE	ND	0.005
<u>1,1,2-TRIC</u>	HLOROETHANE	ND	0.005
TRICHLOROE	THENE (TCE)	ND	0.005
TRICHLOROF	LUOROMETHANE	<u>ND</u>	0.005
<u>1,2,3-TRIC</u>	HLOROPROPANE	ND	0.005
<u>1,2,4-TRIM</u>	ETHYLBENZENE	<u>ND</u>	0.005
<u>1,3,5-TRIM</u>	ETHYLBENZENE	<u>ND</u>	0.005
VINYL CHLO			0.005
M/P-XYLENE			0.010
COMMENTE D			0.005
COMMENTS P	QL = PRACIICAL QUANI	TIALLON DIMIT	

ND = NON-DETECTED OR BELOW THE PQL

DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

N

			Enviro-Ch	em, Inc.					
1214 E. Lexington Ave	enue, Pom	iona, CA 🕯	91766	٦	Fel (909)59	0-5905	Fax (90	)9)590-590 ⁻	7
			8260B Q/	A/QC Rep	ort				
				-					
Date Analyzed:	9/28/2009						Matrix:	Solid/Soil/	Sludge
Machine:	С						Unit:	mg/Kg (PF	PM)
	_								
Matrix Spike (MS)/Matri	ix Spike D	uplicate (N	ISD)						
Spiked Sample Lab I.D.	.:	090928-19	5 MS/MSE						
Analyte	S.R.	spk conc	MS	%RC	MSD	%RC	%RPD	ACP %RQ	ACP RPD
Benzene	0	0.050	0.058	116%	0.051	102%	14%	75-125	0-20
Chlorobenzene	0	0.050	0.052	104%	0.050	100%	4%	75-125	0-20
1,1-Dichloroethene	0	0.050	0.047	94%	0.055	110%	16%	75-125	0-20
Toluene	0	0.050	0.044	88%	0.050	100%	12%	75-125	0-20
Trichloroethene (TCE)	0	0.050	0.056	112%	0.053	106%	6%	75-125	0-20
· · · · ·									
Lab Control Spike (LCS	5):								
Analyte	spk conc	LCS	%RC	ACP %RC					1
Benzene	0.050	0.052	104%	75-125					
Chlorobenzene	0.050	0.051	102%	75-125					
Chloroform	0.050	0.045	90%	75-125					
1.1-Dichlorothene	0.050	0.055	110%	75-125					
Ethylbenzene	0.050	0.047	94%	75-125					
o-Xviene	0.050	0.048	96%	75-125					
m p-Xvlene	0.100	0.101	101%	75-125					
Toluene	0.050	0.043	86%	75-125					
1 1 1-Trichloroethane	0.050	0.051	102%	75-125					
Trichloroethene (TCE)	0.050	0.054	108%	75-125					
		0.001		, , , , , , , , , , , , , , , , , , , ,	I				
Surrogate Recovery	spk conc	ACP %RC	MB %RC	%RC	%RC	%RC	%RC	%RC	%RC
Sample I.D.			M-BLK	090925-51	090925-52	090925-53	090925-54	090928-182	090928-186
Dibromofluoromethane	50.0	70-130	109%	105%	107%	105%	108%	87%	87%
Toluene-d8	50.0	70-130	99%	99%	99%	99%	96%	97%	95%
4-Bromofluorobenzene	50.0	70-130	101%	97%	96%	96%	79%	100%	98%
Surrogate Recovery	spk conc	ACP %RC	%RC	%RC	%RC	%RC	%RC	%RC	%RC
Sample I.D.			090928-187	090928-191	090928-195	090928-196	090928-199	090928-202	090928-203
Dibromofluoromethane	50.0	70-130	85%	98%	88%	87%	87%	93%	94%
Toluene-d8	50.0	70-130	96%	97%	96%	94%	97%	96%	97%
4-Bromofluorobenzene	50.0	70-130	97%	96%	95%	95%	95%	93%	93%
	1		01.70	00,0		0070	0010		
Surrogate Recovery	spk conc	ACP %RC	/^%RC	%RC	%RC	%RC	%RC	%RC	%RC
Sample I.D.			090928-204	090928-205	090928-206	090928-207	090928-208	090928-209	090928-210
Dibromofluoromethane	50.0	70-130	87%	95%	98%	100%	112%	97%	107%
Toluene-d8	50.0	70-130	98%	99%	101%	103%	103%	99%	99%
4-Bromofluorobenzene	50.0	70-130	95%	94%	95%	80%	97%	91%	93%
		,,,,,,,,	6	01.00	0070	0070	0, 70		
* ≃ Surrogate fail due to	matrix inte	ference:	LCS MS	MSD are in	control the	prefore the	analysis is	in control	
S R = Sample Results			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		%RC = P	ercent Reci		control.	
spk conc = Spike Conce	entration				ACP % Pr	$= \Delta c canta$	d Percent	Recovery	
MS = Matrix Snike					MSD = M	atrix Snike	Dunlicate		
						ana opino .	- aprivate		
Analyzed/Reviewed B	, SI	h							
	·	- • \							
Final Reviewer:	CAN								
	~ 1								

#### 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

### LABORATORY REPORT

CUSTOMER:	Kleinfelder	
	620 W. 16th Street, Unit #F	
	Long Beach, CA 90813	
	Tel(562)432-1696 Fax(562)432-179	6
PROJECT: AF	XTIC	
PROJECT No.	: 103567/Env 2	
MATRIX: <u>SOII</u>	_	D

DATE	RECEIVED:09/25/09
DATE	ANALYZED: 09/28/09

DATE REPORTED: 10/02/09

REPORT TO: Mr. BERT VOGLER 

SAMPLE I.D.: W-1-1.5

DATE SAMPLED:09/25/09

LAB I.D.: 090928-204 _____

# TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	8.61	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	0.711	0.5	1	2,500	560/5@	6010B
Chromium VI (Cr6)		0.1	1	500	5.0	7196A
Cobalt (Co)	ND	1.0	l	8,000	80	6010B
Copper(Cu)	ND	1.0	1	2,500	25	6010B
Lead(Pb)	ND	0.5	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	ND	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(Tl)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	ND	5.0	1	2,400	24	6010B
Zinc(Zn)	5.11	0.5	1	5,000	250	6010B
*						

#### COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at S * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested

### 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

### LABORATORY REPORT

CUSTOMER :	Kleinfelder		
	620 W. 16th Street, Unit #F		
	Long Beach, CA 90813		
	Tel(562)432-1696 Fax(562)432-179	6	
PROJECT: A	RTIC		
PROJECT No	.: 103567/Env 2		
MATRIX: SOI	Ľ	DATE	RECEIVED: 09/25/09
DATE SAMPL	ED: <u>09/25/09</u>	DATE	ANALYZED: 09/28/09
REPORT TO:	Mr. BERT VOGLER	DATE	REPORTED: 10/02/09

SAMPLE I.D.: W-1-5

LAB I.D.: 090928-205 _____

# TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS

_____

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	POL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	40.6	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	6.95	0.5	1	2,500	560/5@	6010B
Chromium VI (Cr6)		0.1	1	500	5.0	7196A
Cobalt(Co)	ND	1.0	1	8,000	80	6010B
Copper(Cu)	35.0	1.0	1	2,500	25	6010B
Lead(Pb)	3.94	0.5	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum (Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	5.11	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(Tl)	ND	1.0	l	700	7.0	6010B
Vanadium(V)	15.7	5.0	1	2,400	24	6010B
Zinc(Zn)	37.3	0.5	1	5,000	250	6010B

#### COMMENTS

DF = Dilution Factor POL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested

### 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

### LABORATORY REPORT

CUSTOMER:	Kleinfelder	
	620 W. 16th Street, Unit #F	
	Long Beach, CA 90813	
	Tel(562)432-1696 Fax(562)432-179	6
PROJECT: A	RTIC	
PROJECT NO	D.: 103567/Env 2	
MATRIX: SOI	L	D

DATE RECEIVED:09/25/09 DATE ANALYZED: 09/28/09

DATE REPORTED:10/02/09

SAMPLE I.D.: W-1-10

DATE SAMPLED:09/25/09

REPORT TO:Mr. BERT VOGLER

LAB I.D.: 090928-206 

### TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	18.7	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	2.91	0.5	1	2,500	560/5@	6010B
Chromium VI (Cr6)		0.1	1	500	5.0	7196A
Cobalt(Co)	ND	1.0	1	8,000	80	6010B
Copper(Cu)	2.56	1.0	1	2,500	25	6010B
Lead (Pb)	0.655	0.5	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	ND	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(Tl)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	6.84	5.0	l	2,400	24	6010B
Zinc(Zn)	13.3	0.5	1	5,000	250	6010B

#### COMMENTS

DF = Dilution Factor POL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested

### 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

### LABORATORY REPORT

CUSTOMER:	Kleinfelder		
	620 W. 16th Street, Unit #F		
	Long Beach, CA 90813		
	Tel(562)432-1696 Fax(562)432-17	796	
PROJECT: AF	RTIC		
PROJECT No.	.: 103567/Env 2		
MATRIX: SOIL	Ē	DATE	RECEIVED: <u>09/25/09</u>
DATE SAMPLE	ED: <u>09/25/09</u>	DATE	ANALYZED: 09/28/09
REPORT TO: N	Mr. BERT VOGLER	DATE	REPORTED: <u>10/02/09</u>

SAMPLE I.D.: W-1-20

LAB I.D.: 090928-207 

### TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	10.4	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	1.78	0.5	1	2,500	560/S@	6010B
Chromium VI (Cr6)		0.1	1	500	5.0	7196A
Cobalt (Co)	ND	1.0	1	8,000	80	6010B
Copper(Cu)	ND	1.0	1	2,500	25	6010B
Lead(Pb)	ND	0.5	l	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	ND	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	l	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(Tl)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	ND	5.0	1	2,400	24	6010B
Zinc(Zn)	7.09	0.5	l	5,000	250	6010B

#### COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested
#### 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

### LABORATORY REPORT

CUSTOMER:	Kleinfelder		
	620 W. 16th Street, Unit #F		
	Long Beach, CA 90813		
	Tel(562)432-1696 Fax(562)432-179	6	
PROJECT: A	RTIC		
PROJECT No.	.: 103567/Env 2		
MATRIX: SOI	<u>L</u>	DATE	RECEIVED: <u>09/25/09</u>
DATE SAMPLI	ED: <u>09/25/09</u>	DATE	ANALYZED: <u>09/28/09</u>
REPORT TO: 1	<u>Mr. BERT VOGLER</u>	DATE	REPORTED: <u>10/02/09</u>

LAB I.D.: 090928-208

SAMPLE I.D.: W-1-30

#### TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

·····

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	72.7	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	11.6	0.5	1	2,500	560/5@	6010B
Chromium VI (Cr6)		0.1	1	500	5.0	7196A
Cobalt(Co)	ND	1.0	1	8,000	80	6010B
Copper(Cu)	18.3	1.0	1	2,500	25	6010B
Lead(Pb)	3.96	0.5	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	9.51	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(Tl)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	25.4	5.0	1	2,400	24	6010B
Zinc(Zn)	50.6	0.5	1	5,000	250	6010B

#### COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested

#### 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

COSTONER: MIGINIEIGEI	
620 W. 16th Street, Unit #F	
Long Beach, CA 90813	
Tel(562)432-1696 Fax(562)432-1	796
PROJECT: ARTIC	
PROJECT No.: 103567/Env 2	
MATRIX: <u>SOIL</u>	D

ATE RECEIVED:09/25/09 DATE ANALYZED: 09/28/09 DATE REPORTED: 10/02/09

SAMPLE I.D.: W-1-40

DATE SAMPLED:09/25/09

REPORT TO: Mr. BERT VOGLER

LAB I.D.: 090928-209 

#### TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	NĎ	0.3	1	500	5.0	6010B
Barium(Ba)	26.7	5.0	1	10,000	100	6010B
Beryllium(Be)	NĎ	0.5	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	5.18	0.5	1	2,500	560/5@	6010B
Chromium VI (Cr6)		0.1	1	500	5.0	7196A
Cobalt (Co)	ND	1.0	1	8,000	80	6010B
Copper(Cu)	31.6	1.0	1	2,500	25	6010B
Lead(Pb)	2.27	0.5	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	6.54	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(Tl)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	9.10	5.0	1	2,400	24	6010B
Zinc(Zn)	34.4	0.5	1	5,000	250	6010B

#### COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796	
PROJECT: ARTIC	
PROJECT No.: 103567/Env 2	
MATRIX: SOIL DA	TE RECEIVED: <u>09/25/09</u>
DATE SAMPLED: 09/25/09 DA	TE ANALYZED: <u>09/28/09</u>
REPORT TO: <u>Mr. BERT VOGLER</u> DF	TE REPORTED: 10/02/09

SAMPLE I.D.: W-1-50

LAB I.D.: 090928-210 _____

#### TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	93.7	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	9.27	0.5	1	2,500	560/S@	6010B
Chromium VI (Cr6)		0.1	1	500	5.0	7196A
Cobalt(Co)	ND	1.0	l	8,000	80	6010B
Copper(Cu)	13.5	1.0	1	2,500	25	6010B
Lead(Pb)	4.83	0.5	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	10.2	2.5	l	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(Tl)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	20.4	5.0	ב	2,400	24	6010B
Zinc(Zn)	50.2	0.5	1	5,000	250	6010B

#### COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR_TITLE 22 (if marked) -- = Not analyzed/not requested Data Reviewed and Approved by:__

CAL-DHS ELAP CERTIFICATE No.: 1555

#### 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### METHOD BLANK REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: ARTIC PROJECT No.: 103567/Env 2 MATRIX: SOIL DATE SAMPLED:09/25/09

REPORT TO: Mr. BERT VOGLER

DATE RECEIVED: 09/25/09 DATE ANALYZED:09/28/09

DATE REPORTED: 10/02/09

-----

METHOD BLANK FOR LAB I.D.: 090928-204 THROUGH -210

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	ND	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	ND	0.5	l	2,500	560/5@	6010B
Chromium VI (Cr6)	~ ~	0.1	1	500	5.0	7196A
Cobalt (Co)	ND	1.0	1	8,000	80	6010B
Copper(Cu)	ND	1.0	1	2,500	25	6010B
Lead(Pb)	ND	0.5	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	ND	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(Tl)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	ND	5.0	1	2,400	24	6010B
Zinc(Zn)	ND	0.5	1	5,000	250	6010B

#### COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested

	QA	/QC for	r Meta	ls Anal	<u> sist</u>	LTLCS	OFID/SC	OIL MATH	X		
<u>Matrix Spike/ M</u>	<u>atrix Spike</u>	Duplicate	e/ LCS :								
ANAL	YSIS DATE:	9/28/2009							Unit	: mg/Kg(p	(md
Analysis	Spk.Sample ID	LCS CONC.	LCS %Rec.	LCS STATUS	Sample Result	Spike Conc.	WS	% Rec MS	MSD	% Rec MSD	% RPD
Copper (Cu)	090928-204	1.00	26	PASS	0	50.0	59.1	118%	56.9	114%	4%
Lead (Pb)	090928-204	1.00	36	PASS	0	50.0	52.4	105%	52.6	105%	%0
Zinc (Zn)	090928-204	1.00	96	PASS	5.11	50.0	65.2	120%	63.0	116%	4%
ANAL	YSIS DATE. :	9/28/2009					I				
Analysis	Spk.Sample ID	LCS CONC.	LCS %Rec.	LCS STATUS	Sample Result	Spike Conc.	WS	% Rec MS	MSD	% Rec MSD	% RPD
Mercury (Hg)	090928-203	0.125	94.2	PASS	0	0.125	0.111	89%	0.106	85%	5%
MS/MSD Status											
Analysis	%MS	%MSD	%CCS	%RPD							
Copper (Cu)	PASS	PASS	PASS	PASS							-
Lead (Pb)	PASS	PASS	PASS	PASS							
Zinc (Zn)	PASS	PASS	PASS	PASS							
Mercury (Hg)	PASS	PASS	PASS	PASS							
Accepted Range	75 ~ 125	75 ~ 125	85 ~ 115	$0 \sim 20$	-	ANALYST:	d				
					Ŀ	INAL REVIE	WER:	Cho			

ſ

٦,

٦

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER :	Kleinfelder	
	620 W. 16th Street, Unit #F	
	Long Beach, CA 90813	
	Tel(562)432-1696 Fax(562)432-1	L796
PROJECT: A	RTIC	
PROJECT No	.: 103567/Env 2	DATE
MATRIX: SOIN	<u>L</u>	DATE
DATE SAMPLE	ED:09/25/09	DATE

DATE RECEIVED: <u>09/25/09</u> DATE EXTRACTED: <u>09/28/09</u> DATE ANALYZED: <u>09/28/09</u> DATE REPORTED: <u>10/02/09</u>

SAMPLE I.D.: W-1-1.5

REPORT TO: Mr. BERT VOGLER

LAB I.D.: 090928-204

Organochlorine Pesticides & PCBs Analysis

_____

Method: EPA 8081A/8082

Unit: Mg/Kg = Milligram per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
Aldrin	<u>ND</u>	0.001	1
<u>alpha-BHC</u>	ND	0.001	1
beta-BHC	ND	0.001	1
gamma-BHC (Lindane)	ND	0.001	1
<u>delta-BHC</u>	ND	0.001	1
alpha-Chlordane	ND	0.001	1
gamma-Chlordane	ND	0.001	1
Total Chlordane (Technical)	ND	0.005	1
4,4'-DDD	ND	0.001	1
4,4'-DDE	ND	0.001	1
4,4'-DDT	ND	0.001	1
Dieldrin	ND	0.001	1
Endosulfan I	ND	0.001	1
<u>Endosulfan</u> II	ND	0.001	1
Endosulfan Sulfate	ND	0.001	1
Endrin	ND	0.001	1
Endrin Aldehyde	ND	0.001 _	1
Endrin Ketone	ND	0.001	1
Heptachlor Epoxide	ND	0.001	1
Heptachlor	ND	0.001	1
Methoxyclor	ND	0.001	1
Toxaphene	ND	0.020	1
PCB-1016	ND	0.010	1
PCB-1221	ND	0.010	1
PCB-1232	ND	0.010	1
PCB-1242	ND	0.010	1
PCB-1248	ND	0.010	1
PCB-1254	ND	0.010	1
PCB-1260	ND	0.010	1

COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Non detected or below the Actual Detection Limit

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER :	Kleinfelder	
	620 W. 16th Street, Unit	: #F
	Long Beach, CA 90813	
	Tel(562)432-1696 Fax(562	2)432-1796
PROJECT: A	RTIC	
PROJECT No	o.: 103567/Env 2	DAT
MATRIX: <u>SOI</u>	L	DAT
DATE SAMPL	ED: <u>09/25/09</u>	DA'

DATE RECEIVED: <u>09/25/09</u> DATE EXTRACTED: <u>09/28/09</u> DATE ANALYZED: <u>09/28/09</u> DATE REPORTED: <u>10/02/09</u>

SAMPLE I.D.: W-1-5

REPORT TO: Mr. BERT VOGLER

LAB I.D.: 090928-205

#### Organochlorine Pesticides & PCBs Analysis Method: EPA 8081A/8082

Unit: Mg/Kg = Milligram per Kilogram = PPM

Aldrin         ND         0.001           alpha-BHC         ND         0.001           beta-BHC         ND         0.001           gamma-BHC (Lindane)         ND         0.001	1 1 1 1 1 1 1
alpha-BHC         ND         0.001           beta-BHC         ND         0.001           gamma-BHC (Lindane)         ND         0.001	1 1 1 1 1 1 1
beta-BHC         ND         0.001           gamma-BHC (Lindane)         ND         0.001	1 1 1 1 1
gamma-BHC (Lindane) ND 0.001	1 1 1 1 1
	1 1 1 1
<u>delta-BHC</u> 0.001	1 1 1
alpha-Chlordane ND 0.001	<u>1</u> 1
gamma-Chlordane ND 0.001	1
Total Chlordane (Technical) ND 0.005	
4,4'-DDD 0.001	1
<u>4,4'-DDE ND 0.001</u>	1
4,4'-DDT ND 0.001	1
Dieldrin 0.001	1
Endosulfan I 0.001	1
Endosulfan II 0.001	1
Endosulfan Sulfate ND 0.001	1
Endrin ND 0.001	1
Endrin Aldehyde ND 0.001	1
Endrin Ketone 0.001	1
Heptachlor Epoxide ND 0.001	1
Heptachlor ND 0.001	1
Methoxyclor ND 0.001	1
<u>Toxaphene ND 0.020</u>	1
<u>PCB-1016</u> ND0.010	1
<u>PCB-1221 ND 0.010</u>	1
PCB-1232 ND 0.010	1
PCB-1242 ND 0.010	1
<u>PCB-1248</u> ND <u>0.010</u>	1
PCB-1254 ND 0.010	1
<u>PCB-1260</u> ND 0.010	1

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Non detected or below the Actual Detection Limit

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER:	Kleinfelder
	620 W. 16th Street, Unit #F
	Long Beach, CA 90813
	Tel(562)432-1696 Fax(562)432-1796
PROJECT :	ARTIC

PROJECT No.: 1	103567/Env 2	DATE	RECEIVED:09/25/09
MATRIX: <u>SOIL</u>		DATE	EXTRACTED: 09/28/09
DATE SAMPLED:	09/25/09	DATE	ANALYZED: <u>09/28/09</u>
REPORT TO: Mr.	BERT VOGLER	DATE	REPORTED: 10/02/09
~			
SAMPLE I.D.: V	W-1-10	LAB J	.D.: 090928-206

LAB I.D.: 090928-206

Organochlorine Pesticides & PCBs Analysis

Method: EPA 8081A/8082

#### Unit: Mg/Kg = Milligram per Kilogram = PPM

PARAMETER	SAMPLE RESULT	POL	DF
Aldrin	ND	0.001	
alpha-BHC	ND	0.001	1
beta-BHC	ND	0.001	1
gamma-BHC (Lindane)	ND	0.001	1
delta-BHC	ND	0.001	1
alpha-Chlordane	ND	0.001	1
gamma-Chlordane	ND	0.001	1
Total Chlordane (Technical)	ND	0.005	1
4,4'-DDD	ND	0.001	1
4,4'-DDE	ND	0.001	1
4,4'-DDT	ND	0.001	1
Dieldrin	ND	0.001	1
Endosulfan I		0.001	1
Endosulfan II	ND	0.001	1
Endosulfan Sulfate		0.001	1
Endrin	ND	0.001	1
Endrin Aldehyde	ND	0.001	1
Endrín Ketone	ND	0.001	1
Heptachlor Epoxide	ND	0.001	1
Heptachlor	ND	0.001	1
Methoxyclor	ND	0.001	1
Toxaphene	ND	0.020	1
PCB-1016	ND	0.010	1
PCB-1221	ND	0.010	1
PCB-1232	ND	0.010	1
PCB-1242	ND	0.010	1
PCB-1248	ND	0.010	1
PCB-1254	ND	0.010	1
PCB-1260	ND	0.010	1

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Non detected or below the Actual Detection Limit

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER:	Kleinfelder		
	620 W. 16th Street, Unit #F		
	Long Beach, CA 90813		
	Tel(562)432-1696 Fax(562)432-179	6	
PROJECT: A	RTIC		
PROJECT No.	.: 103567/Env 2	DATE	RECEIVED: <u>09/25/09</u>
MATRIX: SOII		DATE	EXTRACTED: <u>09/28/09</u>
DATE SAMPLE	3D: <u>09/25/09</u>	DATE	ANALYZED: <u>09/28/09</u>
REPORT TO: N	1r. BERT VOGLER	DATE	REPORTED: <u>10/02/09</u>

SAMPLE I.D.: W-1-20

LAB I.D.: 090928-207

Organochlorine Pesticides & PCBs Analysis Method: EPA 8081A/8082

Unit: Mg/Kg = Milligram per Kilogram = PPM

SAMPLE RESULT	PQL	DF
<u>ND</u>	0.001	1
ND	0.001	1
ND	0.001	1
ND	0. <u>001</u>	1
ND	0.001	1
ND	0.001	1
ND	0.001	11
ND	0.0 <u>05</u>	1
ND	0.001	1
ND	0.00 <u>1</u>	1
ND	0.001	1
ND	0.001	1
ND	0.020	1
ND	0.010	1
	ND           ND	SAMPLE RESULT         PQL           ND         0.001           ND         0.010           ND         0.010           ND         0.010           ND         0.010

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Non detected or below the Actual Detection Limit

### 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

### LABORATORY REPORT

CUSTOMER:	Kleinfelder		
	620 W. 16th Street, Unit #F		
	Long Beach, CA 90813		
	Tel(562)432-1696 Fax(562)432-179	6	
PROJECT: A	RTIC		
PROJECT No	.: 103567/Env 2	DATE	RECEIVED:09/25/09
MATRIX: SOID	<u>L</u>	DATE	EXTRACTED: 09/28/09
DATE SAMPLE	ED: <u>09/25/09</u>	DATE	ANALYZED: 09/28/09
REPORT TO:	<u>Mr. BERT VOGLER</u>	DATE	REPORTED: <u>10/02/09</u>
OWNER TO	xx 1 00		

SAMPLE I.D.: W-1-30

LAB I.D.: 090928-208

. . . . . . . . . . . . . . .

Organochlorine Pesticides & PCBs Analysis Method: EPA 8081A/8082

Unit: Mg/Kg = Milligram per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
Aldrin	ND	0.001	1
alpha-BHC	ND	0.001	1
beta-BHC	ND	0.001	1
gamma-BHC (Lindane)	ND	0.001	1
delta-BHC	ND	0.001	1
alpha-Chlordane	ND	0.001	1
gamma-Chlordane	ND	0.001	1
<u>Total Chlordane (Technical)</u>	ND	0.005	1
<u>4,4'-DDD</u>	ND	0.001	1
<u>4,4'-DDE</u>	ND	0.001	1
<u>4,4'-DDT</u>	ND	0.001	1
Dieldrin	ND	0.00 <u>1</u>	1
Endosulfan I	ND	0.001	1
Endosulfan II	ND	0.001	1
Endosulfan Sulfate	ND	0.00 <u>1</u>	1
Endrin	ND	0.001	1
Endrin Aldehyde	ND	0. <u>001</u>	1
Endrin Ketone	ND	0.001	1
<u>Heptachlor Epoxide</u>	<u>ND</u>	0.001	1
Heptachlor	ND	0.001	1
Methoxyclor	ND	0.001	1
Toxaphene	ND	0.020	1
PCB-1016	ND	0.010	1
PCB-1221	ND	0.010	1
PCB-1232	ND	0.010	1
PCB-1242	ND	0.010	1
PCB-1248	ND	0.010	1
PCB-1254	ND	0.010	1
PCB-1260	ND	0.010	1

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Non detected or below the Actual Detection Limit

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER :	Kleinfelder		
	620 W. 16th Street, Unit #F		
	Long Beach, CA 90813		
	Tel(562)432-1696 Fax(562)432-17	96	
PROJECT: A	RTIC		
PROJECT No	.: 103567/Env 2	DATE	R
MATRIX: SOI	L .	DATE	Ε
DATE SAMPLI	ED: <u>09/25/09</u>	DATE	A

DATE RECEIVED:<u>09/25/09</u> DATE EXTRACTED:<u>09/28/09</u> DATE ANALYZED:<u>09/28/09</u> DATE REPORTED:<u>10/02/09</u>

SAMPLE I.D.: W-1-40

REPORT TO: Mr. BERT VOGLER

LAB I.D.: 090928-209

## Organochlorine Pesticides & PCBs Analysis

Method: EPA 8081A/8082

Unit: Mg/Kg = Milligram per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
Aldrín	ND	0.001	1
alpha-BHC	ND	0.001	1
beta-BHC	ND	0.001	1
gamma-BHC (Lindane)	ND	0.001	1
delta-BHC	ND	0.001	1
alpha-Chlordane	ND	0.001	1
gamma-Chlordane	ND	0.001	1
Total Chlordane (Technical)	ND	0.005	1
4,4'-DDD	<u>ND</u>	0.001	1
4,4'-DDE	ND	0.001	1
4,4'-DDT	ND	0.001	1
Dieldrin	ND	0.001	1
Endosulfan I	ND	0.001	1
Endosulfan II	ND	0.001	1
<u>Endosulfan Sulfate</u>	ND	0.001	1
Endrin	ND	<u>0.001</u>	1
Endrin Aldehyde	ND	0.001	1
Endrin Ketone	ND_	0.001	1
Heptachlor Epoxide	ND	0.001	1
Heptachlor	ND	0.001	1
Methoxyclor	ND	0.001	1
Toxaphene	ND	0.020	1
PCB-1016	ND	0.010	1
PCB-1221	ND	0.010	1
PCB-1232	ND	0.010	1
PCB-1242	NĎ	0.010	1
PCB-1248	ND	0.010	1
PCB-1254	ND	0.010	1
PCB-1260	ND	0.010	1

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Non detected or below the Actual Detection Limit

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER:	Kleinfelder	
	620 W. 16th Street, Unit #F	
	Long Beach, CA 90813	
	Tel(562)432-1696 Fax(562)432-1	1796
PROJECT: A	RTIC	
PROJECT No	.: 103567/Env 2	DATE
MATRIX:SOI	L	DATE

RECEIVED: 09/25/09 EXTRACTED: 09/28/09 DATE ANALYZED:09/28/09 DATE REPORTED: 10/02/09

_____

SAMPLE I.D.: W-1-50

DATE SAMPLED:09/25/09

REPORT TO: Mr. BERT VOGLER

LAB I.D.: 090928-210 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

#### Organochlorine Pesticides & PCBs Analysis Method: EPA 8081A/8082

Unit: Mg/Kg = Milligram per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
Aldrin	ND	0.001	1
alpha-BHC	ND	0.001	1
beta-BHC	ND	0.001	<u> </u>
gamma-BHC [Lindane)	ND	0.001	1
delta-BHC	ND	0.001	1
alpha-Chlordane	ND	0.001	1
gamma-Chlordane	ND	0.0 <u>01</u>	1
Total Chlordane (Technical)	ND	0.005	1
4,4'-DDD	ND	0.001	1
4,4'-DDE	ND	0.001	1
4,4'-DDT	ND	0.001	1
Dieldrin	ND	0.0 <u>01</u>	1
Endosulfan I	ND	0.001	1
Endosulfan II	ND	0.001	1
Endosulfan Sulfate	ND	0.001	1
Endrin	ND	0.0 <u>01</u>	1
Endrin Aldehyde	ND	0.001	1
Endrin Ketone	ND	0.001	1
Heptachlor Epoxide	ND	0.001	1
Heptachlor	ND	0.001	1
Methoxyclor	ND	0.001	1
Toxaphene	ND	0.020	1
PCB-1016	ND	0.010	1
PCB-1221	ND	<u>0.010</u>	1
PCB-1232	ND	0.010	1
PCB-1242	ND	0.01 <u>0</u>	1
PCB-1248	ND	0.010	1
PCB-1254	ND	0.010	1
PCB-1260	ND	0.010	1

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Non detected or below the Actual Detection Limit

#### 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

### METHOD BLANK REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: ARTIC PROJECT No.: 103567/Env 2 D

PROJECT No.: 103567/Env 2DATE RECEIVED: 09/25/09MATRIX:SOILDATE EXTRACTED: 09/28/09DATE SAMPLED: 09/25/09DATE ANALYZED: 09/28/09REPORT TO:Mr. BERT VOGLERDATE REPORTED: 10/02/09

#### METHOD BLANK FOR LAB I.D.: 090928-204 THROUGH -210

#### ____

Organochlorine Pesticides & PCBs Analysis Method: EPA 8081A/8082

Unit: Mg/Kg = Milligram per Kilogram = PPM

DFPARAMETER SAMPLE RESULT POL Aldrin ND 0.001 1 <u>alpha-BHC</u> 0.001 1 ND 1____ beta-<u>BHC</u> ND 0.001 gamma-BHC (Lindane) ND 0.001 1 delta-BHC 0.001 1 ND alpha-Chlordane 0.001 ND 1 1 gamma-Chlordane ND 0.001 Total Chlordane (Technical) ND 0.005 1 <u>4,4'-DDD</u> ND 0.001 1 4,4'-DD<u>E</u> ND 0.001 1 <u>4,4'-DDT</u> 0.001 ND 1 Dieldrin ND 0.001 1 Endosulfan I ND 0.001 1 Endosulfan II 0.001 1 ND <u>Endosulfan Sulfate</u> ND 0.001 1 <u>Endrin</u> ND 0.001 1 Endrin Aldehyde ND 0.001 1 Endrin Ketone 0.001 1 ND Heptachlor Epoxide ND 0.001 1 Heptachlor ND 0.001 1 NĎ 0.001 1 Methoxyclor 1_ Toxaphene ND 0.020 0.010 1 PCB-1016 ND 1 PCB-1221 ND 0.010 1 <u>PCB-1232</u> ND 0.010 0.010 1 ND PCB-1242 0.010 1 PCB-1248 ND 1 PCB-1254 ND 0.010 ND 0.010 1 PCB-1260

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Non detected or below the Actual Detection Limit

Enviro-Chem, Inc.									
1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909)590-5905 Fax (909)590-5907									
FPA 8081 OA/OC Report									
LLA GOOL WANG Report									
Matrix:	Soil/So	blid			Date Analy:	zed:	9/28/2009		
Unit:	mg/Kg				-				
									]
<u> Matrix Spike (MS)/</u>	Matrix Sp	ike Duplica	<u>te (MSD)</u>						
Spiked Sample La	b			<u>090928</u> -	2 <u>06 MS</u>	/MSD			
Analyte	S.R.	spk conc	MS	%REC	MSD	%REC	%RPD	ACP %RPD	ACP %REC
Gamma-BHC	0.000	0.0500	0.0414	83%	0.0451	90%	9%	0-20%	70-130
	0.000	0.0500	0.0455	91%	0.0472	94%	4%	0-20%	70-130
+,4-DDC	0.000	0.0500	0.0300	/ 870	0.0378	10%	3%	0-20%	70-130
Lab Control Spike	(LCS) Re	coverv:							
	(200) 110	0010111							
Analyte	spk conc	LCS	% REC	ACP 9	%REC				1
Gamma-BHC	0.00500	0.00421	84%	75-	125				
Aldrin	0.00500	0.00428	86%	75-	125				
4,4-DDE	0.00500	0.00375	75%	75-	125				
Dieldrin	0.00500	0.00460	92%	75-	125				
								1	
Surrogate Recover	у	ACP%	%REC	%REC	%REC	%REC	%REC	%REC	%REC
Sample I.D.			MB	090928-181~183	090928-184~186	090928-187~189	090928-190~192	090928-193~195	090928-196~198
Tetra-chloro-meta->	kylene	50-150	106%	100%	102%	101%	96%	97%	104%
Decachlorobipheny	1	50-150	78%	94%	87%	120%	83%	/6%	118%
		W DEC	%pcc	% DEC	0/ DEC	% DEC	%DEC	% PEC	%REC
Surroyate Necover	у	76REC	70REC	70KEC	70NEC	/0KLU	701120	7011LU	000000 000
Sample I.U.		090928-199-200	090928-201~202	090928-203	090928-204	090928-205	090928-206	090928-207	090928-208
l etra-chioro-meta-	kylene	96%	100%	94%	103%	101%	93%	97%	98%
Jecachiorobipheny	1	09%	00%	1370	10%	100%	90%	/ 170	70%
Surrogate Recover	v t	%REC	%REC	%REC	%REC	%REC	%RFC	1	
Sample I D	5	100028-209	090928-210	707.20	701 12 0	701.20			
Tetra-chloro-meta-v	vulene	96%	98%						
Decachlorobipheny		70%	64%						
	•		<u> </u>						
S.R. = Sample Result			* = Surrogate	fail due to mai	lrix interference	e (If Marked)			
sak conc = Snike Conce	entration		Note: LCS. N	IS. MSD are in	control there	afore results a	are in control.		1
%REC = Percent Recov	/erv								l
	very Na Percent R	PD Range							
ACP %REC = Accortat	le Percent P	Acovery Para	<b>a</b>						
	ne reident K	ecovery rong	6						
Analyzed and Reviews	ed Bv:	N							
									]
Final Reviewer:	Q								
								_	

1214 E.	Lexington A	Avenue. Po	Enviro 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-Chem, Inc 91766	Tel (909)59	0-5905 Fa	ax (909)590-5	907	
	Loxington			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	101 (000/00	0-0000 11			
QA/QC Report									
		An	alysis: E	PA 808	2 (PCB)				
Matrix: <u>Soil/Solid</u>					Date Analy	zed:	<u>9/28/2009</u>		
Unit:	<u>mg/Kg (PP</u>	<u>M)</u>							
Matrix Spike (I	MS)/Matrix \$	Spike Dup	licate (MSD	)					
Spiked Sample Lab I.D.: 090928-206 MS/MSD									
Analyte	spk conc	MS	%REC	MSD	%REC	%RPD	ACP % RPD	ACP %REC	
PCB (1016+1260)	1.00	1.08	108%	1.140	114%	5%	0-20%	70-130	
LCS STD REC	OVERY:	LCS	% REC	ACP	%REC				
LCS STD REC Analyte PCB (1016+1260)	OVERY: spk conc 0.100	LCS 0.116	% REC	ACP 75-	%REC				

	FECENING LAB:	INSTRUCTONS/REMARKS		09.09 28. 204	105	Joé	247	203	209	210														Send Results To: XLE(UPE/DE/R 100 111 N.M. G. J. H. H.	LONG BULCH, G. POBS	Attn: BERT VOLLER.	COC Nº 04541
(ME)	() () (S) (S) (S) () () () () () () () () () () () () ()			XXXX						7 4 A 4														Instructions/Remarks:			- Return Copy To Shipper Pink - Lab Copy
	NO.	5 5	TAINERS TAINERS	s Merk	ARE NO					4 4														<u>S</u>	(a) S	ry by. (Signature)	CHAIN
			MATRIX	7105						¥														Hesteried by Signatu	Reveal by (Signa	Received for Laborato	White – Sampler
	APT C	nature/Number)	SAMPLE I.D.	W-1-1-1.5	w-15	01-1-M	W-1-20	M-1-30	Otrim	0.5-1-M														Aledor 1530	9/ alog 8: W	Date/Time	_
TELDER	2 MAZ/	SAMPLERS: (SID	SAMPLE I.D. TIME HH-MM-SS	4:52	-10%±	制法	37:E	+C:+	Č, ř	so:8														(Signature)	(Signature)	(Signature)	5/08)
	PROJECT NO.	L.P. NO.) (PO. NO.)	DATE MM/DD/YY	9125709	2	3	4	5	φ	7	~	Ø	10	11	12	13	14	15	16	17	18	19	20	Relinquished by	Relaguished by:	Relinquished by:	ENV-02 REV 05

Date: October 23, 2009

Mr. Bert Vogler
Kleinfelder
620 W. 16th Street, Unit #F
Long Beach, CA 90813
Tel(562)432-1696 Fax(562)432-1796

Project: ARTIC Project No.: 103567/Env 2 Lab I.D.: 091016-21 through -40

Dear Mr. Vogler:

The **analytical results** for the soil samples, received by our lab on October 16, 2009, are attached. The samples were received chilled, intact and accompanying chain of custody.

Enviro-Chem appreciates the opportunity to provide you and your company this and other services. Please do not hesitate to call us if you have any questions.

Sincerely,

Curtis Desilets Vice President/Program Manager

Andy Wang Laboratory Manager

Eric Lu, Ph.D. Chief Chemist

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER :	Kleinfelder						
	620 W. 16th S	treet, Un	it #F				
	Long Beach, C	A 90813					
	Tel(562)432-1	696 Fax(5	62) 432-1	796			
PROJECT: A	RTIC						
PROJECT No	.: 103567/Env	2					
MATRIX: SOI	L			DATE 1	RECEIVED	10/16/09	
DATE SAMPL	ED: <u>10/15/09</u>			DATE A	ANALYZED:	10/16-17/	/09
REPORT TO:	Mr. BERT VOGLE	R		DATE	REPORTED	10/23/ <u>09</u>	
	EPA 5035/826	OB FOR FU	EL OXYGE	NATES; P	AGE 1 OF	2	
	UNITS: MG/H	KG = MILL.	IGRAM PE	R KILOGRA	4W = 55W		
SAMPLE		ETBE	TPE	MTRE	TAME	тва	 קר
I.D.	LAB I.D.	2100	5115			1011	22
KA-1-1	091016-21	ND	ND	ND	ND	ND	1
_KA-1-5	09 <u>1016-22</u>	ND	ND	NĎ	ND	NĎ	1
<u>KA-1-10</u>	091016-2 <u>3</u>	ND	ND	ND	ND	ND	1
KA-1-15	091016-24	ND	ND	ND	ND	ND	1
<u>KA-2-1</u>	091016-25	ND	ND	ND	<u>ND</u>	ND	1
KA-2-5	091016-26	ND	ND	ND	ND	ND	1
KA-2-10	091016-27	ND	ND	ND	<u></u>	ND	1
<u>KA-2-15</u>	091016-28	NĎ	ND	ND	ND _	ND	1
KA-3-1	091016-29	ND	ND	ND	ND	_ND	1
KA-3-6	09 <u>1016-30</u>	ND	ND	ND	ND	ND	1
KA-4-2.5	<u>091016-31</u>	ND	ND	N <u>D</u>	ND	<u>ND</u>	1
KA-4-4.5	091016-32	ND	ND	<u>ND</u>	ND	ND	1
KA-5-5.5	091016-33	ND	ND	ND	ND	ND	1
KA-5-10	091016-34	ND	ND	ND	ND	ND	1
KA-5-15	091016-35	ND	ND	ND	N <u>D</u>	ND	1
KA-6-3	091016-36	ND	ND	ND	ND	ND	1
<u>KA-6-5</u>	091016-37	ND	ND	ND	ND	ND	1
KA-7-15	<u>091016-38</u>	ND	ND	ND	ND	ND	<u> </u>
Method Bla	ank	ND	ND	ND	ND	ND	1
	PQL	0.01	0.01	0.005	5 0.01	0.05	
COMMENTS:							
DF = DILU	TION FACTOR						
POL = PRAC	CTICAL QUANTITA	ATION LIMI	ττ				
ACTUAL DET	FECTION LIMIT =	DF X PQI	6				
ND = NON-I	DETECTED OR BEI	LOW THE AC	CTUAL DET	RECTION I	LIMIT		
ETBE = ETH	HYL tert-BUTYL	ETHER	DIPE :	= ISOPRON	PYL ETHER		
MTBE = ME	THYL tert-BUTYI	L ETHER	TAME :	= TERT-AN	AAT WETHAI	L ETHER	
TBA = TER	FIARY BUTYL ALC	COHOL	1				
			X				
Data Revie CAL-DHS E	ewed and Approv LAP CERTIFICATI	ved by: E No.: 159	55		-		

## Enviro – Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER :	Kleinfelder								
	620 W. 16th S	620 W. 16th Street, Unit #F							
	Long Beach, CA 90813								
	Tel(562)432-1	696 Fax (5	62) 432-1	L796					
PROJECT: A	ARTIC	···· ,·							
PROJECT No	o.: 103567/Env	2							
MATRIX : SO	IL			DATE R	ECEIVED:	10/16/09			
DATE SAMPLED: 10/15/09 DATE ANALYZED: 10/21/09									
REPORT TO: Mr. BERT VOGLER DATE REPORTED: 10/23/09									
	EPA 5035/826	OB FOR FU	EL OXYGE	ENATES; PA	GE 2 OF	2			
	UNITS: MG/1	KG = MILL	IGRAM PE	R KILOGRA	M = PPM				
SAMPLE		ETBE	DIPE	MTBE	TAME	TBA	DF		
I.D.	LAB I.D.								
KA-7-20	091016-39	ND	ND	ND	ND	ND	1		
KA-8-5	091016-40	ND	ND	ND	ND	ND	1		
Method Bl	ank	ND	ND	ND	ND	ND	1		
Mechou br	ank	ND	ND	110	ND	ND.	<u> </u>		
	PQL	0.01	0.01	0.005	0.01	0.05			
COMMENTS:									
DF = DILU	TION FACTOR								
PQL = PRA	CTICAL QUANTITA	TION LIMI	τT						
ACTUAL DE	TECTION LIMIT =	DF X PQI	_						
ND = NON -	DETECTED OR BEI	JOW THE AC	CTUAL DE	TECTION L	IMIT				
ETBE = ET	HYL tert-BUTYL	ETHER	DIPE	= ISOPROP	L ETHER				
MTBE = ME	THYL tert-BUTYL	L ETHER	TAME	= TERT-AM	IL METHY	L ETHER			
TBA = TER	TIARY BUTYL ALC	TOROP .	Al.						
Data Revi	ewed and Approv	/ed by:	1/4						
CAL-DHS E	LAP CERTIFICATE	E No.: 155	55						

## Enviro – Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER :	Kleinfelder 620 W. 16th Street	, Unit #F	
	Tol (562) 432-1696 F	LJ Dy (562) 432-170	6
DPOTECT . AL	161(302)432-1090 F	ax (302/432 1/3	•
PROJECT: A	. 102567/8 2		
MATRIX COTI	.: 103567/Env 2		DAME RECEIVED, 10/16/00
MAIRIA: SUII			DATE RECEIVED: 10/10/09
DATE SAMPLE	50: <u>10/15/09</u>		DATE ANALIZED: 10/17/09
REPORT TO:	Mr. BERI VOGLER		DATE REPORTED: 10723709
SAMPLE I.D	.: KA-1-1		LAB I.D.: 091016-21
ANALIS.	IS: VOLATILE ORGANI	CS, EPA METHOD	5035/8260B, PAGE 1 OF 2
	UNIT: mg/kg = M	ILLIGRAM PER K	TLOGRAM = PPM
PARAMETER		SAMPLE RESUL	T POL XI
ACETONE		<u>ND</u>	0.020
BENZENE			0.005
BROMOBENZEI		<u>ND</u>	0.005
BROMOCHLOR	OMETHANE	<u>ND</u>	0.005
BROMODICHL	OROMETHANE	<u>ND</u>	0.005
BROMOFORM		<u>ND</u>	0.005
BROMOMETHAL	<u>NE</u>	<u>ND</u>	0.005
2-BUTANONE	(MEK)	<u>ND</u>	0.020
<u>N-BUTYLBEN</u>		<u>ND</u>	0.005
SEC-BUTYLB	ENZENE	<u>ND</u>	0.005
TERT-BUTYL	BENZENE	<u>ND</u>	0.005
CARBON DIS			0.010
CARBON TET	RACHLORIDE		0.005
CHLOROBENZ	<u>ENE</u>	<u>ND</u>	
CHLOROETHA	NE	<u>ND</u>	0.005
CHLOROFORM		ND	0.005
CHLOROMETH	ANE	ND	0.005
2-CHLOROTO	LUENE	<u>D</u>	0.005
4-CHLOROTO		ND	0.005
DIBROMOCHL	OROMETHANE	<u>ND</u>	0.005
1,2-DIBROM	<u>O-3-CHLOROPROPANE</u>		0.005
1,2-DIBROM	<u>OETHANE</u>	<u>ND</u>	0.005
DIBROMOMET	HANE		0.005
<u>1,2-DICHLO</u>	ROBENZENE	<u>ND</u>	0.005
<u>1,3-DICHLO</u>	ROBENZENE	<u>ND</u>	0.005
<u>1,4-DICHLO</u>	ROBENZENE	<u>ND</u>	0.005
DICHLORODI	FLUOROMETHANE	<u>ND</u>	0.005
<u>1,1-DICHLO</u>	ROETHANE	ND	0.005
1,2-DICHLO	ROETHANE	<u>ND</u>	0.005
<u>1,1-DICHLO</u>	ROETHENE	ND	0.005
<u>CIS-1,2-DI</u>	CHLOROETHENE	ND	0.005
<u>TRANS-1,2-</u>	DICHLOROETHENE	ND	0.005
<u>1,2-DICHLC</u>	ROPROPANE	ND	0.005

---- TO BE CONTINUED ON PAGE #2 -----

DATA REVIEWED AND APPROVED BY:_

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER: Kleinfelder						
620 W. 16th Street, V	Unit #F					
Long Beach, CA 90813						
Tel(562)432-1696 Fax	(562) 432-179	6				
PROJECT: ARTIC						
PROJECT No.: 103567/Env 2						
MATRIX:SOIL		DATE RECEIVED:10/16/09				
DATE SAMPLED: 10/15/09		DATE ANALYZED: 10/17/09				
REPORT TO: Mr. BERT VOGLER		DATE REPORTED: 10/23/09				
SAMPLE I.D.: KA-1-1		LAB I.D.: 091016-21				
ANALYSIS: VOLATILE ORGANICS	, EPA METHOD	5035/8260B, PAGE 2 OF 2				
UNIT: mg/Kg = MII	LLIGRAM PER H	KILOGRAM = PPM				
PARAMETER	SAMPLE RESUL	T PQL X1				
1,3-DICHLOROPROPANE	<u>ND</u>	0.005				
2,2-DICHLOROPROPANE	ND	0.005				
1,1-DICHLOROPROPENE	<u>ND</u>	0.005				
CIS-1,3-DICHLOROPROPENE	ND	0.005				
TRANS-1, 3-DICHLOROPROPENE	ND	0.005				
ETHYLBENZENE	<u>ND</u>	0.005				
2-HEXANONE	ND	0.020				
HEXACHLOROBUTADIENE	ND	0.005				
ISOPROPYLBENZENE	ND					
4 - ISOPROPYLTOLUENE	ND	0.005				
4-METHYL-2-PENTANONE (MIBK)	ND	0.020				
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005				
METHYLENE CHLORIDE	ND	0.010				
NAPHTHALENE	ND	0.005				
N-PROPYLBENZENE	ND	0.005				
STYRENE		0.005				
1, 1, 1, 2-TETRACHLOROETHANE	ND	0.005				
1, 1, 2, 2-TETRACHLOROETHANE	<u>ND</u>	0.005				
TETRACHLOROETHENE (PCE)	ND	0.005				
TOLUENE	NĎ	0.005				
1,2,3-TRICHLOROBENZENE	<u>ND</u>	0.005				
1,2,4-TRICHLOROBENZENE	ND	0.005				
1,1,1-TRICHLOROETHANE	ND	0.005				
1,1,2-TRICHLOROETHANE	DND	0.005				
TRICHLOROETHENE (TCE)	ND	0.005				
TRICHLOROFLUOROMETHANE	ND	0.005				
1,2,3-TRICHLOROPROPANE	ND	0.005				
1,2,4-TRIMETHYLBENZENE	ND	0.0 <u>05</u>				
1,3,5-TRIMETHYLBENZENE	ND	0.005				
VINYL CHLORIDE	ND	0.005				
M/P-XYLENE	ND	0.010				
O-XYLENE	ND	0.005				
COMMENTS POL = PRACTICAL OUANT	ITATION LIMI	Г				
ND = NON-DETECTED OR BELOW THE	POL /					

DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

/A

## Enviro – Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Long Beach, CA 9081 Tel(562)432-1696 Fa	Unit #F 3 x(562)432-1796	
PROJECT: ARTIC		
PROJECT No : 103567/Epy 2		
MATPIX COTL	עענו	$\mathbf{P} = \mathbf{P} \mathbf{P} \mathbf{P} \mathbf{P} \mathbf{P} \mathbf{P} \mathbf{P} \mathbf{P}$
DATE SAMPLED 10/15/09	DA1	E KECEIVED: 10/10/09
$\frac{10713709}{1000}$	DAT	10/10/05
REPORT TO: ME: BERT VOGLER	DAI	E REPORTED: 10/25/09
SAMPLE I.D.: KA-1-5	LAE	I.D.: 091016-22
ANALYSIS: VOLATILE ORGANIC	S, EPA METHOD 50	35/8260B, PAGE 1 OF 2
DADAMEMED	CANOLE DECITE	DOL VI
ACETONE	SAMPLE RESULT	POD XI
ACETONE		0.020
		0.005
		0.005
		0.005
BROMODICHLOROMEIHANE		0.005
		0.005
2 RUMONE (MEK)		0.005
		0.025
		0.005
TEDT_DUTIDENZENE		0.005
		0.005
CARBON TETRACULORIDE		0.005
CHLODODENZENE		0.005
		0.005
		0.005
		0.005
		0.005
		0.005
		0.005
1 2-DIBROMO-3-CHLORODRODANE		0.005
1 2-DIBROMOFTHANE		0.005
	ND	0.005
1 2-DICHLOROBENZENE		0.005
1 3-DICHLOROBENZENE	<u></u>	0.005
1 4-DICHLOROBENZENE	ND	0.005
		0.005
1 1-DICHLOROFTHANE		0.005
1 2-DICHLOROETHANE		0.005
1  1 = DTCHLOROFTHENE		0.005
	<u></u>	0.005
TRANS-1 2-DICHLOPOFTHENE	ND	0.005
1 2-DICHLORODRODANE		0.005
1,2-DICHDONOFROFAUE	110	

----- TO BE CONTINUED ON PAGE #2 -----

DATA REVIEWED AND APPROVED BY:__

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER :	Kleinfelder						
	620 W. 16th Street,	Unit #F					
	Long Beach, CA 90813	3					
	Tel(562)432-1696 Fax	(562) 432-179	6				
PROJECT: A	PROJECT: ARTIC						
PROJECT No.: 103567/Env 2							
MATRIX: SOI	С.		DATE RECEIVED:10/16/09				
DATE SAMPLE	_ ED:10/15/09		DATE ANALYZED: 10/16/09				
REPORT TO:	Mr. BERT_VOGLER		DATE REPORTED: 10/23/09				
SAMPLE I.D	.: KA-1-5		LAB I.D.: 091016-22				
ANALYS	IS: VOLATILE ORGANICS	, EPA METHOD	5035/8260B, PAGE 2 OF 2				
	UNIT: mg/Kg = MI	LLIGRAM PER H	KILOGRAM = PPM				
PARAMETER		SAMPLE RESUL	T POL X1				
1,3-DICHLO	ROPROPANE	ND	0.005				
2,2-DICHLO	ROPROPANE	ND	0.005				
1,1-DICHLO	ROPROPENE	ND	0.005				
CIS-1,3-DI	CHLOROPROPENE	ND	0,005				
TRANS-1,3-	DICHLOROPROPENE	ND	0.005				
ETHYLBENZE	NE	ND	0.005				
2-HEXANONE		ND	0.020				
HEXACHLORO	BUTADIENE	ND	0.005				
ISOPROPYLE	ENZENE	ND	0.005				
4 - ISOPROPY	LTOLUENE	ND	0.005				
4-METHYL-2	-PENTANONE (MIBK)	ND	0.020				
METHYL ter	<u>t-BUTYL ETHER (MTBE)</u>	ND	0.005				
METHYLENE ·	CHLORIDE	<u>ND</u>	0.010				
NAPHTHALEN	E	ND	0.005				
N-PROPYLBE	NZENE	<u>NĎ</u>	0.005				
ST <u>YRENE</u>		ND	0.005				
<u>1,1,1,2-TE</u>	TRACHLOROETHANE	ND	0.005				
<u>1,1,2,2-TE</u>	TRACHLOROETHANE	ND	0.005				
TETRACHLOR	<u>OETHENE (PCE)</u>	ND	0.005				
TOLUENE		ND	0.005				
<u>1,2,3-TRIC</u>	HLOROBENZENE	ND	0.005				
<u>1,2,4-TRIC</u>	HLOROBENZENE	NĎ	0.005				
<u>1,1,1-TRIC</u>	HLOROETHANE	<u>ND</u>	0.005				
<u>1,1,2-TRIC</u>	HLOROETHANE	ND	0.005				
TRICHLOROE	THENE (TCE)	ND	0.005				
TRICHLOROF	LUOROMETHANE	<u>ND</u>	0.005				
<u>1,2,3-TRIC</u>	HLOROPROPANE	<u>ND</u>	<u>0.005</u>				
<u>1,2,4-TRIM</u>	ETHYLBENZENE	ND	0.005				
<u>1,3,5-TRIM</u>	ETHYLBENZENE	<u>ND</u>	0.005				
VINYL CHLO	RIDE	ND	0.005				
<u>M/P-XYLENE</u>		<u>ND</u>	0.010				
<u>O-XYLENE</u>		<u>ND</u>	0.005				
COMMENTS P	QL = PRACTICAL QUANT	ITATION LIMIT	ſ				
ND = NON-D	ETECTED OR BELOW THE	PQL					
DATA REVIE	WED AND APPROVED BY:	/X					

CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER: Kleinfelder		
620 W. 16th Street,	Unit #F	
Long Beach, CA 9081	3	
Tel(562)432-1696 Fa	x (562) 432-179	6
PROJECT: ARTIC	, .	
PROJECT No.: 103567/Env 2		
MATRIX:SOIL		DATE RECEIVED:10/16/09
DATE SAMPLED:10/15/09		DATE ANALYZED:10/16/09
REPORT TO:Mr. BERT VOGLER		DATE REPORTED: 10/23/09
SAMPLE I.D.: KA-1-10		LAB I.D.: 091016-23
ANALYSIS: VOLATILE ORGANIC	S, EPA METHOD	5035/8260B, PAGE 1 OF 2
UNIT: $mg/Kg = M$	ILLIGRAM PER I	KILOGRAM = PPM
PARAMETER	SAMPLE RESUL	T PQL X1
ACETONE	<u>ND</u>	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND ·	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	NĎ	0.005
BROMOFORM	<u>ND</u>	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	<u></u> <u>D</u>	0.020
N-BUTYLBENZENE	ND	0,005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENÉ	ND	0.005
CARBON DISULFIDE	<u></u> <u>D</u>	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	<u>ND</u>	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	<u>ND</u>	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	<u></u>	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
<u>DIBROMOMETHANE</u>	ND	0.005
1,2-DICHLOROBENZENE	<u></u> D	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	<u>ND</u>	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	<u>NĎ</u>	0.005
1,2-DICHLOROETHANE	<u>ND</u>	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	<u>ND</u>	0.005
1,2-DICHLOROPROPANE	ND	0.005

---- TO BE CONTINUED ON PAGE #2 -----

l

DATA REVIEWED AND APPROVED BY:__

Enviro – Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER: Kleinfelder		
620 W. 16th Street, U	Jnit #F	
Long Beach, CA 90813		
Tel(562)432-1696 Fax	(562) 432-1796	
PROJECT: ARTIC		
PROJECT No.: 103567/Env 2		
MATRIX: SOIL	Γ	DATE RECEIVED: 10/16/09
DATE SAMPLED: 10/15/09	Γ	DATE ANALYZED: 10/16/09
REPORT TO: Mr. BERT VOGLER	Γ	DATE REPORTED: 10/23/09
SAMPLE I.D.: KA-1-10	I	JAB I.D.: 091016-23
ANALYSIS: VOLATILE ORGANICS	, EPA METHOD :	503578260B, PAGE 2 OF 2
UNIT: mg/kg = MIL	LIGRAM PER KI	LUGRAM = PPM
PARAMETER :	SAMPLE RESULT	P 002
1,3-DICHLOROPROPANE		0.005
		0.005
CIG 1 2 DICHLOROPENE		0,005
		0.005
TRANS-1, 3-DICHLOROPROPENE		0.005
		0.000
		0.005
		0.005
		0.005
$\frac{4 - 150 \text{ PROPIDIOLOBNE}}{4 - \text{METRY}} = 2 - \text{DENTANONE} (MIOK)$		0.030
<u>4-METRID-2-PENIANONE (MIDK)</u> METHVI, tert-BUTVI, ETHER (MTBE)		0.005
METHYLENE CHLOPIDE	ND	0.010
NA DUTHA LENG		0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1.1.1.2-TETRACHLOROETHANE	ND	0.005
1.1.2.2-TETRACHLOROETHANE	ND	0,005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	_0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	<u></u> D	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	<u>ND</u>	0.0 <u>0</u> 5
COMMENTS PQL = PRACTICAL QUANTI	TATION LIMIT	
ND = NON-DETECTED OR BELOW THE	PQL /	
DATA REVIEWED AND APPROVED BY:	IN	
CAL-DHS CERTIFICATE # 1555 _	W	

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER: Kleinfelder		
620 W. 16th Street,	, Unit #F	
Long Beach, CA 9081	13	
Tel(562)432-1696 Fa	ax (562) 432-179	6
PROJECT: ARTIC		
PROJECT No.: 103567/Env 2		
MATRIX:SOIL		DATE RECEIVED:10/16/09
DATE SAMPLED:10/15/09		DATE ANALYZED: 10/16/09
REPORT TO: Mr. BERT VOGLER		DATE REPORTED: 10/23/09
SAMPLE I.D.: KA-1-15		LAB I.D.: 091016-24
ANALYSIS: VOLATILE ORGANIC	CS, EPA METHOD	5035/8260B, PAGE 1 OF 2
UNIT: $mg/Kg = M$	IILLIGRAM PER K	ILOGRAM = PPM
PARAMETER	SAMPLE RESUL	r PQL X1
ACETONE	ND	0.020
BENZENE	<u>ND</u>	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	<u> </u>	0.005
BROMODICHLOROMETHANE	<u>ND</u>	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
<u>2-BUTANONE (MEK)</u>	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	<u>ND</u>	0,005
<u>TERT-BUTYLBENZENE</u>	ND	0,005
CARBON_DISULFIDE	<u> </u>	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	<u>ND</u>	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	<u>ND</u>	0.005
<u>2-CHLOROTOLUENE</u>	ND	0.005
4 - CHLOROTOLUENE	<u>ND</u>	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMQ-3-CHLOROPROPANE	ND	0.005
<u>1,2-DIBROMOETHANE</u>	<u>ND</u>	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	<u>ND</u>	0.005
<u>1,3-DICHLOROBENZENE</u>	ND	0.005
1,4-DICHLOROBENZENE	<u>ND</u>	0.005
DICHLORODIFLUOROMETHANE	D	0.005
1,1-DICHLOROETHANE	<u>ND</u>	0.005
1, 2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1, 2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

---- TO BE CONTINUED ON PAGE #2 -----

s

DATA REVIEWED AND APPROVED BY:

Enviro – Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Long Beach, CA 90813 Tel(562)432-1696 Fax	Unit #F 3 x(562)432-179	6				
PROJECT: ARTIC						
PROJECT No.: 103567/Env 2						
MATRIX: SOIL		DATE RECEIVED:10/16/09				
DATE SAMPLED: 10/15/09		DATE ANALYZED: 10/16/09				
REPORT TO: Mr. BERT VOGLER		DATE REPORTED: 10/23/09				
SAMPLE I.D.: KA-1-15		LAB I.D.: 091016-24				
ANALYSIS: VOLATILE ORGANICS UNIT: mg/Kg = MI	3, EPA METHOD LLIGRAM PER K	5035/8260B, PAGE 2 OF 2 XILOGRAM = PPM				
PARAMETER	SAMPLE RESUL					
1.3-DICHLOROPROPANE	ND	0 005				
2.2-DICHLOROPROPANE		0.005				
1,1-DICHLOROPROPENE	<u>ND</u>	0.005				
CIS-1, 3-DICHLOROPROPENE	ND	0,005				
TRANS-1, 3-DICHLOROPROPENE	ND	0.005				
ETHYLBENZENE	ND	0.005				
2-HEXANONE	ND	0.020				
HEXACHLOROBUTADIENE	ND	0.005				
ISOPROPYLBENZENE	ND	0.005				
4 - ISOPROPYLTOLUENE	ND	0.005				
4-METHYL-2-PENTANONE (MIBK)	ND	0,020				
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005				
METHYLENE CHLORIDE	ND	0.010				
NAPHTHALENE	ND	0.005				
<u>N-PROPYLBENZENE</u>	ND	0.005				
STYRENE	ND	0.005				
1,1,1,2-TETRACHLOROETHANE	ND	0.005				
1,1,2,2-TETRACHLOROETHANE	ND	0.005				
TETRACHLOROETHENE (PCE)	<u>ND</u>	0.005				
TOLUENE	<u>ND</u>	0 <u>.005</u>				
1,2,3-TRICHLOROBENZENE	ND	0.005				
1,2,4-TRICHLOROBENZENE	<u>ND</u>	0.005				
1,1,1-TRICHLOROETHANE	ND	0.005				
1, 1, 2-TRICHLOROETHANE	<u>ND</u>	0.005				
TRICHLOROETHENE (TCE)	ND	0.005				
TRICHLOROFLUOROMETHANE	<u>ND</u>	0.005				
1,2,3-TRICHLOROPROPANE	<u>ND</u>	0.005				
1, 2, 4 - TRIMETHYLBENZENE		0.005				
1,3,5-TRIMETRYLBENZENE	<u>ND</u>	0.005				
VINIL CHLORIDE	<u>ND</u>	0.005				
	<u>ND</u>	0.010				
U-ALLENE		0.005				
ND - NON DEPERTURN OF DELON THE	TATION LIMIT					
NAUY DEVIENTED OK BEROM LHE	PQL A.					

DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

.

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER: Kleinfelder		
620 W. 16th Street	, Unit #F	
Long Beach, CA 908	13	
Tel(562)432-1696 Fa	ax (562) 432-179	96
PROJECT: ARTIC		
PROJECT No.: 103567/Env 2		
MATRIX: SOIL		DATE RECEIVED:10/16/09
DATE SAMPLED:10/15/09		DATE ANALYZED:10/16/09
REPORT TO:Mr. BERT VOGLER		DATE REPORTED: 10/23/09
SAMPLE I.D.: KA-2-1		LAB I.D.: 091016-25
ANALYSIS: VOLATILE ORGANI	CS, EPA METHOD	5035/8260B, PAGE 1 OF 2
UNIT: $mg/Kg = M$	ILLIGRAM PER	KILOGRAM = PPM
PARAMETER	SAMPLE RESUL	T POL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND_	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND_	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	NĎ	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4 - CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1, 2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	<u></u> ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1, 3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND_	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0_005
TRANS-1, 2-DICHLOROETHENE	<u>ND</u>	0.005
1,2-DICHLOROPROPANE	ND	0.005

---- TO BE CONTINUED ON PAGE #2 ----

DATA REVIEWED AND APPROVED BY:

Enviro – Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, U Long Beach, CA 90813 Tel(562)432-1696 Fax(	'nit #F (562)432-179	6	
PROJECT: ARTIC			
PROJECT No.: 103567/Env 2			
MATRIX:SOIL		DATE RECEIVED: 10/16/09	
DATE SAMPLED: 10/15/09		DATE ANALYZED: 10/16/09	
REPORT TO: Mr. BERT VOGLER		DATE REPORTED: 10/23/09	
SAMPLE I.D.: KA-2-1		LAB I.D.: 091016-25	
ANALYSIS: VOLATILE ORGANICS, UNIT: mg/Kg = MIL	EPA METHOD LIGRAM PER K	5035/8260B, PAGE 2 OF 2 XILOGRAM = PPM	
PARAMETER S	SAMPLE RESUL	T PQL X1	
1,3-DICHLOROPROPANE	ND	0.005	
2,2-DICHLOROPROPANE	ND	0,005	
1,1-DICHLOROPROPENE	ND	0.005	
CIS-1,3-DICHLOROPROPENE	ND	0,005	
TRANS-1, 3-DICHLOROPROPENE	<u>ND</u>	0.005	
ETHYLBENZENE	ND	0.005	
2-HEXANONE		0.020	
HEXACHLOROBUTADIENE	ND	0.005	
ISOPROPYLBENZENE	ND	0.005	
4 - ISOPROPYLTOLUENE	ND	0.005	
4-METHYL-2-PENTANONE (MIBK)	ND	0.020	
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005	
METHYLENE CHLORIDE	ND	0.010	
NAPHTHALENE	ND	0.005	
N-PROPYLBENZENE	<u>NĎ</u>	0.005	
STYRENE	ND	0.005	
1, 1, 1, 2-TETRACHLOROETHANE	<u>ND</u>	0.005	
1,1,2,2-TETRACHLOROETHANE	<u>ND</u>	0.005	
TETRACHLOROETHENE (PCE)	ND	0.005	
TOLUENE	ND	0.005	
1,2,3-TRICHLOROBENZENE	<u> </u>	0.005	
1,2,4-TRICHLOROBENZENE	ND	0_,005	
1,1, <u>1</u> -TRICHLOROETHANE	ND	0.005	
1,1,2-TRICHLOROETHANE	<u>ND</u>	0.005	
TRICHLOROETHENE (TCE)	<u>ND</u>	0.005	
TRICHLOROFLUOROMETHANE	ND	0.005	
1,2,3-TRICHLOROPROPANE	<u>ND</u>	0.005	
1,2,4-TRIMETHYLBENZENE	ND	0.005	
1,3,5-TRIMETHYLBENZENE	<u>ND</u>	0.005	
VINYL CHLORIDE	ND	0.005	
M/P-XYLENE	ND	0.010	
O-XYLENE	ND	0.005	
COMMENTS PQL = PRACTICAL QUANTI	TATION LIMIT	ſ	
ND = NON-DETECTED OR BELOW THE	PQL /		
DATA REVIEWED AND APPROVED BY:			

CAL-DHS CERTIFICATE # 1555

CM.

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER: Kleinfelder		
620 W. 16th Street,	, Unit #F	
Long Beach, CA 908	13	
Tel(562)432-1696 Fa	ax (562) 432-179	6
PROJECT: ARTIC		
PROJECT No.: 103567/Env 2		
MATRIX:SOIL		DATE RECEIVED:10/16/09
DATE SAMPLED: 10/15/09		DATE ANALYZED: $10/16/09$
REPORT TO:Mr. BERT VOGLER		DATE REPORTED: $10/23/09$
SAMPLE I.D.: KA-2-5		LAB I.D.: 091016-26
ANALYSTS, VOLATILE OBCANT	00 EDA METUOD	5035/8260B BACE 1 OF 2
INIT TO A COMPANY	ULLICONN DED W	SUSSINGED DEV
ONIT: mg/Kg = M	ILLIGRAM PER N	TLOGRAM = PPM
PARAMETER	SAMPLE RESULT	L POL XI
ACETONE	<u>. ND</u>	0.020
BENZENE	<u>ND</u>	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE		0.005
BROMODICHLOROMSTRANE		0.005
	ND	0.005
BROMOMETRANE	<u>ND</u>	0.005
<u>Z-BUTANONE (MEK)</u>		0.020
		0.005
SEC-BUTYLBENZENE	ND	0.005
CARDON RIGHTERS		0.005
CARBON DISULFIDE		0.010
CARBON TETRACHLORIDE	<u>ND</u>	0.005
CHLOROBENZENE		0.005
CHLOROETHANE	<u>ND</u>	0.005
	ND	0.005
	<u>ND</u>	0.005
	<u>ND</u>	0.005
4-CHLOROTOLUENE	ND	
DIBROMOCHLOROMETHANE	<u>ND</u>	0.005
1, 2-DIBROMO-3-CHLOROPROPANE		0.005
1,2-DIBROMOETHANE	<u>ND</u>	0.005
DIBROMOMETHANE	ND	0.005
<u>1,2-DICRLOROBENZENE</u>	<u></u>	0.005
1, 3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	<u>ND</u>	0.005
DICHLORODIFLUOROMETHANE	<u>ND</u>	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	
1,1-DICHLOROETHENE	<u>ND</u>	0.005
CIS-1, 2-DICHLOROETHENE	ND	0.005
TRANS-1,2-DICHLOROETHENE	<u>ND</u>	0.005
1,2-DICHLOROPROPANE	ND	0.005

---- TO BE CONTINUED ON PAGE #2 ----

DATA REVIEWED AND APPROVED BY:___

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Long Beach, CA 90813 Tel(562)432-1696 Fax	Unit #F } :(562)432-1794	6
PROJECT: ARTIC		
PROJECT No.: 103567/Env 2		
MATRIX: <u>SOIL</u>		DATE RECEIVED:10/16/09
DATE SAMPLED: 10/15/09		DATE ANALYZED: 10/16/09
REPORT TO: Mr. BERT VOGLER		DATE REPORTED: 10/23/09
SAMPLE I.D.: KA-2-5		LAB I.D.: 091016-26
ANALYSIS: VOLATILE ORGANICS	, EPA METHOD	5035/8260B, PAGE 2 OF 2
UNIT: mg/Kg = MI	LLIGRAM PER K	ILOGRAM = PPM
PARAMETER	SAMPLE RESULT	r PQL X1
1,3-DICHLOROPROPANE	ND	0.005
2, 2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4 - ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0,010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1, 1, 2, 2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	NĎ	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1_TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005
COMMENTS PQL = PRACTICAL OUANT	ITATION LIMIT	
ND = NON-DETECTED OR BELOW THE	POL /	

DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

IN

# 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER :	Kleinfelder		
	620 W. 16th Street	. Unit #F	
	Long Beach, CA 908	13	
	Tel(562)432-1696 F	 ax (562) 432-179	6
PROJECT : A	RTIC	un(002)452 175	5
PROJECT No	: 103567/Env 2		
MATRIX	T. 1000007/1110 2		DATE DECETHED. 10/16/00
DATE SAMPL	₽ ED·10/15/09		DATE RECEIVED: 10/16/09
REPORT TO .	Mr BERT VOGLER		DATE REPORTED. 10/22/00
REPORT TO.	HI: BERI VOGLER		DATE REPORTED: 10/25/09
SAMPLE I.D	.: KA-2-10		LAB I.D.: 091016-27
ANALVS	TS: VOLATILE OPCANT		5035/0260B DACE 1 OF 2
MINU 3	INIT: ma/Va - )	US, EPA METROD	SUSSION - DEM
	ONIT: Mg/Kg = 1	ALLDIGRAM PER P	m = PPM
ACETONE		SAMPLE RESUL	
ACEIONE DENZENE		ND	0.020
BENZENE DROMORENZE	NE	ND ND	0.005
BROMOCHLOR		<u>ND</u>	0.005
BROMOCHLOR		ND	0.005
BROMODICHL BROMOROBM	OROMETHANE		0.005
BROMORORM	ND	ND	0.005
2 - DUTANONE	(MPV)		0.005
	(MER)		0.020
<u>N-DUIIDEN</u>			0.005
TEPT-BUTTU			0.005
CAPBON DIS	HIRIDR		0.005
CARBON TET			0.010
CHLOROBENZ	ENE	ND	0.005
CHLOROSTHA	NR NR		0.005
CHLOROFORM	<u> </u>	ND ND	0.005
CHLOROMETH	ANE		0.005
2-CHLOROTO	LUENE	ND	0.005
4 - CHLOROTO	LUENE	ND	0.005
DIBROMOCHL	OROMETHANE		0.005
1.2 - DIBROM	0-3-CHLOROPROPANE		0.005
1.2 - DTBROM	OETHANE	ND	0.005
DIBROMOMET	HANE	ND	0.005
1.2 - DICHLO	ROBENZENE	ND	0.005
1.3-DICHLO	ROBENZENE	ND	0.005
1.4 - DICHLO	ROBENZENE	ND	0.005
DICHLORODI	FLUOROMETHANE	ND	0.005
1.1 - DICHLO	ROETHANE		0.005
1.2 - DICHLO	ROETHANE	ND	0.005
1, 1 - DICHLO	ROETHENE	ND	0,005
CIS-1.2-DI	CHLOROETHENE	ND	0,005
TRANS-1.2-	DICHLOROETHENE		0,005
1,2-DICHLC	ROPROPANE	ND	0.005

---- TO BE CONTINUED ON PAGE #2 ----

DATA REVIEWED AND APPROVED BY:___

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: ARTIC PROJECT No.: 103567/Env 2 MATRIX:SOIL DATE RECEIVED:10/16/09 DATE SAMPLED: 10/15/09 DATE ANALYZED: 10/16/09 REPORT TO:Mr. BERT VOGLER DATE REPORTED: 10/23/09 SAMPLE I.D.: KA-2-10 LAB I.D.: 091016-27 ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM PARAMETER SAMPLE RESULT PQL X1 1, 3-DICHLOROPROPANE ND 0,005 2, 2-DICHLOROPROPANE ND 0.005 1,1-DICHLOROPROPENE ND 0.005 CIS-1,3-DICHLOROPROPENE ND 0.005 TRANS-1, 3-DICHLOROPROPENE ND 0.005 ETHYLBENZENE ND 0.005 2-HEXANONE ND 0.020 HEXACHLOROBUTADIENE ND 0.005 0.005 ISOPROPYLBENZENE ND 0.005 4 - ISOPROPYLTOLUENE ND 4-METHYL-2-PENTANONE (MIBK) ND 0.020 METHYL tert-BUTYL ETHER (MTBE) ND 0.005 METHYLENE CHLORIDE NĎ 0.010 NAPHTHALENE ND 0.005 0.005 N-PROPYLBENZENE ND STYRENE ND 0.005 1,1,1,2-TETRACHLOROETHANE ND 0.005 1, 1, 2, 2-TETRACHLOROETHANE ND 0.005 TETRACHLOROETHENE (PCE) ND 0.005 TOLUENE ND 0.005 1,2,3-TRICHLOROBENZENE ND 0.005 ND 0.005 1,2,4-TRICHLOROBENZENE 1, 1, 1-TRICHLOROETHANE ND 0.005 0.005 1,1,2-TRICHLOROETHANE ND TRICHLOROETHENE (TCE) ND 0.005 TRICHLOROFLUOROMETHANE ND 0.005 ND 1, 2, 3-TRICHLOROPROPANE 0.005 1,2,4-TRIMETHYLBENZENE ND 0.005 1,3,5-TRIMETHYLBENZENE ND 0.005 VINYL CHLORIDE ND 0.005 ND 0.010 M/P-XYLENE <u>O-XYLENE</u> ND 0.005 COMMENTS POL = PRACTICAL QUANTITATION LIMIT ND = NON-DETECTED OR BELOW THE PQL

DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER: Kleinfel	.der			
620 W. 1	.6th Street, U	nit #F		
Long Bea	ach, CA 90813			
Tel(562)	432-1696 Fax(	562) 432-179	6	
PROJECT: ARTIC				
PROJECT No.: 103567	/Env 2			
MATRIX · SOTI	,		DATE RECEIVED: 10/16/09	
DATE SAMPLED . 10/15	/กจ		DATE ANALYZED: 10/16/09	
REPORT TO $Mr$ BERT	VOGLER		DATE REPORTED $10/23/09$	
SAMPLE I.D.: KA-2-3	15		LAB I.D.: 091016-28	
ANALYSTS: VOLAT	THE ORGANICS.	EPA METHOD	5035/8260B, PAGE 1 OF	2
UNTT	$m \alpha/K \alpha = MIL$	LIGRAM PER I	TLOGRAM = PPM	-
PARAMETER	·	AMPLE RESUL		
ACETONE	2	ND	0 020	
BENZENE			0.005	
BROMOBENZENE			0.005	
BROMOCHLOPOMETHANE			0.005	·
BROMODICHLOROMETHAN			0.005	
BROMOFORM	10	ND	0_005	
BROMOMETHANE			0.005	
2-BUTANONE (MEK)			0.020	
N_BUTYLERNZENE		ND	0.020	
SEC-BUTYLBENZENE			0.005	
TERT-BUTYLBENZENE			0.005	
CARBON DISULFIDE			0.010	
CARBON TETRACHLORI			0_005	
CHLOROBENZENE			0.005	
CHLOROETHANE			0.005	
CHLOROFORM			0.005	
CHLOROMETHANE			0,005	
2 - CHLOROTOLUENE		ND	0.005	
4 - CHLOROTOLUENE			0.005	
DIBROMOCHLOROMETHA	NE		0.005	
1.2-DIBROMO-3-CHLO	ROPROPANE	ND	0,005	-
1 2-DIBROMOETHANE			0.005	
DIBROMOMETHANE		ND	0.005	
1_2-DICHLOROBENZEN	E		0.005	
1 3-DICHLOROBENZEN	E	ND	0.005	
1 4-DICHLOROBENZEN	<u> </u>		0,005	
DICHLORODIELHOROME	THANE		0.005	
1 1-DICHLOROETHANE			0.005	
1 2-DICHLOROFTHANE			0.005	
1 1-DICHLORORTHENE			0.005	
CIS-1 2-DICHLOROFT			<u></u>	
TRANG_1 2-DICHLOROEI	ETHENE		0.005	
	<u>1971111110</u>		0.005	
TIT DIGUDOROFIOPAN		<u></u> /		

---- TO BE CONTINUED ON PAGE #2 -----

N

DATA REVIEWED AND APPROVED BY: ___

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER: K	leinfelder				
6	620 W. 16th Street, Unit #F				
I	Long Beach, CA 90813				
I	Tel $(562)$ 432-1696 Fax $(562)$ 432-1796				
PROJECT: ART	TIC	• •			
PROJECT No .:	103567/Env 2				
MATRIX: SOIL			DATE RECEIVED 10/16/09		
DATE SAMPLE	0:10/15/09		DATE ANALYZED: $10/16/09$		
REPORT TO:Mr	BERT VOGLER		DATE REPORTED: $10/23/09$		
				_	
SAMPLE I.D.:	KA-2-15		LAB I.D.: 091016-28		
				-	
ANALYSIS	: VOLATILE ORGANIC	S, EPA METHOD	5035/8260B, PAGE 2 OF 2		
	UNIT: mg/Kg = MI	LLIGRAM PER K	ILOGRAM = PPM		
PARAMETER		SAMPLE RESUL	r PQL X1		
1,3-DICHLORO	PROPANE	ND	0.005		
2,2-DICHLORO	OPROPANE	ND	0,005	_	
1,1-DICHLORO	OPROPENE	ND	0.005		
CIS-1,3-DICH	LOROPROPENE	ND	0.005	_	
TRANS-1,3-DI	CHLOROPROPENE	ND	0,005		
ETHYLBENZENE	G	ND	0.005	_	
2-HEXANONE		ND	0.020	_	
HEXACHLOROBU	JTADIENE	ND	0.005		
ISOPROPYLBEN	NZENE	ND	0.005		
4-ISOPROPYLT	COLUENE	ND	0.005	_	
<u>4-METHYL-2-9</u>	PENTANONE (MIBK)	ND	0.020		
METHYL tert-	-BUTYL ETHER (MTBE)	ND	0.005		
METHYLENE CH	HLORIDE	ND	0.010		
NAPHTHALENE		ND	0.005		
N-PROPYLBENZ	ZENE	ND	0.005	_	
STYRENE		ND	0.005		
<u>1,1,1,2-TETE</u>	RACHLOROETHANE	ND	0.005		
<u>1,1,2,2-TETH</u>	RACHLOROETHANE	<u>ND</u>	0.005		
TETRACHLOROE	ETHENE (PCE)	ND	0.005	_	
TOLUENE		ND	0.005		
1,2,3-TRICHI	LOROBENZENE	ND	0.005		
<u>1,2,4-TRICHI</u>	LOROBENZENE	ND	0.005		
<u>1,1,1-TRICH</u>	LOROETHANE	ND	0.005		
1,1,2-TRICHI	LOROETHANE	ND	0.005	_	
TRICHLOROETH	HENE (TCE)	ND	0.005		
TRICHLOROFLU	<u>UOROMETHANE</u>	ND	0.005		
<u>1,2,3-TRICHI</u>	LOROPROPANE	ND	0.005		
<u>1,2,4-TRIME</u>	THYLBENZ <u>ENE</u>	ND	0.005	_	
<u>1,3,5-TRIME</u>	THYLBENZENE	<u>ND</u>	0.005		
VINYL CHLOR	IDE	ND	0.005	_	
<u>M/P-XYLENE</u>		<u>ND</u>	<u>0.010</u>		
O-XYLENE		ND	0.005		
COMMENTS PQ	L = PRACTICAL QUANT	ITATION LIMIT	1		
ND = NON - DE'	TECTED OR BELOW THE	PQL //			
DATA REVIEW	ED AND APPROVED BY:	/AX			
CAL-DHS CER	TIFICATE # 1555				

## 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER :	Kleinfelder			
	620 W. 16th Street. Unit #F			
	Long Beach, CA 908	13		
	Tel (562) 432-1696 F	 ax (562) 432-179	6	
PROJECT : A	RTIC		•	
PROJECT No	: 103567/Env 2			
MATRIX SOL	L. 200007,2017 2		DATE RECRIVED.10/16/09	
DATE SAMPLI	≝ SD:10/15/09		DATE ANALYZED, 10/16/09	
REPORT TO:	Mr. BERT VOGLER		DATE REPORTED $10/23/09$	
			5/11 KEPOKIES . <u>10/25/02</u>	
SAMPLE I.D	.: KA-3-1		LAB I.D.: 091016-29	
ANDT VO				
ANALIS.	IS: VOLATILE ORGANIC	US, EPA METHOD	SUSS/8260B, PAGE I OF 2	
	UNIT: mg/Kg = M	ILLIGRAM PER 1	KILOGRAM = PPM	
PARAMETER		SAMPLE RESUL		
ACETONE		<u>ND</u>	0.020	
BENZENE		<u>ND</u>	0.005	
BROMOBENZEI		ND	0.005	
BROMOCHLOR	<u>OMETHANE</u>	<u>ND</u>	0.005	
BROMODICHL	OROMETHANE	<u>ND</u>	0.005	
BROMOFORM		<u>ND</u>	0.005	
BROMOMETHAN	NE (MDW)	<u>ND</u>	0.005	
2-BUTANONE	(MEK)	<u>ND</u>	0.020	
N-BUTYLBEN	ZENE	<u>ND</u>	0.005	
SEC-BUTYLB		ND	0.005	
TERT-BUTYL	BENZENE	ND	0.005	
CARBON DIS	ULFIDE	<u>ND</u>	0.010	
CARBON TET	RACHLORIDE	ND _	0.005	
CHLOROBENZ	ENE	ND	0.005	
CHLOROETHA	NE	ND	0.005	
CHLOROFORM		<u>ND</u>	0.005	
CRLOROMETH	ANE	ND	0.005	
2-CHLOROTO	LUENE	<u>ND</u>	0.005	
<u>4 - CHLOROTO</u>	LUENE	ND	0.005	
DIBROMOCHL	OROMETHANE	<u>ND</u>	0.005	
<u>1,2-DIBROM</u>	O-3-CHLOROPROPANE	<u>ND</u>	0.005	
<u>1,2-DIBROM</u>	OETHANE	ND	0.005	
DIBROMOMET	HANE	ND	0.005	
<u>1,2-DICHLO</u>	ROBENZENE	<u>ND</u>	0.005	
<u>1,3-DICHLO</u>	ROBENZENE	ND	0.005	
<u>1,4-DICHLO</u>	ROBENZENE	ND	0.005	
DICHLORODI	<u>FLUOROMETHANE</u>	<u>ND</u>	0.005	
<u>1,1-DICHLO</u>	ROET <u>HANE</u>	ND	0.005	
1,2-DICHLO	ROETHANE	ND	0.005	
<u>1,1-DICHLO</u>	ROETHENE	ND	0.005	
<u>CIS-1,2-DI</u>	CHLOROETHENE	<u>ND</u>	0.005	
<u>TRANS-1,2-</u>	DICHLOROETHENE	ND	0.005	
1,2-DICHLO	ROPROPANE	ND	0.005	

D APPROVED BY:

DATA REVIEWED AND APPROVED BY:
1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER :	Kleinfelder		
	620 W. 16th Street, U	Jnit #F	
	Long Beach, CA 90813		
Tel (562) 432-1696 Fax (562) 432-1796			
PROJECT: A	RTIC		
PROJECT No	.: 103567/Env 2		
MATRIX:SOI	Ĺ		DATE RECEIVED:10/16/09
DATE SAMPL	ED:10/15/09		DATE ANALYZED: 10/16/09
REPORT TO:	Mr. BERT VOGLER		DATE REPORTED: 10/23/09
SAMPLE I.D	о.: KA-3-1		LAB I.D.: 091016-29
ANALYS	IS: VOLATILE ORGANICS	, EPA METHOI	D 5035/8260B, PAGE 2 OF 2
DADAMETED	ontr: mg/ng = mil	CAMOLE DECH	$\mathbf{P} = \mathbf{P} \mathbf{M}$
1 3-DICHLO		MD	
2 2 - DICHLO	ROPROPANE		0.005
1.1 - DICHLO		ND	0.005
CIS-1.3-DI	CHLOROPROPENE		0.005
TRANS-1.3-	DTCHLOROPROPENE	ND	0.005
ETHYLBENZÉ	NE	ND	0,005
2 - HEXANONE		ND	0.020
HEXACHLORC	BUTADIENE	ND	0.005
ISOPROPYLE	BENZENE	ND	0.005
4 - ISOPROPY	LTOLUENE	ND	0.005
<u>4-METHYL-2</u>	- PENTANONE (MIBK)	ND	0.020
<u>METHYL ter</u>	<u>t-BUTYL ETHER (MTBE)</u>	ND	0.005
METHYLENE	CHLORIDE	ND	0.010
<u>NAPHTHALEN</u>	1E	<u>ND</u>	0.005
<u>N-PROPYLBE</u>	ENZENE	ND	0.005
STYRËNE		ND	0 <u>.005</u>
<u>1,1,1,2-TE</u>	ETRACHLOROETHANE	ND	0.005
<u>1,1,2,2-TE</u>	TRACHLOROETHANE	ND	0.005
TETRACHLOR	OETHENE (PCE)	<u>ND</u>	0.005
TOLUENE		ND	0.005
<u>1,2,3-TRIC</u>	CHLOROBENZENE	<u>ND</u>	0 <u>.005</u>
<u>1,2,4-TRIC</u>	CHLOROBENZENE	ND	0.005
<u>1,1,1-TRIC</u>	CHLOROETHANE	ND	0.005
<u>1,1,2-TRIC</u>	CHLOROETHANE	ND	0.005
TRICHLOROE	STHENE (TCE)	<u>ND</u>	0.005
TRICHLORON	FLUOROMETHANE	ND	0.005
<u>1,2,3-TRIC</u>	CHLOROPROPANE	<u>ND</u>	0.005
1,2,4-TRIN	METHYLBENZENE	<u>ND</u>	0.005
1,3,5-TRIN	METHYLBENZENE	<u>ND</u>	0.005
VINYL CHLO	DRIDE	ND	0.005
M/P-XYLENI	B	ND	0.010
O-XYLENE			<u>0,005</u>
COMMENTS	PQL = PRACTICAL QUANTI	TATION LIMI	.T
ND = NON - I	DETECTED OR BELOW THE	PQL ANA	
DATA REVI	RAPD WUD WALKOARD BI:	11 11	

CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER: Kleinfelder		
620 W. 16th Street,	, Unit #F	
Long Beach, CA 9081	13	
Tel(562)432-1696 Fa	ax (562) 432-1796	
PROJECT: ARTIC		
PROJECT No.: 103567/Env 2		
MATRIX: SOIL	r	ATE RECEIVED:10/16/09
DATE SAMPLED:10/15/09	- [	DATE ANALYZED: 10/16/09
REPORT TO:Mr. BERT VOGLER	Ľ	ATE REPORTED: 10/23/09
SAMPLE I.D.: KA-3-6	I	AB I.D.: 091016-30
ANALYSIS: VOLATILE ORGANIC	CS. EPA METHOD	5035/8260B, PAGE 1 OF 2
IINTT: ma/Ka = M	TLLTCRAM PER KI	$I_{OGRAM} = PPM$
PARAMETER	SAMPLE RESULT	POI. X1
ACETONE	ND	0 020
BENZENE		0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE		0.005
BROMODICHLOROMETHANE		0.005
BROMOFORM		0.005
BROMOMETHANE		0.005
2-BUTANONE (MEK)		0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4 - CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1, 2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	NĎ	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	<u>ND</u>	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1, 2-DICHLOROETHENE	<u>ND</u>	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005_

----- TO BE CONTINUED ON PAGE #2 -----

DATA REVIEWED AND APPROVED BY:____

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER: Kleinfelder		
620 W. 16th Street, U	Jnit #F	
Long Beach, CA 90813		
Tel(562)432-1696 Fax	(562) 432-179	96
PROJECT: ARTIC		
PROJECT No.: 103567/Env 2		
MATRIX:SOIL		DATE RECEIVED:10/16/09
DATE SAMPLED:10/15/09		DATE ANALYZED: 10/16/09
REPORT TO:Mr. BERT VOGLER		DATE REPORTED: 10/23/09
SAMPLE I.D.: KA-3-6		LAB I.D.: 091016-30
ANALYSIS: VOLATILE ORGANICS UNIT: mg/Kg = MIL	, EPA METHOI LIGRAM PER	5035/8260B, PAGE 2 OF 2 KILOGRAM = PPM
PARAMETER	SAMPLE RESUI	LT PQL X1
1, 3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	<u></u>	0,005
CIS-1,3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
<u>2-HEXANONE</u>	ND	0.020
HEXACHLOROBUTADIENE	<u>ND</u>	0.005
ISOPROPYLBENZENE	<u>D</u>	0.005
4 - ISOPROPYLTOLUENE	ND	0.005
<u>4-METHYL-2-PENTANONE (MIBK)</u>	<u>ND</u>	0.020
<u>METHYL tert-BUTYL ETHER (MTBE)</u>	ND	0.005
METHYLENE CHLORIDE	<u>ND</u>	0.010
NAPHTHALENE	ND	0.005
<u>N-PROPYLBENZENE</u>		0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1, 1, 2, 2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	<u>ND</u>	0.005
1,2,4-TRICHLOROBENZENE	<u>ND</u>	0.005
1, 1, 1-TRICHLOROETHANE	<u>ND</u>	0.005
1, 1, 2-TRICHLOROETHANE	<u>ND</u>	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE		0.005
1, 2, 3-TRICHLOROPROPANE	ND	0.005
1, 2, 4 - TRIMETHYLBENZENE		
1,3,5-TRIMETHYLBENZENE	ND	
VINYL CHLORIDE		0.005
M/P-XYLENE		0.010
<u>D-XYLENE 0.005</u>		
COMMENTS PQL = PRACTICAL QUANTI	TATION LIMI	T.
ND = NON-DETECTED OR BELOW THE	POL . ////	

DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

ΛŮ

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER:	Kleinfelder		
	620 W. 16th Street	. Unit #F	
	Long Beach, CA 908	13	
	Tel $(562)432-1696$ F	ax(562)432-179	6
PROJECT: A	RTIC		-
PROJECT No	: 103567/Env 2		
MATRIX	r		DATE RECEIVED.10/16/09
DATE SAMPLI	= ED·10/15/09		DATE ANALYZED: $10/16/09$
REPORT TO .!	Mr BERT VOGLER		DATE REPORTED: $10/23/09$
SAMPLE I.D	.: KA-4-2.5		LAB I.D.: 091016-31
ANALVS	IS . VOLATIE OBCANT		5035/9260B DACE 1 OF 2
AUALLO.	INIT: ma/Ka = N	UTLICEAM DED K	(ILOGRAM = PPM
DADAMETED	onii. mg/ng - n	SAMDLE DECUL	
ACETONE		SAMPLE RESUL	
DENIZENE			0.005
DEMORENZEI	NE		0.005
PROMOCULOR	OMETUANE	ND	0.005
BROMODICUL			0.005
BROMOFORM			0.005
BROMOMETHA	NE	ND	0.005
2-BITANONE	(MEK)	ND	0.020
N-BUTYLBEN	ZENE	ND	0.005
SEC-BUTYLE	ENZENE		0,005
TERT-BUTYL	BENZENE	NĎ	0,005
CARBON DIS	ULFIDE	ND	0.010
CARBON TET	RACHLORIDE	ND	0.005
CHLOROBENZ	ENE	ND	0.005
CHLOROETHA	NE	ND	0.005
CHLOROFORM		ND	0.005
CHLOROMETH	ANE	ND	0.005
2 - CHLOROTO	LUENE	ND	0,005
4 - CHLOROTO	LUENE	ND	0.005
DIBROMOCHL	OROMETHANE	ND	0.005
1,2-DIBROM	O-3-CHLOROPROPANE	ND	0.005
1,2~DIBROM	OETHANE	ND	0.005
DIBROMOMET	HANE	ND	0.005
1,2-DICHLO	ROBENZENE	ND	0.005
1,3-DICHLO	ROBENZENE		0.005
1,4-DICHLO	ROBENZENE	ND	0,005
DICHLORODI	FLUOROMETHANE	ND	0.005
1,1-DICHLC	ROETHANE	ND	0.005
1,2-DICHLO	ROETHANE	ND	0.005
1,1-DICHLO	ROETHENE	ND	0.005
CIS-1,2-DI	CHLOROETHENE	ND	0.005
TRANS-1,2-	DICHLOROETHENE	ND	0.005
1,2-DICHLC	ROPROPANE	ND	0.005

---- TO BE CONTINUED ON PAGE #2 -----

DATA REVIEWED AND APPROVED BY:___

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER: Kleinfelder			
620 W. 16th Street, U	Init #F		
Long Beach, CA 90813			
Tel(562)432-1696 Fax(	(562) 432-1796	•	
PROJECT: ARTIC			
PROJECT No.: 103567/Env 2			
MATRIX: SOIL	I	DATE RECEIVED:10/16/09	
DATE SAMPLED:10/15/09	I	DATE ANALYZED: 10/16/09	
REPORT TO: Mr. BERT VOGLER	I	DATE REPORTED: 10/23/09	
SAMPLE I.D.: KA-4-2.5	J	LAB I.D.: 091016-31	
ANALYSIS: VOLATILE ORGANICS.	EPA METHOD	5035/8260B. PAGE 2 OF 2	
UNIT: $mg/Kg = MIL$	LIGRAM PER K	ILOGRAM = PPM	
PARAMETER	AMPLE RESULT	POL X1	
1, 3-DICHLOROPROPANE	ND	0.005	
2,2-DICHLOROPROPANE	ND	0.005	
1,1-DICHLOROPROPENE	ND	0.005	
CIS-1,3-DICHLOROPROPENE	ND	0.005	
TRANS-1,3-DICHLOROPROPENE	ND	0.005	
ETHYLBENZENE	ND	0.005	
2-HEXANONE	ND	0.020	
HEXACHLOROBUTADIENE	ND	0.005	
ISOPROPYLBENZENE	ND	0.005	
4 - ISOPROPYLTOLUENE	ND	0.005	
4-METHYL-2-PENTANONE (MIBK)	ND	0.020	
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005	
METHYLENE CHLORIDE	ND	0.010	
NAPHTHALENE	ND	0.005	
<u>N-PROPYLBENZENE</u>	ND	0.005	
STYRENE	ND	0.005	
1,1,1,2-TETRACHLOROETHANE	<u>ND</u>	0.005	
1,1,2,2-TETRACHLOROETHANE	ND	0.005	
TETRACHLOROETHENE (PCE)	ND	0.005	
TOLUENE	<u>ND</u>	0.005	
1,2,3-TRICHLOROBENZENE	<u>ND</u>	0.005	
1,2,4-TRICHLOROBENZENE	<u>ND</u>	0.005	
1,1,1-TRICHLOROETHANE	<u></u> D	0.005	
1,1,2-TRICHLOROETHANE	ND	0.005	
TRICHLOROETHENE (TCE)	ND	0.005	
TRICHLOROFLUOROMETHANE	ND	0.005	
1,2, <u>3-TRICHLOROPROPANE</u>	ND	0.005	
1,2,4-TRIMETHYLBENZENE	ND	0,005	
1,3,5-TRIMETHYLBENZENE	ND	0.005	
VINYL_CHLORIDE	<u>NĎ</u>	0.005	
M/P-XYLENE		0.010	
O-XYLENE	ND	0.005	
COMMENTS PQL = PRACTICAL QUANTITATION LIMIT			
ND = NON-DETECTED OR BELOW THE	PQL ///		
DATA REVIEWED AND APPROVED BY:	1188		

CAL-DHS CERTIFICATE # 1555

.

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER: Kleinfelder		
620 W. 16th Street,	Unit #F	
Long Beach, CA 9081	3	
Tel (562) 432-1696 Fa	x (562) 432-1796	
PROJECT: ARTIC	. ,	
PROJECT No.: 103567/Env 2		
MATRIX: SOIL	DA	TE RECEIVED:10/16/09
DATE SAMPLED: 10/15/09	DA	TE ANALYZED: 10/16/09
REPORT TO:Mr. BERT VOGLER	DA	TE REPORTED: $10/23/09$
SAMPLE I.D.: <b>KA-4-4.5</b>	LA	B I.D.: 091016-32 .
ANALYSTS: VOLATILE ORGANIC	S. EPA METHOD 50	35/8260B. PAGE 1 OF 2
IINIT: ma/Ka = M	LLITCRAM PER KIL	OGRAM = PPM
DADAMETED	SAMDLE DESILT	POL X1
ACETONE	ND	0 020
RENZENE		0.005
BROMORENZENE		0.005
		0.005
		0.005
BROMOBICHBOROMBINANE		0.005
BROMONETHANE		0.005
2. BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE		0.005
SEC_BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE		0.005
CARBON DISHLETDE		0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE		0,005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2 - CHLOROTOLUENE		0.005
4 - CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND ND	0,005
1, 2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1.2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1.2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	NĎ	0.005
1, 2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1,2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

---- TO BE CONTINUED ON PAGE #2 -----

r

DATA REVIEWED AND APPROVED BY:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER: Kleinfelder			
620 W. 16th Street,	Unit #F		
Long Beach, CA 90813	\$		
Tel (562) 432-1696 Fax	(562) 432-179	6	
PROJECT: ARTIC			
PROJECT No.: 103567/Env 2			
MATRIX:SOIL		DATE RECEIVED:10/16/09	
DATE SAMPLED:10/15/09		DATE ANALYZED: 10/16/09	
REPORT TO:Mr. BERT VOGLER		DATE REPORTED: 10/23/09	
SAMPLE I.D.: KA-4-4.5		LAB I.D.: 091016-32	
ANALYSIS: VOLATILE ORGANICS	, EPA METHOD	5035/8260B, PAGE 2 OF 2	
UNIT: $mg/Kg = MI$	LLIGRAM PER K	(ILOGRAM = PPM	
PARAMETER	SAMPLE RESUL	T PQL X1	
1, 3-DICHLOROPROPANE	ND	0,005	
2,2-DICHLOROPROPANE	ND	0.005	
1,1-DICHLOROPROPENE	ND	0.005	
CIS-1, 3-DICHLOROPROPENE	ND	0.005	
TRANS-1, 3-DICHLOROPROPENE	ND	0.005	
ETHYLBENZENE	ND	0.005	
2-HEXANONE	ND	0.020	
HEXACHLOROBUTADIENE	ND	0.005	
ISOPROPYLBENZENE	ND	0.005	
4-ISOPROPYLTOLUENE	ND	0,005	
4-METHYL-2-PENTANONE (MIBK)	ND	0.020	
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005	
METHYLENE CHLORIDE	ND	0.010	
NAPHTHALENE	ND	0.005	
N-PROPYLBENZENE	ND	0.005	
STYRENE	ND	0.005	
1,1,1,2-TETRACHLOROETHANE	ND	0.005	
1, 1, 2, 2-TETRACHLOROETHANE	ND	0.005	
TETRACHLOROETHENE (PCE)	NĎ	0.005	
TOLUENE	ND	0.005	
1,2,3-TRICHLOROBENZENE	ND	0.005	
1,2,4-TRICHLOROBENZENE	ND	0.005	
1,1,1-TRICHLOROETHANE	ND	0.005	
1,1,2-TRICHLOROETHANE	ND	0.005	
TRICHLOROETHENE (TCE)	ND	0.005	
TRICHLOROFLUOROMETHANE	ND	0.005	
1,2,3-TRICHLOROPROPANE	ND	0.005	
1,2,4-TRIMETHYLBENZENE	ND	0.005	
1,3,5-TRIMETHYLBENZENE	ND	0.005	
VINYL CHLORIDE	ND	0.005	
M/P-XYLENE	ND	0.010	
O-XYLENE	ND	0.005	
COMMENTS POL = PRACTICAL OUANT	ITATION LIMIT	<u>г</u>	
ND = NON-DETECTED OR BELOW THE	POL / M		
DATA REVIEWED AND APPROVED BY:			

CAL-DHS CERTIFICATE # 1555

_ Cur

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER :	Kleinfelder 620 W. 16th Street Long Beach, CA 908	, Unit #F 13	
	Tel(562)432-1696 F	ax(562)432-179	6
PROJECT: A	RTIC		
PROJECT No	.: 103567/Env 2		
MATRIX: SOI	<u>L</u>		DATE RECEIVED: 10/16/09
DATE SAMPL	ED: <u>10/15/09</u>		DATE ANALYZED: 10/16/09
REPORT TO:	Mr. BERT VOGLER		DATE REPORTED: 10/23/09
SAMPLE I.D	.: KA-5-5.5		LAB I.D.: 091016-33
ANALVS	TS: VOLATILE OPCANT	CS EDA METRON	5035/8260B DAGE 1 OF 2
MINUTS	INIT, ma/ka - h	TITCOM DED 1	(1000) = 000
DADAMONDO	ONII: mg/kg ~ P	ILLIGRAM PER I	TLUGRAM - PPM
PARAMETER		SAMPLE RESUL	
DENGENE			0.020
BENZENE BROMODENZE	NP	<u>ND</u>	0.005
BROMOBENZE			0.005
BROMOCHLOR BROMODICUI		<u>ND</u>	0.005
BROMODICHL BROMOROBM	OROMETHANE		
BROMORORM	ND		0.005
2 - PUTANONE			0.005
N- BUTYL DEN		ND	0.020
SEC-DUTVID			0.005
TEPT_BUTYL	DENZENE		0.003
CAPPON DIS	ULEIDE	ND	0.003
CARBON DIS			0.010
CHLODOBENZ	ENE		0.005
CHLOPOETVA	NE		0.005
CULOBOROPM			0.005
CHLOROPORT	2NC		0.005
2 - CHLOROTO			0.005
$\frac{2-CHLOROTO}{4-CHLOROTO}$			0.005
DIBROMOCHI	OROMETHANE		0.005
1 2-DIBROM	O-3-CHLORODRODANE		0.005
1.2 - DIBROM	IOETHANE		0.005
DIBROMOMET	HANE		0.005
1 2-DICHLO	ROBENZENE	ND	0.005
1 3-DICHLC	ROBENZENE		0.005
1 4-DICHLC			0.005
DICHLORODI	FLUOROMETHANE		0.005
1.1-DICHLC	PROETHANE		0.005
1.2-DICHLO	ROETHANE	ND	0.005
1.1 - DICHLO	BOETHENE	ND	0.005
CIS-1.2-DT	CHLOROETHENE		0,005
TRANS-1.2-	DICHLOROETHENE		0.005
1,2-DICHLC	ROPROPANE		0.005
and bronde		<u>_</u>	

----- TO BE CONTINUED ON PAGE #2 -----D APPROVED BY:

DATA REVIEWED AND APPROVED BY:___

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER: Kleinfelder		
620 W. 16th Street,	Unit #F	
Long Beach, CA 90813	}	
Tel (562) 432-1696 Fax	(562) 432-179	6
PROJECT: ARTIC		
PROJECT No.: 103567/Env 2		
MATRIX:SOIL		DATE RECEIVED:10/16/09
DATE SAMPLED:10/15/09		DATE ANALYZED: 10/16/09
REPORT TO: Mr. BERT VOGLER		DATE REPORTED: 10/23/09
SAMPLE I.D.: KA-5-5.5		LAB I.D.: 091016-33
ANALYSIS: VOLATILE ORGANICS UNIT: mg/Kg = MI	3, EPA METHOD LLIGRAM PER 1	5035/8260B, PAGE 2 OF 2 KILOGRAM = PPM
PARAMETER	SAMPLE RESUL	T POL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1,3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0,005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	<u>ND</u>	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZE <u>NE</u>	ND	0.005
<u>STYRENE</u>	ND	0.005
1,1,1,2-TETRACHLOROETHANE	<u>ND</u>	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0 <u>.005</u>
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	<u>ND</u>	0.005
1,2,3-TRICHLOROPROPANE	<u>ND</u>	0.005
1,2,4-TRIMETHYLBENZENE	<u>ND</u>	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ŃD	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	<u>NĎ</u>	0.005
COMMENTS PQL = PRACTICAL QUANT	ITATION LIMI	T
ND = NON-DETECTED OR BELOW THE	POL , M	

DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

11

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER: Kleinfelder		
620 W. 16th Street,	Unit <b>#F</b>	
Long Beach, CA 90813	3	
Tel(562)432-1696 Fax	x (562) 432-1796	
PROJECT: ARTIC		
PROJECT No.: 103567/Env 2		
MATRIX: SOIL	ر را	ATE RECEIVED:10/16/09
DATE SAMPLED: 10/15/09	D	ATE ANALYZED: $10/16/09$
REPORT TO:Mr. BERT VOGLER	D.	ATE REPORTED $10/23/09$
		<u>10/25/02</u>
SAMPLE I.D.: KA-5-10	L,	AB I.D.: 091016-34
ANALYSIS: VOLATILE ORGANIC	S, EPA METHOD 5	035/8260B, PAGE 1 OF 2
UNIT: $mg/Kg = MI$	LLIGRAM PER KI	LOGRAM = PPM
PARAMETER	SAMPLE RESULT	POL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0,005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0,020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4 - CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1, 3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1, 2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

----- TO BE CONTINUED, ON, PAGE #2 -----

L 1

DATA REVIEWED AND APPROVED BY:____

#### 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: ARTIC PROJECT No.: 103567/Env 2 MATRIX: SOIL DATE RECEIVED:10/16/09 DATE SAMPLED: 10/15/09 DATE ANALYZED:10/16/09 REPORT TO:Mr. BERT VOGLER DATE REPORTED:10/23/09 SAMPLE I.D.: KA-5-10 LAB I.D.: 091016-34 ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM PARAMETER SAMPLE RESULT POL X1 1, 3-DICHLOROPROPANE ND 0.005 2,2-DICHLOROPROPANE ND 0.005 1,1-DICHLOROPROPENE ND 0.005 CIS-1, 3-DICHLOROPROPENE ND 0.005 TRANS-1, 3-DICHLOROPROPENE ND 0.005 ETHYLBENZENE ND 0.005 2-HEXANONE ND 0.020 <u>HEXACHLOROBUTADIENE</u> 0.005 ND ISOPROPYLBENZENE ND 0.005 <u>4 - ISOPROPYLTOLUENE</u> ND 0.005 4-METHYL-2-PENTANONE (MIBK) ND 0.020 METHYL tert-BUTYL ETHER (MTBE) ND 0.005 METHYLENE CHLORIDE ND 0.010 NAPHTHALENE 0.005 ND N-PROPYLBENZENE ND 0.005 STYRENE ND 0.005 1,1,1,2-TETRACHLOROETHANE ND 0.005 1, 1, 2, 2-TETRACHLOROETHANE ND 0.005 TETRACHLOROETHENE (PCE) ND 0.005 TOLUENE ND 0.005 1,2,3-TRICHLOROBENZENE ND 0.005 1,2,4-TRICHLOROBENZENE ND 0.005 1,1,1-TRICHLOROETHANE ND 0.005 1, 1, 2-TRICHLOROETHANE ND 0.005 TRICHLOROETHENE (TCE) ND 0.005 ND 0.005 TRICHLOROFLUOROMETHANE 1,2,3-TRICHLOROPROPANE ND 0.005 ND 1,2,4-TRIMETHYLBENZENE 0.005 1,3,5-TRIMETHYLBENZENE ND 0.005 0.005 VINYL CHLORIDE ND M/P-XYLENE ND 0.010 <u>O-XYLENE</u> ND 0.005 COMMENTS PQL = PRACTICAL QUANTITATION LIMIT ND = NON-DETECTED OR BELOW THE POL DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

W

# Enviro – Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Long Beach, CA 908 Tel(562)432-1696 Fa	, Unit #F 13 ax(562)432-1796	
PROJECT: ARTIC		
PROJECT No : 103567/Epy 2		
MATRIX COTI	1	DATE DECEIVED.10/16/09
DATE SAMPLED . 10/15/00	1	DATE RECEIVED: $10/10/09$
DAIS SAMPLED: 10/15/09		DATE ANALIZED: $10/17/09$
REPORT TO:Mr. BERT VOGLER		DATE REPORTED: 10/23/09
SAMPLE I.D.: KA-5-15		LAB I.D.: 091016-35
ANALVOID, NOTABILE ODCANT		
ANALISIS: VOLATILE ORGANI	US, EPA METHUD	JUSS/8260B, PAGE I OF 2
DNDINGTED	ILLIGRAM PER N.	LOGRAM - PPM
PARAMETER	SAMPLE RESULT	POP XI
ACETONE	<u>ND</u>	0.020
BENZENE	ND	0.005
BROMOBENZENE	<u>ND</u>	0.005
BROMOCHLOROMETHANE	<u>ND</u>	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	<u>ND</u>	0.005
BROMOMETHANE	<u>ND</u>	0.005
2-BUTANONE (MEK)	<u>ND</u>	0.020
N-BUTYLBENZENE	ND	0,005
<u>SEC-BUTYLBENZENE</u>	ND	0.005
<u>TERT-BUTYLBENZENE</u>	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	<u>ND</u>	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	<u>ND</u>	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	<u>ND</u>	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1, 2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOET <u>HANE</u>	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	סא	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1,2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

----- TO BE CONTINUED ON PAGE #2 -----

DATA REVIEWED AND APPROVED BY:___

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER: Kleinfelder			
620 W. 16th Street, Unit	# F		
Long Beach, CA 90813			
Tel(562)432-1696 Fax(562)	432-1796		
PROJECT: ARTIC			
PROJECT No.: 103567/Env 2			
MATRIX: SOIL	DATE RECEIVED:10/16/09		
DATE SAMPLED:10/15/09	DATE ANALYZED: $10/17/09$		
REPORT TO:Mr. BERT VOGLER	DATE REPORTED: $10/23/09$		
SAMPLE I.D.: KA-5-15	LAB I.D.: 091016-35		
ANALYSIS: VOLATILE ORGANICS, EPA	A METHOD 5035/8260B, PAGE 2 OF 2		
UNIT: $mg/Kg = MILLIGR$	AM PER KILOGRAM = PPM		
PARAMETER SAMPI	LE RESULT POL X1		
1, 3-DICHLOROPROPANE	ND 0.005		
2, 2-DICHLOROPROPANE	ND 0.005		
1,1-DICHLOROPROPENE	ND 0.005		
CIS-1, 3-DICHLOROPROPENE	ND 0.005		
TRANS-1, 3-DICHLOROPROPENE	ND 0.005		
ETHYLBENZENE	ND 0.005		
2-HEXANONE	ND 0.020		
HEXACHLOROBUTADIENE	ND 0,005		
ISOPROPYLBENZENE	ND 0.005		
4 - ISOPROPYLTOLUENE	ND 0,005		
4-METHYL-2-PENTANONE (MIBK)	ND 0.020		
METHYL tert-BUTYL ETHER (MTBE)	ND 0.005		
METHYLENE CHLORIDE	ND 0.010		
NAPHTHALENE	ND 0.005		
N-PROPYLBENZENE	ND 0,005		
STYRENE	ND 0.005		
1,1,1,2-TETRACHLOROETHANE	ND 0.005		
1,1,2,2-TETRACHLOROETHANE	ND 0.005		
TETRACHLOROETHENE (PCE)	ND 0.005		
TOLUENE	ND 0.005		
1,2,3-TRICHLOROBENZENE	ND 0.005		
1,2,4-TRICHLOROBENZENE	ND 0.005		
1,1,1-TRICHLOROETHANE	ND 0.005		
1,1,2-TRICHLOROETHANE	ND 0.005		
TRICHLOROETHENE (TCE)	ND 0.005		
TRICHLOROFLUOROMETHANE	ND 0.005		
1,2,3-TRICHLOROPROPANE	ND 0.005		
1,2,4-TRIMETHYLBENZENE	ND 0.005		
1,3,5-TRIMETHYLBENZENE	ND 0.005		
VINYL CHLORIDE	ND 0.005		
M/P-XYLENE	ND0.010		
O-XYLENE	ND 0.005		
COMMENTS PQL = PRACTICAL QUANTITATION LIMIT			
ND = NON-DETECTED OR BELOW THE PQL $/h$			
DATA REVIEWED AND APPROVED BY:			
CAL-DHS CERTIFICATE # 1555			

CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER :	Kleinfelder 620 W 16tb Street	Most #R	
	Long Boach CA 000	, ONIC #F	
	Hold Beach, CA 908.	13	
	101(302)432-1090 Fa	ax (562) 432-1/96	
PROJECT: AF			
PROJECT No.	: 103567/Env 2		
MATRIX: SOII			DATE RECEIVED: 10/16/09
DATE SAMPLE	SD: <u>10/15/09</u>		DATE ANALYZED: <u>10/17/09</u>
REPORT TO:	<u>Ar, BERT VOGLER</u>		DATE REPORTED: <u>10/23/09</u>
SAMPLE I.D.	: КА-6-3		LAB I.D.: 091016-36
ANALYSI	S. VOLATILE OPCANT		E035/03600 DACE 1 OF 3
	$INTT \cdot ma/Ka = M$	ITLITORAM DER K	TLOGRAM = PPM
PARAMETER	onii: mg/ng = n	CAMPLE DECIL	P = POI Y1
ACETONE		MD	0 020
RENZENE			0.020
BROMOBENZEN	JE		0.005
BROMOCHLORO	METHANE		0.005
BROMODICHLO	ROMETHANE		0.005
BROMOFORM			0.005
BROMOMETHAN	JE		0.005
2-BUTANONE	(MEK)		0.020
N-BUTYLBENZ	ZENE	ND	0,005
SEC-BUTYLB	INZENE		0,005
TERT-BUTYLE	BENZENE	ND	0.005
CARBON DISU	JLFIDE	ND	0.010
CARBON TETH	RACHLORIDE	ND	0.005
CHLOROBENZI	ENE	ND	0.005
CHLOROETHAN	NE	ND	0.005
CHLOROFORM		ND	0.005
CHLOROMETH	ANE	ND	0.005
2-CHLOROTOR	LUENE	ND	0.005
4 - CHLOROTO	LUENE	 ДИ	0.005
DIBROMOCHLO	DROMETHANE	ND	0,005
1,2-DIBROM	D-3-CHLOROPROPANE	ND	0.005
1,2-DIBROM	DETHANE	ND	0.005
DIBROMOMETI	HANE	ND	0.005
1,2-DICHLO	ROBENZENE	ND	0.005
1,3-DICHLO	ROBENZENE	ND	0.005
1,4-DICHLO	ROBENZENE	ND	0.005
DICHLORODI	FLUOROMETHANE	ND	0.005
1,1-DICHLO	ROETHANE	NĎ	0.005
1, <u>2-DICHLO</u>	ROETHANE	ND	0.005
1,1-DICHLO	ROETHENE	ND	0.005
<u>CIS-1,2-DI</u>	CHLOROETHENE	ND	0.005
TRANS-1,2-	DICHLOROETHENE	ND	0.005
<u>1,2-DICHLO</u>	ROPROPANE	ND	0.005

----- TO BE CONTINUED ON PAGE #2 -----

DATA REVIEWED AND APPROVED BY:___

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER: Kleinfelder		
620 W. 16th Street, U	Jnit #F	
Long Beach, CA 90813		
Tel(562)432-1696 Fax	(562) 432-179	6
PROJECT: ARTIC		
PROJECT No.: 103567/Env 2		
MATRIX: SOIL		DATE RECEIVED 10/16/09
DATE SAMPLED: 10/15/09		DATE ANALYZED: $10/17/09$
REPORT TO:Mr. BERT VOGLER		DATE REPORTED: $10/23/09$
SAMPLE I.D.: KA-6-3		LAB I.D.: 091016-36
ANALYSIS: VOLATILE ORGANICS	, EPA METHOD	5035/8260B, PAGE 2 OF 2
UNIT: $mg/Kg = MIL$	LIGRAM PER H	KILOGRAM = PPM
PARAMETER	SAMPLE RESUL	T PQL X1
1, 3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1,3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	<u>ND</u>	0,005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	<u>ND</u>	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	<u>ND</u>	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	<u>ND</u>	0.005
1,1,1,2-TETRACHLOROETHANE	<u>ND</u>	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0,005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	<u>ND</u>	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	<u>ND</u>	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	<u>ND</u>	0005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.0 <u>05</u>
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	NĎ	0.005
COMMENTS POL = PRACTICAL OUANTI	TATION LIMI	r
ND = NON-DETECTED OR BELOW THE	PQL	

DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

ll

# 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER:	Kleinfelder		
	620 W. 16th Street	, Unit #F	
	Long Beach, CA 908	13	
	Tel(562)432-1696 F	ax (562) 432-1796	
PROJECT: A	RTIC		
PROTECT NO	· 103567/Env 2		
MATRIX-SOL	T.	זח	TE PROFIVED 10/16/09
DATE SAMOL	ED-10/15/09	יע זה	$\frac{12}{12} \times \frac{10}{12} \times 10$
REPORT TO	Mr BERT VOGLER	זמ זמ	$\frac{12}{10} \frac{10}{10} 10$
	MIT BERT VOGBER		ME REFORTED: <u>10725702</u>
SAMPLE I.D	.: KA-6-5	LA	AB I.D.: 091016-37
*****	TO NOT ADTED OD CANT		
ANALIS	IS: VOLATILE ORGANI	US, EPA METHOD S	OSDAN - DDM
	ONIT: mg/Kg = M	ILLIGRAM PER KIL	JOGRAM = PPM
PARAMETER		SAMPLE RESULT	POL XI
ACETONE		ND	0.020
BENZENE		<u>ND</u>	0.005
BROMOBENZE		ND	0.005
BROMOCHLOR	OMETHANE	<u>ND</u>	0.005
BROMODICHL	OROMETHANE	<u>ND</u>	0.005
BROMOFORM		ND	0.005
BROMOMETRA			0.005
Z-BUTANONE		<u>ND</u>	0.020
N-BUTTLBEN		<u>ND</u>	0.005
SEC-BUILDE	DENZENE	ND	0.005
CAPPON DIC			0.005
CARBON DIS			0.000
CHLODORENZ			0.005
CUI ODOETUN	NP	<u>_</u>	0.005
CHLOROEIHA			0.005
CULORONETU			0.005
			0.005
$\frac{2-CHLOROIC}{4-CHLOROIC}$			0.005
	ODOMETHANE	ND	0.005
	OROMETRANE		0.005
1, 2 - DIBROM	OPTHAND		0.005
			0.005
			0.005
1, 2-DICHLO			0.005
1 4 - DTCHLC			
	ELUODOMETUANE		0.005
1 1 DICHLORODI	PLOOKOMETRANE		0.005
$\frac{1}{1}$ $2$ $ \frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2$	NOETHANE		0.005
1 1_DICUIC			0.005
$\frac{1}{2}$	CULODORTHENE	ND	0.005
TPANG-1 2		<u>UN</u>	0.005
1 2-DICUL		ND	0.005
T'T DICUT		ND	0.000

----- TO BE CONTINUED ON PAGE #2 -----

DATA REVIEWED AND APPROVED BY:_

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER :	Kleinfelder				
	620 W. 16th Street,	Unit #F			
	Long Beach, CA 90813	}			
	Tel (562) 432-1696 Fax (562) 432-1796				
PROJECT: A	RTIC	, ,			
PROJECT No.	: 103567/Env 2				
MATRIX		Г	ATE RECEIVED 10/16/09		
DATE SAMPLE	= SD:10/15/09	r	ATE ANALYZED: 10/17/09		
REPORT TO .N	Ar BERT VOGLER	г Г	NATE REPORTED: $10/23/09$		
	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>				
SAMPLE I.D	.: KA-6-5	I.	AB I.D.: 091016-37		
ANALYS	S. VOLATILE ORGANICS	EPA METHOD	5035/8260B PAGE 2 OF 2		
14(11)101		LITCOM DED KI	TOGRAM = RPM		
DADAMETED	onii: mg/ng - mi				
1 2 DICHIO		MD			
1, 3-DICHLOR	DODBODANE		0.005		
			0.005		
(1, 1-D)(D)(D)			0.005		
TRANE 1 2.1			0.005		
TRANS-1, 5-1	NP		0.005		
2 - UPYANONE			0.003		
UEVACULODA		ND	0.020		
TEADDADVI D	BUIADIENE		0.005		
150PROPILB			0.005		
4-ISOPROPIL	DENERAL (MIDK)	ND ND	0.005		
$\frac{4 - METHIL - 2}{METHIL}$	- PENTANONE (MIBK)		0.020		
METHIL LEI	CULORIDE	ND	0.003		
MADUTUAL EN			0.010		
N-DDODVI DE			0.005		
N-PROPIDE:			0.005		
STIKENE	TRACHIOROFTIANE		0.005		
1, 1, 1, 2 - 16	TRACHLOROETHANE				
$\frac{1}{2}, \frac{1}{2}, \frac{2}{2}, \frac{2}{2}, \frac{2}{2}$	OPTHENE (DOE)		0.005		
TOLUENE	OBTREME (PCE)		0.005		
$\frac{10000000}{100000000}$	UL ODODENZENE		0.005		
1, 2, 3-TRIC	HLORODENZENE		0.005		
1, 2, 4 - 1			0.005		
1 1 2-TOTC	ULODOFTUNE		0.005		
TOTCHLODOR	THENE (TOP)		0.005		
TRICHLOROF			0.005		
1 2 3 - T P T C	HLORODRODANE		0.005		
1, 2, 3 - 1 RIC	ETHYLBENZENE		0.005		
1.3 S-TRIM	FTHYLBENZENE		0.005		
UTNYL CHLO			0.005		
M/D_YVLENE			0.010		
O-YYLENE			0.005		
ND - NON D	AN - EVACITOR ANAL				
ND = NON - D	ALECTED ON DEDOW IND				
CAL DUC OF	MED AND APPROVED BI:	M			
CAD-DHS CE	WITLICWIC # T000				

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER:	Kleinfelder		
	620 W. 16th Street	, Unit #F	
	Long Beach, CA 908	13	
	Tel(562)432-1696 F	ax (562) 432-1796	
PROJECT : A	RTIC	,	
PROJECT No	.: 103567/Env 2		
MATRIX: SOI	L	DAT	E RECEIVED:10/16/09
DATE SAMPL	= ED:10/15/09		E ANALYZED:10/17/09
REPORT TO:	Mr. BERT VOGLER	TAG	E REPORTED: $10/23/09$
SAMPLE I.D	.: KA-7-15	LAB	I.D.: 091016-38
ANALYS	IS: VOLATILE ORGANI	CS, EPA METHOD 503	5/8260B, PAGE 1 OF 2
	UNIT: $mg/Kg = N$	ILLIGRAM PER KILO	GRAM = PPM
PARAMETER		SAMPLE RESULT	PQL X1
ACETONE		ND	0.020
BENZENÉ		ND	0.005
BROMOBENZE	NE	ND	0,005
BROMOCHLOR	OMETHANE	ND	_0.005
BROMODICHL	OROMETHANE	ND	0.005
BROMOFORM_		ND	0.005
BROMOMETHA	NE	ND	0.005
2-BUTANONE	(MEK)	ND	0.020
N-BUTYLBEN	ZENE	ND	0.005
SEC-BUTYLB	ENZENE	ND	0.005
TERT-BUTYL	BENZENE	ND	0.005
CARBON DIS	ULFIDE	ND	0.010
CARBON TET	RACHLORIDE	ND	0.005
<b>CHLOROBENZ</b>	ENE	ND	0.005
CHLOROETHA	NE	ND	0.005
CHLOROFORM		ND	0.005
CHLOROMETH	ANE	ND	0.005
2-CHLOROTO	LUENE	ND	0.005
4 - CHLOROTO	LUENE	ND	0.005
DIBROMOCHL	OROMETHANE	ND	0.005
1,2-DIBROM	O-3-CHLOROPROPANE	ND	0.005
1,2-DIBROM	OETHANE	ND	0.005
DIBROMOMET	HANE	ND	_0.005
<u>1,2-DICHLO</u>	ROBENZENE	ND	0.005
1,3-DICHLC	ROBENZENE	ND	0.005
1,4-DICHLC	ROBENZENE	ND	0.005
DICHLORODI	FLUOROMETHANE	ND	0.005
1,1-DICHLC	ROETHANE	ND	0.005
1,2-DICHLC	ROETHANE	ND	0.005
1,1-DICHLC	ROETHENE	ND	0.005
<u>CIS-1,2-D</u> I	CHLOROETHENE	ND	0.005
TRANS-1,2-	DICHLOROETHENE	ND	0.005
1,2-DICHLC	ROPROPANE	ND	0.005

---- TO BE CONTINUED PAGE #2 ----

DATA REVIEWED AND APPROVED BY:____

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER: Kleinfelder		
620 W. 16th Street,	Unit #F	
Long Beach, CA 90813		
Tel (562) 432-1696 Fax	(562) 432-1796	5
PROJECT: ARTIC		
PROJECT No.: 103567/Env 2		
MATRIX:SOIL		DATE RECEIVED:10/16/09
DATE SAMPLED:10/15/09		DATE ANALYZED: 10/17/09
REPORT TO:Mr. BERT VOGLER		DATE REPORTED: 10/23/09
SAMPLE I.D.: KA-7-15		LAB I.D.: 091016-38
ANALYSIS: VOLATILE ORGANICS	, EPA METHOD	5035/8260B, PAGE 2 OF 2
UNIT: $mg/Kg = MII$	LLIGRAM PER K	ILOGRAM = PPM
PARAMETER	SAMPLE RESULT	f pql X1
1, 3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	<u></u>	
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	<u>ND</u>	0.005
<u>4-METHYL-2-PENTANONE (MIBK)</u>	ND	0.020
<u>METHYL tert-BUTYL ETHER (MTBE)</u>	ND	0.005
METHYLENE CHLORIDE	<u>ND</u>	0.010
NAPHTHALENE	<u>ND</u>	0.005
<u>N-PROPYLBENZENE</u>	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	<u>_ND</u>	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	<u>ND</u>	0.005
<u>1,2,4-TRICHLOROBENZENE</u>	<u>ND</u>	0.005
1, 1, 1-TRICHLOROETHANE	ND	0.005
<u>1, 1, 2 - TRICHLOROETHANE</u>	<u>ND</u>	0.005
TRICHLOROETHENE (TCE)		0.005
TRICHLOROFLUOROMETHANE	<u>ND</u>	0.005
1, 2, 3-TRICHLOROPROPANE	<u>ND</u>	
1, 2, 4 - TRIMETHYLBENZENE		0.005
1, 3, 5-TRIMETHYLBENZENE	<u>ND</u>	0.005
VINYL CHLORIDE	<u>ND</u>	0.005
M/P-XYLENE	<u>ND</u>	
O-XYLENE	ND	0.005
COMMENTS PQL = PRACTICAL QUANT.	TATION LIMIT	-
$MCL = MCM_{H}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}BB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^{*}DB^$		

ND = NON-DETECTED OR BELOW THE DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555 _

Ń

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER:	Kleinfelder		
	620 W. 16th Street	, Unit #F	
	Long Beach, CA 908	13	
	Tel (562) 432-1696 F	ax(562)432-1796	
PROJECT: A	RTIC		
PROJECT No	: 103567/Env 2		
MATRIX			DATE RECEIVED.10/16/09
DATE SAMPLE	≓ 2D • 10 / 15 / 09		DATE ANALYZED 10/21/09
DEDUBL TO	$\frac{10713705}{10}$		DATE ANALIZED. $10/21/09$
квгокт 10. <u>1</u>	<u>HE. BERT VOGDER</u>		DATE REPORTED: 10/23/09
SAMPLE I.D	: KA-7-20		LAB I.D.: 091016-39
ANALVSI	S. VOLATILE OPCANT	 רק דףא אקידוווייי	5035/8260B DAGE 1 OF 2
<i>m</i>	UNIT: $m\sigma/K\sigma = N$	ILLIGRAM PER K	1000000000000000000000000000000000000
PARAMETER		SAMPLE RESULT	POT, X1
ACETONE		ND	0 020
BENZENE		ND	0.005
BROMOBENZE	VE	ND ND	0.005
BROMOCHLOR	OMETHANE		0.005
BROMODICHL	OROMETHANE	<u>ND</u>	0.005
BROMOFORM		ND	0.005
BROMOMETHAI	NE:		0.005
2-BUTANONE	(MEK)	ND	0.020
N-BUTYLBEN	ZENE	ND	0,005
SEC-BUTYLB	ENZENE	ND ND	0.005
TERT-BUTYL	BENZENE	<u>מא</u>	0,005
CARBON DIS		ND	0.010
CARBON TET	RACHLORIDE	ND	0.005
CHLOROBENZ	ENE	ND	0.005
CHLOROETHA	NE	ND	0.005
CHLOROFORM		ND	0.005
CHLOROMETH	ANE	ND	0.005
2-CHLOROTO	LUENE	ND	0.005
4 - CHLOROTO	LUENE	NĎ	0,005
DIBROMOCHL	OROMETHANE	ND	0.005
1,2-DIBROM	0-3-CHLOROPROPANE	ND	0.005
1.2-DIBROM	OETHANE	ND	0.005
DIBROMOMET	HANE	ND	0.005
1,2-DICHLO	ROBENZENE	ND	0.005
1.3-DICHLO	ROBENZENE	 	0.005
1.4-DICHLO	ROBENZENE	ND	0.005
DICHLORODI	FLUOROMETHANE	ND	0.005
1,1-DICHLO	ROETHANE		0.005
1,2-DICHLO	ROETHANE	ND	0.005
1,1-DICHLO	ROETHENE	ND	0.005
CIS-1.2-DT	CHLOROETHENE	ND	0.005
TRANS-1.2-	DICHLOROETHENE		0.005
1.2-DICHLO	ROPROPANE	ND	0,005

----- TO BE CONTINUED 90 PAGE #2 -----

DATA REVIEWED AND APPROVED BY:_

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER: Kleinfelder		
620 W. 16th Street, 0	Unit #F	
Long Beach, CA 90813		
Tel(562)432-1696 Fax	(562) 432-1796	5
PROJECT: ARTIC		
PROJECT No.: 103567/Env 2		
MATRIX:SOIL		DATE RECEIVED:10/16/09
DATE SAMPLED:10/15/09		DATE ANALYZED: 10/21/09
REPORT TO:Mr. BERT VOGLER		DATE REPORTED: 10/23/09
SAMPLE I.D.: KA-7-20		LAB I.D.: 091016-39
ANALVELS, VALMELE ODGANIZE		
ANALISIS: VOLATILE ORGANICS	, EPA METHOD	5035/8260B, PAGE 2 OF 2
UNIT: mg/Kg = MIL	LIGRAM PER K	ILOGRAM = PPM
PARAMETER	SAMPLE RESULT	r PQL XI
1, 3-DICHLOROPROPANE		0.005
2, 2-DICHLOROPROPANE	<u>ND</u>	0.005
1,1-DICHLOROPROPENE	<u>ND</u>	0.005
CIS-1, 3-DICHLOROPROPENE	<u>ND</u>	0.005
TRANS-1, 3-DICRLOROPROPENE	<u>ND</u>	
ETHYLBENZENE	<u>ND</u>	0.005
2-HEXANONE	<u>ND</u>	0.020
HEXACHLOROBUTADIENE	<u>ND</u>	0.005
1 SOPROPYLBENZENE	<u>ND</u>	0.005
4-ISOPROPYLTOLUENE	<u>ND</u>	0.005
4-METHYL-2-PENTANONE (MIBK)	<u>ND</u>	0.020
METHYL tert-BUTYL ETHER (MTBE)	<u>ND</u>	0.005
METHYLENE CHLORIDE	<u>ND</u>	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	<u>ND</u>	0.005
STYRENE	<u>ND</u>	0.005
1, 1, 1, 2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	<u>ND</u>	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	<u>ND</u>	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	<u>ND</u>	0.005
1,2,3-TRICHLOROPROPANE	ND	0_005
1,2,4-TRIMETHYLBENZENE	ND	0.005
<u>1,3,5-TRIMETHYLBENZENE</u>	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	<u> </u>	0.010
O-XYLENE	ND	0.005
COMMENTS PQL = PRACTICAL QUANTI	TATION LIMIT	
ND = NON-DETECTED OR BELOW THE	PQL 21//	
DATA REVIEWED AND APPROVED BY:	IX	

CAL-DHS CERTIFICATE # 1555

M

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER :	Kleinfelder		
	620 W. 16th Street,	Unit #F	
	Long Beach, CA 9081	.3	
	Tel(562)432-1696 Fa	x (562) 432-179	6
PROJECT : A	RTIC		•
PROJECT No	: 103567/Env 2		
MATRIX,SOT	Г.		DATE RECEIVED.10/16/09
DATE SAMPLI	≝ ED+10/15/09		DATE ANALYZED 10/21/09
REPORT TO I	Mr BERT VOGLER		DATE REPORTED 10/23/09
KBIOKI 10.1			DATE REFORTED. 10723702
SAMPLE I.D	.: KA-8-5		LAB I.D.: 091016-40
ANALVS	IS VOLATILE ODGANIC	S SDA METHOD	5035/8260B DAGE 1 OF 2
MIALIS.	INTE: ma/ka = M	TITCOM DED N	TIOCRAM - ROM
	UNII. Mg/Kg = M	CANDIE DECIU	m = DOI V1
PARAMETER		SAMPLE RESUL	
ACEIONE DENZENE			0.020
DRAMARENE		ND	0.005
BROMOBENZE			0.005
BROMOCHLOR			0.005
BROMORORM	OROMETHANE		0.005
BROMORORM BROMOMETUN	NE		0.005
2 - DITAMOND			0.020
N_BUTVLEEN			0.025
SEC-DUTVLD			0.005
TEPT_BUTYL			0.005
CARBON DIS	ULEIDE		0.010
CARBON TET	PACHLORIDE		0.005
CHLOROBENZ	FNF		0.005
CHLOROETHA	NR		0.005
CHLOROFORM	<u> </u>		0.005
CHLOROMETH	ANE		0.005
2-CHLOROTO	LUENE		0.005
4 - CHLOROTO	LUENE	ND	0.005
DIBROMOCHL	OROMETHANE	ND	0.005
1.2-DIBROM	O-3-CHLOROPROPANE	ND	0.005
1,2-DIBROM	OETHANE	ND	0.005
DIBROMOMET	HANE	ND	0.005
1.2-DICHLC	ROBENZENE	ND	0.005
1.3-DICHLC	ROBENZENE	ND	0.005
1,4-DICHLO	ROBENZENE	ND	0.005
DICHLORODI	FLUOROMETHANE	ND	0.005
1.1-DICHLC	ROETHANE	ND	0.005
1,2-DICHLC	ROETHANE	ND	0.005
1,1-DICHLC	ROETHENE	ND	0.005
CIS-1.2-DI	CHLOROETHENE	ND	0.005
TRANS-1,2-	DICHLOROETHENE	ND	0.005
1,2-DICHLC	ROPROPANE	ND	0.005

----- TO BE CONTINUED ON PAGE #2 -----

DATA REVIEWED AND APPROVED BY:_

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER: Kleinfeld	ler			
620 W. 16	oth Street, Un	nit #F		
Long Bead	ch, CA 90813			
Tel (562)	432-1696 Fax(	562) 432-179	6	
PROJECT: ARTIC				
PROJECT No.: 103567	/Env 2			
MATRIX: SOIL			DATE RECEIV	/ED:10/16/09
DATE SAMPLED: 10/15/0	9		DATE ANALY2	ED: 10/21/09
REPORT TO:Mr. BERT V	VOGLER		DATE REPORT	TED: 10/23/09
SAMPLE I.D.: KA-8-5			LAB I.D.: (	91016-40
ANALYSIS: VOLATI	LE ORGANICS,	EPA METHOD	5035/8260B	, PAGE 2 OF 2
DARAMETER	mg/ng – Mibi	MOLE DECILL	TLOGRAM - P	TM DAT V1
	5.	MULTE KESOT	1	POP XI
2 2-DICHLOROPROPANE				0.005
1 1-DICHLOROPROPANE				0.005
CIS-1 3-DICHLOROPROF				0.005
TRANS-1 3-DICHLOROP	PODENE			0.005
FTHYLBENZENE	<u>AOPBNE</u>			0.005
2 - HEX ANONG	<b>_</b>		<u></u>	0.000
HEXACHLOROBUTADIENE				0.005
ISOPROPYLBENZENE	<del>-</del>			0.005
4 - ISOPROPYLTOLUENE				0.005
4 - METHYL-2 - PENTANONI	E (MTBK)			0.020
METHYL tert-BUTYL E	THER (MTBE)			0.005
METHYLENE CHLORIDE	(11227)	ND		0.010
NAPHTHALENE		ND		0.005
N-PROPYLBENZENÊ		ND		0.005
STYRENE		ND	-	0.005
1,1,1,2-TETRACHLORO	ETHANE	ND		0.005
1, 1, 2, 2-TETRACHLORO	ETHANE	ND		0.005
TETRACHLOROETHENE (	PCE)	ND		0.005
TOLUENE		ND		0.005
1,2,3-TRICHLOROBENZ	ENE	ND		0.005
1,2,4-TRICHLOROBENZ	ENE	ND		Q.005
1,1,1-TRICHLOROETHA	NE	ND		0.005
1,1,2-TRICHLOROETHA	NE	ND		0.005
TRICHLOROETHENE (TC	E)	ND		0.005
TRICHLOROFLUOROMETH	ANE	ND		0.005
1,2,3-TRICHLOROPROP	ANE	ND		0.005
1,2,4-TRIMETHYLBENZ	<u>ENÉ</u>	ND		0.005
1,3,5-TRIMETHYLBENZ	ENE	ND		0.005
VINYL CHLORIDE		ND		0.005
M/P-XYLENE		ND		0.010
O-XYLENE		<u>ND</u>		0.005
COMMENTS PQL = PRAC	TICAL QUANTIT	ATION LIMIT	<b>N</b>	
ND = NON-DETECTED O	R BELOW THE P	QL NI		
DATA REVIEWED AND A	PPROVED BY:	///		

CAL-DHS CERTIFICATE # 1555

ľŇ

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

	METHO	D BLANK	REPOR	Т
CUSTOMER:	Kleinfelder			
	620 W. 16th Street	Unit #F		
	Long Beach, CA 908	13		
	$T_{P}$ (562) 432-1696 F	$a_{x}(562)432-1$	796	
	161(302/432 1090 F	an (JUZ/3JZ-1	.790	
PROJECT: A	. 103567/Emma 2			
PRODECT NO	.: 103567/Env 2		D 2 00 0	
MATRIX: SOL			DATE	RECEIVED: 10/16/09
DATE SAMPL	ED: <u>10/15/09</u>		DATE	ANALYZED: 10/16/09
REPORT TO:	Mr. BERT VOGLER		DATE	REPORTED: 10/23/09
	METHOD BLANK FOR I	AB I.D.: 09	1016-21	THROUGH -38
ANALYS	IS: VOLATILE ORGANI	CS. EPA METH	IOD 5035	/8260B. PAGE 1 OF 2
	UNIT: $m\sigma/K\sigma = N$	ILLIGRAM PE	R KILOGE	AM = PPM
PARAMETER		SAMPLE RES	TTT.T	POT. X1
ACETONE		ND	011	0 020
RENZENE	_	ND		0.005
BROMOBENZE	NE			0.005
BROMOCHLOR	OMETHANE	ND		0.005
BROMODICHL	OROMETHANE	ND		0.005
BROMOFORM				0.005
BROMOMETHA	NE			0.005
2 - BUTANONE	(MEK)			0.020
N-RUTYLERN	ZENE	ND		0.005
SEC-BUTYLE	ENZENE			0.005
TERT-BUTYL	BENZENE			0.005
CARBON DIS	ULETDE			0.010
CARBON TET	PACHLORIDE	ND		0.005
CHLOROBENZ	FNF			0.005
CHIOROSTRA			_	0.005
CHLOROFORM		ND		0.005
CHLOROMETH		ND		0.005
2-CHLOROTO	LIENE			0.005
$\frac{2 - CHLOROTO}{4 - CHLOROTO}$	LURNE	ND		0.005
DIBROMOCHI	OROMETHANE			0.005
1 2 - DIBROM	O-3-CHLOROPROPANE			0.005
1 2 - DIBROM	OETHANE	ND		0.005
DIBROMOMET	HANE			0.005
1 2-DICHLC	BOBENZENE			0.005
1 3 - DICHLC	POBENZENE			0.005
1 4-DICHLO		ND		0.005
	FLUODOMETRANE			0.005
	POPTUNIC			0.005
1 2 - DICHLO	ROFTHANE			0.005
1 1 . DICHLC				0.005
$r_1 r_2 - Dr c n D c$	CHLODOFTHENE			0.005
TRANG 1 2				0.005
1 2 - DTOULC				0.005
T'S-DICHPC	ROPROPANE	ND		0.005

----- TO BE CONTINUED ON PAGE #2 -----

DATA REVIEWED AND APPROVED BY:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### METHOD BLANK REPORT

CUSTOMER: Kleinfelder		
620 W. 16th Street, U	Jnit #F	
Long Beach, CA 90813		
Tel(562)432-1696 Fax	(562)432-1796	
PROJECT: ARTIC		
PROJECT No.: 103567/Env 2		
MATRIX: <u>SOIL</u>	DA	TE RECEIVED: <u>10/16/09</u>
DATE SAMPLED: <u>10/15/09</u>	DA	TE ANALYZED: <u>10/16/09</u>
REPORT TO: Mr. BERT VOGLER	DA	TE REPORTED: <u>10/23/09</u>
METHOD BLANK FOR LAB	I.D.: 091016-2	21 THROUGH -38
ANALYSIS: VOLATILE ORGANICS	, EPA METHOD 50	35/8260B, PAGE 2 OF 2
UNIT: $mg/Kg = MIL$	LIGRAM PER KIL	OGRAM = PPM
PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	NĎ	0.005
ISOPROPYLBENZENE	ND	0.005
4 - ISOPRO <u>PYLTOLUENE</u>	ND	0.005
<u>4-METHYL-2-PENTANONE (MIBK)</u>	ND	0.020
<u>METHYL tert-BUTYL ETHER (MTBE)</u>	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	<u>ND</u>	0.005
N-PROPYL <u>BENZENE</u>	ND	0.005
<u>STYRENE</u>	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	<u>ND</u>	0.005
TOLUENE	<u>ND</u>	0.005
1,2,3-TRICHLOROBENZENE	<u>ND</u>	0.005
1, 2, 4-TRICHLOROBENZENE	<u>ND</u>	0.005
1, 1, 1 - TRICHLOROETHANE	<u></u>	0.005
1,1,2-TRICHLOROETHANE	<u>ND</u>	0.005
TRICHLOROETHENE (TCE)		0.005
TRICHLOROFLUOROMETHANE		0.005
1,2,3~TRICHLOROPROPANE		0.005
1, 2, 4 - TRIMETRY LEENZENE		0.005
1, 5, 5-IKIMEIHILBENZENE		0.005
		0.005
		0.010
COMMENTS DOL - DDACTICAL OUIANT		0.005
NO - NON-DETECTED OF ALLOW THE		
NATA DEVIEWED AND ADDROVED BY.		

DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

			Enviro-Ch	em, Inc.					
1214 E. Lexington Ave	anue. Pom	iona, CA 9	1766	ſ	el (909)59	0-5905	Fax (90	9)590-590	7
<b>U</b>			8260B Q/	VQC Rep	ort		,	,	
Date Analyzed:	<u>10/16-17/2</u>	2009					Matrix:	Solid/Soll/	Sludge
Machine:	<u>C</u>						Unit:	mg/Kg (PF	<u>PM)</u>
Matrix Spike (MS)/Matri	ix Spike Di	uplicate (N	ISU)						
Spiked Sample Lab I.D.	.: 	091016-22	MS/MSD	% PC	MSD	%.PC			
Analyte	<u>о, к.</u>		10044	70RC	0.046	02%	70TCFD	75.125	
Chloroberrano	0	0.050	0.044	106%	0.040	92%	4%	70-120	0.20
Chlorobenzene	0	0.050	0.055	0.0%	0.040	90%	10.70	75-125	0-20
T, I-Dichloroethene	0	0.050	0.045	90%	0.044	84%	2 70 6%	75-125	0-20
Trichloroothono (TCE)	0	0.050	0.040	116%	0.042	100%	16%	75-125	0-20
	v	0.000	0.000	11078	0.050	10076	1070	70-120	0-20
Lab Control Spike (LCS	5):								
Analyte	spk conc	LCS	%RC	ACP %RC					
Benzene	0.050	0.050	100%	75-125					
Chlorobenzene	0.050	0.050	100%	75-125					ļ
Chloroform	0.050	0.045	90%	75-125					
1,1-Dichlorothene	0.050	0.049	98%	75-125					
Ethylbenzene	0.050	0.051	102%	75-125					
o-Xylene	0.050	0.051	102%	75-125					
m,p-Xylene	0.100	0.098	98%	75-125					
Toluene	0.050	0.052	104%	75-125					
1,1,1-Trichloroethane	0.050	0.047	94%	75-125					
Trichloroethene (TCE)	0.050	0.049	98%	75-125					
							~ ~ ~ ~ ~		
Surrogate Recovery	spk conc	ACP %RC	MB %RC	%RC	%RC	∕ %RC	%RC	%RC	%RC
Sample I.D.			M-BLK	091016-19	091012-10	091016-21	091016-22	091016-23	091016-24
Dibromofluoromethane	50.0	70-130	89%	70%	70%	<u>74%</u>	76%	98%	75%
Toluene-d8	50.0	70-130	91%	92%	82%	92%	92%	90%	95%
4-Bromofluorobenzene	50.0	70-130	87%	87%	86%	86%	88%	89%	85%
Surrogate Recovery	sok conc		%RC	%RC	%80	%RC	%RC	%RC	%BC
Sample LD			091016-25	091016-38	091016-27	091016-28	091016-29	091016-30	091016-31
Dibromofluoromethane	50.0	70-130	81%	74%	79%	79%	77%	74%	78%
Toluene-d8	50.0	70-130	92%	92%	93%	93%	93%	92%	93%
4-Bromofluorobenzene	50.0	70-130	86%	81%	78%	79%	84%	81%	85%
Biomonocochizene		10,00		01/0	10/0		0170	0170	
Surrogate Recovery	spk conc	ACP %RC	%RC	%RC	%RC	%RC	%RC	%RC	%RC \
Sample I.D.			091016-32	091016-33	091016-34	091016-35	091016-36	091016-37	091016-26
Dibromofluoromethane	50.0	70-130	71%	85%	76%	70%	74%	73%	85%
Toluene-d8	50.0	70-130	89%	93%	92%	94%	93%	95%	89%
4-Bromofluorobenzene	50.0	70-130	73%	88%	87%	80%	84%	82%	86%
* = Surrogate fail due to	matrix inte	rference;	LCS, MS, I	MSD are in	control the	erefore the	analysis is	in control.	
S.R. = Sample Results					%RC = Pe	ercent Rec	overy	_	
spk conc = Spike Conce	ontration				ACP %RC	C = Accepte	ed Percent	Recovery	
MS = Matrix Spike					MSD = Ma	atrix Spike	Duplicate		
Analyzed/Reviewed By		sch							
Final Reviewer:	QP?								

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

METHO	OD BLANK REP	ORT	
CUSTOMER: Kleinfelder			
620 W. 16th Stree	t. Unit #F		
Long Beach, CA 90	813		
Tel (562) 432-1696	Fax (562) 432-1796		
PROJECT · ABTIC	144(302/152 1)50		
PROJECT No : 103567/Env 2			
MATRIX COLL		TE DECEIVED . 10/16/00	
DATE SAMPLED 10/15/09		$\frac{16}{72} \times \frac{10}{10} \times 10$	
REPORT TO Mr BERT VOCLER	עם	TE PEROPTED. 10/22/09	
REFORT TO <u>ME. BERT VOGER</u>		TE REPORTED: <u>10/23/09</u>	
METHOD BLANK	FOR LAB I.D.: 0910	016-39, -40	
ANALYSIS: VOLATILE ORGAN	NICS, EPA METHOD 50	035/8260B, PAGE 1 OF 2	
UNIT: $mg/Kg =$	MILLIGRAM PER KIL	OGRAM = PPM	
PARAMETER	SAMPLE RESULT	POL X1	
ACETONE	ND	0.020	
BENZENE	ND	0.005	
BROMOBENZENE		0.005	
BROMOCHLOROMETHANE		0.005	
BROMODICHLOROMETHANE	ND	0,005	
BROMOFORM	ND	0.005	
BROMOMETHANE	ND ND	0.005	
2-BUTANONE (MEK)	ND	0.020	
N-BUTYLBENZENE	ND	0.005	
SEC-BUTYLBENZENE	ND	0,005	
TERT-BUTYLBENZENE	ND	0,005	
CARBON DISULFIDE	ND	0.010	
CARBON TETRACHLORIDE	ND ND	0,005	
CHLOROBENZENE	ND	0,005	
CHLOROETHANE	ND	0.005	
CHLOROFORM	ND	0.005	
CHLOROMETHANE	ND	0.005	
2-CHLOROTOLUENE	ND ND	0.005	
4 - CHLOROTOLUENE	ND	0.005	
DIBROMOCHLOROMETHANE	ND	0.005	
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005	
1,2-DIBROMOETHANE	ND	0.005	
DIBROMOMETHANE	ND	0.005	
1,2-DICHLOROBENZENE	ND	0.005	
1, 3-DICHLOROBENZENE	ND	0.005	
1,4-DICHLOROBENZENE ND 0		0.005	
DICHLORODIFLUOROMETHANE ND 0.005			
1,1-DICHLOROETHANE ND 0.005			
1,2-DICHLOROETHANE ND 0.005			
1,1-DICHLOROETHENE	ND	0.005	
CIS-1,2-DICHLOROETHENE	ND	0.005	
TRANS-1, 2-DICHLOROETHENE	ND	0.005	
1,2-DICHLOROPROPANE	ND	0.005	

---- TO BE CONTINUED ON PAGE #2 ----

l

DATA REVIEWED AND APPROVED BY:_

# Enviro – Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F					
620 W. 16th Street, Unit #F					
Long Beach, CA 90813					
Tel(562)432-1696 Fax(562)432-1796					
PROJECT: ARTIC					
PROJECT No.: 103567/Env 2					
MATRIX: SOIL DATE RECEIVED: 10/16/09					
DATE SAMPLED:10/15/09 DATE ANALYZED:10/21/09					
REPORT TO:Mr. BERT VOGLER DATE REPORTED: 10/23/09					
METHOD BLANK FOR LAB I.D.: 091016-39, -40					
ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2					
UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM					
PARAMETER SAMPLE RESULT PQL X1					
1,3-DICHLOROPROPANE ND 0.005					
2,2-DICHLOROPROPANE					
1,1-DICHLOROPROPENE ND 0.005					
CIS-1, 3-DICHLOROPROPENE ND 0.005					
TRANS-1, 3-DICHLOROPROPENE ND 0.005					
ETHYLBENZENE ND 0.005					
<u>2-HEXANONE</u> <u>ND</u> 0.020					
HEXACHLOROBUTADIENE ND 0.005					
ISOPROPYLBENZENE ND 0.005					
4-ISOPROPYLTOLUENE ND 0.005					
4-METHYL-2-PENTANONE (MIBK) ND 0.020					
METHYL CERC-BUTYL ETHER (MTBE) ND0.005					
METHYLENE CHLORIDE ND 0.005					
N-PROPILBENZENE ND 0.005					
1,1,2,2-TETRACH_DOROETHANE ND 0.005					
T, T, Z, Z TETRACHLOROETHANE         ND         0.005           TETRACHLOROETHANE         ND         0.005					
TOLUENE ND 0.005					
1.2.3-TRICHLOROBENZENE ND 0.005					
1 2 4 - TRICHLOROBENZENE ND 0,005					
1, 1, 1, 2 TRICHLOROETHANE ND $0,005$					
1.1.2-TRICHLOROETHANE ND 0.005					
TRICHLOROETHENE (TCE) ND 0.005					
TRICHLOROFLUOROMETHANE ND 0.005					
1.2.3-TRICHLOROPROPANE ND 0.005					
1.2.4-TRIMETHYLBENZENE ND 0.005					
1,3,5-TRIMETHYLBENZENE ND 0.005					
VINYL CHLORIDE ND 0.005					
M/P-XYLENE ND 0.010					
Q-XYLENE ND 0.005					
COMMENTS PQL = PRACTICAL QUANTITATION LIMIT					
ND = NON-DETECTED OR BELOW THE PQL					
DATA REVIEWED AND APPROVED BY:					
CAL-DHS CERTIFICATE # 1555					

			Enviro-Che	əm, Inc.					
1214 E. Lexington Ave	enue, Pom	iona, CA 91	766	Tel (	909)590-59	05 Fa	ix (909)590-	-5907	
			8260B QA	JQC Repor	rt				
Date Analyzed:	<u>10/21/2009</u>	<u>}</u>					Matrix:	Solid/Soil/S	<u>Sludge</u>
Machine:	<u>c</u>						Unit:	mg/Kg (PP	<u>M)</u>
Matrix Spike (MS)/Matri	ix Spike Di	uplicate (MS	5D)						
Spiked Sample Lab I.U.	.:	091016-39	MS/MSD	N DO	1400	~ 00	* ODD		
Analyte	<u>5.R.</u>		NIS		MSD	%KU		ACP %RU	
Benzene	0	0.050	0.040	92%	0.050	100%	070 09/	75 125	0-20
Chlorobenzene	0	0.050	0.003	0.40/	0.053	100%	0%	75 125	0-20
T,T-Dichloroeutene	0	0.050	0.047	94%	0.045	90%	4%	75-120	0-20
Toluene		0.050	0.040	9270	0.040	90%	470	75 125	0.20
		0.050	0.000	11270	0.055	110%	270	/0-120	0-20
Lab Control Snike (LC)	e).								
Analyte	)): Esok conc	LCS	%BC	ACP %RC					
Renzene	0.050		88%	75-125					
Chlorobenzene	0.050	0.044	106%	75-125					
Chloroform	0.050	0.044	88%	75-125					
1 1-Dichlorothene	0.050	0.043	86%	75-125					
Fihylbenzene	0.050	0.045	90%	75-125					
o-Xvlene	0.050	0.049	98%	75-125					
m n-Xvlene	0.100	0.092	92%	75-125	1				
Toluene	0.050	0.044	88%	75-125					
1.1.1-Trichloroethane	0.050	0.045	90%	75-125					
Trichloroethene (TCE)	0.050	0.050	100%	75-125					
					C	7	١		
Surrogate Recovery	spk conc	ACP %RC	MB %RC	%RC	%RC	%RC	%RC	%RC	%RC
Sample I.D.			M-BLK	091020-17	091016-39	091016-40	p91020-33	091020-34	091020-35
Dibromofluoromethane	50.0	70-130	105%	70%	91%	90%	90%	88%	88%
Toluene-d8	50.0	70-130	90%	82%	89%	90%	89%	91%	92%
4-Bromofluorobenzene	50.0	70-130	101%	104%	86%	95%	88%	92%	94%
					<u>۲</u>				
Surrogate Recovery	spk conc	ACP %RC	%RC	%RC	%RC	%RC	%RC	%RC	%RC
Sample I.D.			091020-36	091020-37	091020-42	091020-44	091020-64		
Dibromofluoromethane	50.0	70-130	87%	98%	94%	91%	94%		
Toluene-d8	50.0	70-130	90%	91%	90%	92%	91%		
4-Bromofluorobenzene	50.0	70-130	95%	94%	94%	95%	97%		
									- a mer _
Surrogate Recovery	spk conc	ACP %RC	%RC	%RC	<u>%RC</u>	%RC	%RC	%RC	%RC
Sample I.D.			<u> </u>				<u>                                     </u>	<u> </u>	-
Dibromofluoromethane	50.0	70-130							
Toluene-d8	50.0	70-130		<u> </u>	ļ	<u> </u>		ļ	
4-Bromofluorobenzene	50.0	70-130							
							· · ·	_	
* = Surrogate fail due to	matrix inter	ference; L(	CS, MS, MS	D are in con	trol therefor	re the analy	sis Is in con	trol.	
S.R. = Sample Results					%RC = Pei	rcent Recov	rery		

spk conc = Spike Concentration MS = Matrix Spike

C

ACP %RC = Accepted Percent Recovery MSD = Matrix Spike Duplicate

Analyzed/Reviewed By: ______

Final Reviewer: ____



#### Enviro – Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

Date: October 23, 2009

Mr. Bert Vogler
Kleinfelder
620 W. 16th Street, Unit #F
Long Beach, CA 90813
Tel(562)432-1696 Fax(562)432-1796

Project: ARTIC Project No.: 103567/Env 2 Lab I.D.: 091016-21 through -40

Dear Mr. Vogler:

The **analytical results** for the soil samples, received by our lab on October 16, 2009, are attached. The samples were received chilled, intact and accompanying chain of custody.

Enviro-Chem appreciates the opportunity to provide you and your company this and other services. Please do not hesitate to call us if you have any questions.

Sincerely,

Curtis Desilets Vice President/Program Manager

Andy Wang Laboratory Manager

Eric Lu, Ph.D. Chief Chemist

#### 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel (562) 432-1696 Fax (562) 432-1796 DDO TEOT. .....

PROJECT: ARTIC	
PROJECT No.: 103567/Env 2	DATE RECEIVED: 10/16/09
MATRIX: SOIL	DATE EXTRACTED: 10/20/09
DATE SAMPLED: 10/15/09	DATE ANALYZED: 10/20/09
REPORT TO:Mr. BERT VOGLER	DATE REPORTED: 10/23/09
	that it has a reaction of the first of the second

#### TOTAL PETROLEUM HYDROCARBONS (TPH) - CARBON CHAIN ANALYSIS METHOD: EPA 8015B

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

SAMPLE I.D.	LAB I.D.	C4-C10	C11-C22	C23-C35	DF
KA-1-1	091016-21	ND	ND	ND	1
KA-1-5	091016-22	ND	ND	ND	1
KA-1-10	091016-23	ND	ND	ND	1
KA-1-15	091016-24	ND	ND	ND	1
KA-2-1	091016-25	ND	ND	ND	1
KA-2-5	091016-26	ND	ND	ND	1
KA-2-10	091016-27	ND	ND	ND	1
KA-2-15	091016-28	ND	ND	ND	1
KA-3-1	091016-29	ND	ND	ND	1
KA-3-6	091016-30	ND	ND	ND	1
KA-4-2.5	091016-31	ND	ND	ND	1
KA-4-4.5	091016-32	ND	ND	ND	1
KA-5-5.5	091016-33	ND	ND	ND	1
KA-5-10	091016-34	ND	ND	ND	1
KA-5-15	091016-35	ND	ND	ND	1
KA-6-3	091016-36	ND	ND	ND	1
KA-6-5	091016-37	ND	ND	ND	1
KA-7-15	091016-38	ND	ND	ND	1
KA-7-20	091016-39	ND	15.4*	109^	1
KA-8-5	091016-40	ND	ND	ND	1
METHOD BLANK		ND	ND	ND	1
	POL	10	10	50	

COMMENTS C4-C10 = GASOLINE RANGE

C11-C22 = DIESEL RANGE

C23-C35 = MOTOR OIL RANGE

DF = DILUTION FACTOR

PQL = PRACTICAL QUANTITATION LIMIT

ACTUAL DETECTION LIMIT = DF X PQL

- ^ = PEAKS IN MOTOR OIL RANGE BUT CHROMATOGRAM DOES NOT MATCH THAT OF MOTOR OIL STANDARD
- * = PEAKS IN DIESEL RANGE BUT CHROMATOGRAM DOES NOT MATCH THAT OF DIESEL STANDARD
- ND = NON-DETECTED OR BELOW THE ACTUAL DETECTION LIMIT
- Data Reviewed and Approved by: CAL-DHS ELAP CERTIFICATE No.: 1555

1214 E. Le	xington	Avonuo							
		evenue,	Pomona,	CA 9170	66 Te	(909)590	-5905 F	ax (909)59	0-5907
8015B Soil/Solid QC									
Date Analyze	di:	<u>10/20/2</u>	009				Units:	mg/Kg (P	PM)
Matrix: Solid/Sludge									
Matrix Spike (	MS)/Matr	ix Spike I	Duplicate	(MSD)					
Spiked Samp	le Lab I.D	a	09101	6-40 N	NS/MS	D			
Analyte	SR	spk conc	MS	%MS	MSD	%MSD	%RPD	ACP %MS	ACP RPD
C11~C22 Range	0	2500	2775	111%	2740	110%	1%	75-125	0-20%
Analyte C11~C22 Range	spk conc 200	LCS 191	% REC 96%	ACP 75-125					
Surrogate Recovery	ACP%	%REC	%REC	%REC	%REC	%REC	%REC	%REC	%REC
Sample I.D.		MB	091016-21	091016-22	091016-23	091016-24	091016-25	091016-26	091016-27
O-Terphenyl	60-140%	92%	130%	128%	91%	131%	86%	114%	104%
Octacosane	60-140%	105%	99%	100%	96%	104%	98%	102%	115%
Surrogate Recovery	ACP%	%REC	%REC	%REC	%REC	%REC	%REC	%REC	%REC
Sample I.D.		091016-28	091016-29	091016-30	091016-31	091016-32	091016-33	091016-34	091016-35
O-Terphenyl	60-140%	72%	95%	122%	80%	102%	123%	77%	74%
Octacosane	60-140%	97%	96%	97%	101%	96%	101%	96%	94%
	- Andrewski	l							-
Surrogate Recovery	ACP%	%REC	%REC	%REC	%REC	%REC			
Sample I.D.		091016-36	091016-37	091016-38	091016-39	091016-40			
O-Terphenyl	60-140%	12%	80%	78%	94%	61%			
Octacosane       60-140%       97%       115%       96%       101%       101%         Analyzed and Reviewed By:									

#### 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER:	Kleinfelder						
	620 W. 16th Street, Unit #F						
	Long Beach, CA 90813						
	Tel (562) 432-1696 Fax (562) 432-1796						
PROJECT: #	RTIC						
DOO TROT N.	102567 (Para 2						

PROJEC	-1	NO.;	10320	/Env 2	
MATRIX	X:S	OIL			
DATE	SAM	PLED:	10/15/	/09	
REPOR	г т	O:Mr.	BERT	VOGLER	

DATE RECEIVED: <u>10/16/09</u> DATE ANALYZED: <u>10/19/09</u> DATE REPORTED: <u>10/23/09</u>

SAMPLE I.D.: KA-1-1

LAB I.D.: 091016-21

_____

#### TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	56.8	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium(Cd)	0.669	0.5	1	100	1.0	6010B
Chromium Total(Cr)	7.46	0.5	1	2,500	560/50	6010B
Chromium VI (Cr6)	100	0.1	1	500	5.0	7196A
Cobalt(Co)	3.78	1.0	1	8,000	80	6010B
Copper(Cu)	5.61	1.0	1	2,500	25	6010B
Lead(Pb)	22.4	0.5	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum (Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	4.52	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(T1)	ND	1.0	1	700	7.0	6010B
Vanadium(V) -	26.8	5.0	1	2,400	24	6010B
Zinc(Zn)	22.2	0.5	1	5,000	250	6010B

#### COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested

Data Reviewed and Approved by: _____ CAL-DHS ELAP CERTIFICATE No.: 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER:	Kleinfelder	
	620 W. 16th Street, Unit #F	
	Long Beach, CA 90813	
	Tel (562) 432-1696 Fax (562) 432-	1796
PROJECT: A	ARTIC	
PROJECT No	5.: 103567/Env 2	
MATRIX: SOI	<u>(L</u>	DA
DATE SAMPL	ED: 10/15/09	DA
REPORT TO:	Mr. BERT VOGLER	DA

DATE	RECEIVED: 10/16/09
DATE	ANALYZED: 10/19/09
DATE	REPORTED: 10/23/09

SAMPLE I.D.: KA-1-5

------

LAB I.D.: 091016-22

_____

#### TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	11.1	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	1.92	0.5	1	2,500	560/50	6010B
Chromium VI (Cr6)	891	0.1	1	500	5.0	7196A
Cobalt(Co)	1.12	1.0	1	8,000	80	6010B
Copper(Cu)	1.82	1.0	1	2,500	25	6010B
Lead(Pb)	5.50	0.5	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	ND	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium (T1)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	7.88	5.0	1	2,400	24	6010B
Zinc(Zn)	6.27	0.5	1	5,000	250	6010B

#### COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested

Data Reviewed and Approved by: CAL-DHS ELAP CERTIFICATE No.: 1555

#### 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER:	Kleinfelder					
	620 W. 16th Street, Unit #F					
	Long Beach, CA 90813					
	Tel (562) 432-1696 Fax (562) 432-1796					
PROJECT: 1	ARTIC					
PROJECT No	b.: 103567/Env 2					

DATE	RECEIVED: 10/16/09
DATE	ANALYZED: 10/19/09
DATE	REPORTED: 10/23/09

SAMPLE I.D.: KA-1-10

DATE SAMPLED:<u>10/15/09</u> REPORT TO:<u>Mr. BERT VOGLER</u>

MATRIX:SOIL

LAB I.D.: 091016-23

#### TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	9.52	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	2.14	0.5	1	2,500	560/50	6010B
Chromium VI (Cr6)		0.1	1	500	5.0	7196A
Cobalt(Co)	1.14	1.0	1	8,000	80	6010B
Copper(Cu)	1.71	1.0	1	2,500	25	6010B
Lead(Pb)	5.15	0.5	1	1,000	5.0	6010B
Mercury (Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum (Mo)	ND	5.0	1	3,500	350	6010B
Nickel (Ni)	ND	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(T1)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	8.34	5.0	1	2,400	24	6010B
Zinc(Zn)	6.57	0.5	1	5,000	250	6010B

#### COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested

Data Reviewed and Approved by: _____ CAL-DHS ELAP CERTIFICATE No.: 1555
#### 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: ARTIC PROJECT No.: 103567/Env 2

MATRIX: <u>SOIL</u> DATE SAMPLED: <u>10/15/09</u> REPORT TO: <u>Mr. BERT VOGLER</u>

_____

DATE RECEIVED: <u>10/16/09</u> DATE ANALYZED: <u>10/19/09</u> DATE REPORTED: <u>10/23/09</u>

SAMPLE I.D.: KA-1-15

LAB I.D.: 091016-24

## TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	24.3	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium (Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	2.66	0.5	1	2,500	560/50	6010B
Chromium VI (Cr6)	-	0.1	1	500	5.0	7196A
Cobalt(Co)	ND	1.0	1	8,000	80	6010B
Copper(Cu)	1.72	1.0	1	2,500	25	6010B
Lead(Pb)	5.97	0.5	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	1	20	0,2	7471A
Molybdenum(Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	ND	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(Tl)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	9.61	5.0	1	2,400	24	6010B
Zinc(Zn)	7.62	0.5	1	5,000	250	6010B

#### COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel (562) 432-1696 Fax (562) 432-1796 PROJECT: ARTIC PROJECT No.: 103567/Env 2 MATRIX:SOIL DATE SAMPLED: 10/15/09 D

DATE RECEIVED:<u>10/16/09</u> DATE ANALYZED:<u>10/19/09</u> DATE REPORTED:<u>10/23/09</u>

_____

SAMPLE I.D.: KA-2-1

REPORT TO:Mr. BERT VOGLER

_____

LAB I.D.: 091016-25

## TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	41.2	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium (Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	8.10	0.5	1	2,500	560/50	6010B
Chromium VI (Cr6)		0.1	1	500	5.0	7196A
Cobalt(Co)	4.05	1.0	1	8,000	80	6010B
Copper(Cu)	4.29	1.0	1	- 2,500	25	6010B
Lead(Pb)	16.7	0.5	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum (Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	3.50	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(T1)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	27.3	5.0	1	2,400	24	6010B
Zinc(Zn)	21.7	0.5	1	5,000	250	6010B

#### COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) *** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested

## 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: ARTIC

PROJECT No.: 103567/Env 2 MATRIX:SOIL DATE SAMPLED:10/15/09 REPORT TO:Mr. BERT VOGLER

DATE RECEIVED:<u>10/16/09</u> DATE ANALYZED:<u>10/19/09</u> DATE REPORTED:<u>10/23/09</u>

SAMPLE I.D.: KA-2-5

LAB I.D.: 091016-26

## TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	93.2	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium (Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	12.9	0.5	1	2,500	560/50	6010B
Chromium VI (Cr6)	# <u>1</u>	0.1	1	500	5.0	7196A
Cobalt(Co)	4.69	1.0	1	8,000	80	6010B
Copper(Cu)	11.1	1.0	1	2,500	25	6010B
Lead(Pb)	33.8	0.5	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum (Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	6.01	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(T1)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	49.8	5.0	1	2,400	24	6010B
Zinc(Zn)	30.3	0.5	1	5,000	250	6010B

#### COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested

#### 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796

PROJECT: ARTIC PROJECT No.: 103567/Env 2 MATRIX:SOIL DATE SAMPLED:10/15/09 REPORT TO:Mr. BERT VOGLER

DATE RECEIVED:<u>10/16/09</u> DATE ANALYZED:<u>10/19/09</u> DATE REPORTED:<u>10/23/09</u>

SAMPLE I.D.: KA-2-10

LAB I.D.: 091016-27

## TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony (Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	36.8	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium (Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	2.81	0.5	1	2,500	560/50	6010B
Chromium VI (Cr6)	the second secon	0.1	1	500	5.0	7196A
Cobalt (Co)	1.60	1.0	1	8,000	80	6010B
Copper (Cu)	2.34	1.0	1	2,500	25	6010B
Lead(Pb)	7.34	0.5	1	1,000	5.0	6010B
Mercury (Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	ND	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(T1)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	11.8	5.0	1	2,400	24	6010B
Zinc(Zn)	8.91	0.5	1	5,000	250	6010B

#### COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested

#### 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: ARTIC PROJECT No.: 103567/Env 2

DATE RECEIVED: <u>10/16/09</u> DATE ANALYZED: <u>10/19/09</u> DATE REPORTED: <u>10/23/09</u>

SAMPLE I.D.: KA-2-15

_____

DATE SAMPLED: 10/15/09

REPORT TO:Mr. BERT VOGLER

. . . . . . . . . . . . . . .

MATRIX:SOIL

LAB I.D.: 091016-28

## TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic (As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	ND	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	0.507	0.5	1	2,500	560/5@	6010B
Chromium VI (Cr6)		0.1	1	500	5.0	7196A
Cobalt(Co)	ND	1.0	1	8,000	80	6010B
Copper(Cu)	ND	1.0	1	2,500	25	6010B
Lead(Pb)	1.42	0.5	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	ND	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(T1)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	ND	5.0	1	2,400	24	6010B
Zinc(Zn)	1.75	0.5	1	5,000	250	6010B

#### COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested

#### 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER:	Kleinfelder
	620 W. 16th Street, Unit #F
	Long Beach, CA 90813
	Tel (562) 432-1696 Fax (562) 432-1796
PROJECT:	ARTIC

PROJE	CT	NO.:	10356	/Env 2
MATRI	x :	SOIL		
DATE	SA	MPLED	10/15,	/09
REPOR	т	TO:Mr.	BERT	VOGLER

DATE RECEIVED: 10/16/09 DATE ANALYZED: 10/19/09 DATE REPORTED: 10/23/09

SAMPLE I.D.: KA-3-1

LAB I.D.: 091016-29

_____

## TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony (Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	22.1	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	3.47	0.5	1	2,500	560/50	6010B
Chromium VI (Cr6)		0.1	1	500	5.0	7196A
Cobalt (Co)	2.10	1.0	1	8,000	80	6010B
Copper(Cu)	3.14	1.0	1	2,500	25	6010B
Lead(Pb)	1.65	0.5	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	ND	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(T1)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	14.7	5.0	1	2,400	24	6010B
Zinc(Zn)	10.4	0.5	1	5,000	250	6010B

#### COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested

#### 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: ARTIC

PROJECT No.: 103567/Env 2 MATRIX:SOIL DATE SAMPLED:10/15/09 REPORT TO:Mr. BERT VOGLER

DATE RECEIVED: <u>10/16/09</u> DATE ANALYZED: <u>10/19/09</u> DATE REPORTED: <u>10/23/09</u>

_____

SAMPLE I.D.: KA-3-6

LAB I.D.: 091016-30

## TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	44.1	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	4.31	0.5	1	2,500	560/50	6010B
Chromium VI (Cr6)		0.1	1	500	5.0	7196A
Cobalt(Co)	1.70	1.0	1	8,000	80	6010B
Copper(Cu)	2.76	1.0	1	2,500	25	6010B
Lead (Pb)	11.5	0.5	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	3.42	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(T1)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	16.0	5.0	1	2,400	24	6010B
Zinc(Zn)	13.2	0.5	1	5,000	250	6010B

#### COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: ARTIC

PROJECT No.: 103567/Env 2 MATRIX:SOIL DATE SAMPLED:10/15/09 REPORT TO:Mr. BERT VOGLER

DATE RECEIVED:<u>10/16/09</u> DATE ANALYZED:<u>10/19-21/09</u> DATE REPORTED:<u>10/23/09</u>

SAMPLE I.D.: KA-4-2.5

LAB I.D.: 091016-31

## TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	25.6	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium(Cd)	0.585	0.5	1	100	1.0	6010B
Chromium Total(Cr)	4.43	0.5	1	2,500	560/50	6010B
Chromium VI (Cr6)	HH I	0.1	1	500	5.0	7196A
Cobalt(Co)	2.14	1.0	1	8,000	80	6010B
Copper(Cu)	3.96	1.0	1	2,500	25	6010B
Lead(Pb)	10.4	0.5	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	2.97	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(T1)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	17.1	5.0	1	2,400	24	6010B
Zinc(Zn)	16.7	0.5	1	5,000	250	6010B

#### COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) *** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested

Data Reviewed and Approved by:

#### 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: ARTIC

PROJECT No.: 103567/Env 2 MATRIX:SOIL DATE SAMPLED:10/15/09 REPORT TO:Mr. BERT VOGLER

DATE RECEIVED: 10/16/09 DATE ANALYZED: 10/19-21/09 DATE REPORTED: 10/23/09

SAMPLE I.D.: KA-4-4.5

LAB I.D.: 091016-32

## TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	28.8	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	5.88	0.5	1	2,500	560/50	6010B
Chromium VI (Cr6)		0.1	1	500	5.0	7196A
Cobalt(Co)	3.52	1.0	1	8,000	80	6010B
Copper (Cu)	4.50	1.0	1	2,500	25	6010B
Lead(Pb)	12.0	0.5	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	3.48	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(T1)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	20.8	5.0	_ 1	2,400	24	6010B
Zinc(Zn)	22.0	0.5	1	5,000	250	6010B

#### COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel (562) 432-1696 Fax (562) 432-1796 PROJECT: ARTIC PROJECT No.: 103567/Env 2

DATE RECEIVED:10/16/09 DATE ANALYZED:10/19-21/09 DATE REPORTED: 10/23/09 

SAMPLE I.D.: KA-6-3

DATE SAMPLED: 10/15/09

REPORT TO:Mr. BERT VOGLER

MATRIX: SOIL

LAB I.D.: 091016-36

_____

## TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1.	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	34.9	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	6.53	0.5	1	2,500	560/50	6010B
Chromium VI (Cr6)		0.1	1	500	5.0	7196A
Cobalt(Co)	3.64	1.0	1	8,000	80	6010B
Copper (Cu)	5.36	1.0	1	2,500	25	6010B
Lead(Pb)	13.1	0.5	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	3.41	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	60108
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(Tl)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	23.2	5.0	1	2,400	24	6010B
Zinc(Zn)	23.1	0.5	1	5,000	250	6010B

#### COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal is recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested

## 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: ARTIC PROJECT No.: 103567/Env 2 MATRIX:SOIL

DATE RECEIVED: <u>10/16/09</u> DATE ANALYZED: <u>10/19-21/09</u> DATE REPORTED: 10/23/09

SAMPLE I.D.: KA-6-5

DATE SAMPLED:10/15/09

REPORT TO:Mr. BERT VOGLER

LAB I.D.: 091016-37

#### TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

_____

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	26.6	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium (Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	5.64	0.5	1	2,500	560/50	6010B
Chromium VI (Cr6)		0.1	1	500	5.0	7196A
Cobalt(Co)	3.40	1.0	1	8,000	80	6010B
Copper (Cu)	4.43	1.0	1	2,500	25	6010B
Lead(Pb)	11.1	0.5	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	3.34	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(Tl)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	19.5	5.0	1	2,400	24	6010B
Zinc(Zn)	21.0	0.5	1	5,000	250	6010B

#### COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested

#### 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## METHOD BLANK REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel (562) 432-1696 Fax (562) 432-1796 PROJECT: ARTIC

PROJECT No.: 103567/Env 2 MATRIX:<u>SOIL</u> DATE SAMPLED:<u>10/15/09</u> REPORT TO:<u>Mr. BERT VOGLER</u>

DATE RECEIVED: 10/16/09 DATE ANALYZED: 10/19/09 DATE REPORTED: 10/23/09

_____

METHOD BLANK FOR LAB I.D.: 091016-21 THROUGH -30

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	ND	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	ND	0.5	1	2,500	560/50	6010B
Chromium VI (Cr6)	1000	0.1	1	500	5.0	7196A
Cobalt(Co)	ND	1.0	1	8,000	80	6010B
Copper (Cu)	ND	1.0	1	2,500	25	6010B
Lead(Pb)	ND	0.5	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	ND	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(T1)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	ND	5.0	1	2,400	24	6010B
Zinc(Zn)	ND	0.5	1	5,000	250	6010B

#### COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested

	0A/QC for Metals Analysis TTLCSOLID/SOIL MATRIX	rix Spike Duplicate/ LCS :	SIS DATE: 10/19/2009 Unit : mg/Kg(ppm)	ipk.Sample LCS LCS LCS Sample Spike MS % Rec MSD % Rec % RPD ID CONC. % Rec. STATUS Result Conc. MS MS MSD	391016-30         1.00         86         PASS         2.76         50.0         49.5         93%         49.6         94%         0%	091016-30 1.00 91 <i>PASS</i> 11.5 50.0 62.1 101% 62.0 101% 0%	091016-30 1.00 92 <i>PASS</i> 13.2 50.0 61.1 96% 61.0 96% 0%	IS DATE. : 10/19/2009	pk.Sample LCS LCS LCS Sample Spike MS % Rec MSD % Rec % RPD ID CONC. % Rec. STATUS Result Conc. MS MS MSD	091019-1 0.125 91.7 PASS 0 0.125 0.110 88% 0.105 84% 5%		%MS %MSD %LCS %RPD	PASS PASS PASS PASS	75~125 75~125 85~115 0~20 ANALYST:	FINAL REVIEWER:				
3	QA/QC for Metal	ix Spike Duplicate/ LCS :	IS DATE: 10/19/2009	ok.Sample LCS LCS ID CONC. %Rec.	91016-30 1.00 86	91016-30 1.00 91	91016-30 1.00 92	S DATE. : 10/19/2009	ok.Sample LCS LCS ID CONC. %Rec.	091019-1 0.125 91 <mark>.</mark> 7		%WS %WSD %CCS	PASS PASS PASS	PASS PASS PASS	PASS PASS PASS	PASS PASS PASS	75~125 75~125 85~115		
		Matrix Spike/ Matr	ANALYS	Analysis	Copper (Cu)	Lead (Pb) 0	Zinc (Zn) 0	ANALYSI	Analysis	Mercury (Hg) 0	MS/MSD Status:	Analysis	Copper (Cu)	Lead (Pb)	Zinc (Zn)	Mercury (Hg)	Accepted Range		

#### 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## METHOD BLANK REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel (562) 432-1696 Fax (562) 432-1796 PROJECT: ARTIC PROJECT No.: 103567/Env 2 MATRIX:SOIL DATE SAMPLED:10/15/09

REPORT TO:Mr. BERT VOGLER

DATE	RECEIVED: 10/16/09
DATE	ANALYZED: 10/19-21/09
DATE	REPORTED: 10/23/09

METHOD BLANK FOR LAB I.D.: 091016-31, 091016-32, 091016-36, 091016-37

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony (Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	ND	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	ND	0.5	1	2,500	560/50	6010B
Chromium VI (Cr6)	24 H	0.1	1	500	5.0	7196A
Cobalt(Co)	ND	1.0	1	8,000	80	6010B
Copper(Cu)	ND	1.0	1	2,500	25	6010B
Lead (Pb)	ND	0.5	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	ND	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(T1)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	ND	5.0	1	2,400	24	6010B
Zinc(Zn)	ND	0.5	1	5,000	250	6010B

#### COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested

QA/Q       atrix Spike D       YSIS DATE: 10/       YSIS DATE: 10/       091016-31       091016-31       091016-31       091016-31       091016-31       091016-31       091016-31       091016-31       091016-31       091016-31       091016-31       091019-1       091019-1       10       091019-1       10       10       10       091019-1       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

## 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796

PROJECT: ARTIC PROJECT No.: 103567/Env 2 MATRIX:SOIL DATE SAMPLED:10/15/09 REPORT TO:Mr. BERT VOGLER

DATE RECEIVED: 10/16/09 DATE EXTRACTED: 10/19/09 DATE ANALYZED: 10/20/09 DATE REPORTED: 10/23/09

-------

SAMPLE I.D.: KA-3-1

LAB I.D.: 091016-29

_____

## Organochlorine Pesticides & PCBs Analysis Method: EPA 8081A/8082

Unit: Mg/Kg = Milligram per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
Aldrin	ND	0.001	1
alpha-BHC	ND	0.001	1
beta-BHC	ND	0.001	1
gamma-BHC (Lindane)	ND	0.001	1
delta-BHC	ND	0.001	1
alpha-Chlordane	ND	0.001	1
gamma-Chlordane	ND	0.001	1
Total Chlordane (Technical)	ND	0.005	1
4,4'-DDD	ND	0.001	1
4,4'-DDE	ND	0.001	1
4,4'-DDT	ND	0.001	1
Dieldrin	ND	0.001	1
Endosulfan I	ND	0.001	1
Endosulfan II	ND	0.001	1
Endosulfan Sulfate	ND	0.001	1
Endrin	ND	0.001	1
Endrin Aldehyde	ND	0.001	1
Endrin Ketone	ND	0.001	1
Heptachlor Epoxide	ND	0.001	1
Heptachlor	ND	0.001	1
Methoxyclor	ND	0.001	1
Toxaphene	ND	0.020	1
PCB-1016	ND	0.010	1
PCB-1221	ND	0.010	1
PCB-1232	ND	0.010	1
PCB-1242	ND	0.010	1
PCB-1248	ND	0.010	1
PCB-1254	ND	0.010	1
PCB-1260	ND	0.010	1

#### COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Non detected or below the Actual Detection Limit

Data Reviewed and Approved by: CAL-DHS CERTIFICATE # 1555

#### 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel (562) 432-1696 Fax (562) 432-1796

PROJECT: ARTIC PROJECT No.: 103567/Env 2 MATRIX:SOIL

DATE SAMPLED: 10/15/09

REPORT TO:Mr. BERT VOGLER

DATE RECEIVED: 10/16/09 DATE EXTRACTED: 10/19/09 DATE ANALYZED: 10/20/09 DATE REPORTED: 10/23/09

SAMPLE I.D.: KA-3-6

LAB I.D.: 091016-30

## Organochlorine Pesticides & PCBs Analysis Method: EPA 8081A/8082

Unit: Mg/Kg = Milligram per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
Aldrin	ND	0.001	1
alpha-BHC	ND	0.001	1
beta-BHC	ND	0.001	1
gamma-BHC (Lindane)	ND	0.001	1
delta-BHC	ND	0.001	- 1
alpha-Chlordane	ND	0.001	1
gamma-Chlordane	ND	0.001	1
Total Chlordane (Technical)	ND	0.005	1
4,4'-DDD	ND	0.001	1
4,4'-DDE	ND	0.001	1
4,4'-DDT	ND	0.001	1
Dieldrin	ND	0.001	1
Endosulfan I	ND	0.001	1
Endosulfan II	ND	0.001	1
Endosulfan Sulfate	ND	0.001	1
Endrin	ND	0.001	1
Endrin Aldehyde	ND	0.001	1
Endrin Ketone	ND	0.001	1
Heptachlor Epoxide	ND	0.001	1
Heptachlor	ND	0.001	1
Methoxyclor	ND	0.001	1
Toxaphene	ND	0.020	1
PCB-1016	ND	0.010	1
PCB-1221	ND	0.010	1
PCB-1232	ND	0.010	1
PCB-1242	ND	0.010	1
PCB-1248	ND	0.010	1
PCB-1254	ND	0.010	1
PCB-1260	ND	0.010	1

#### COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Non detected or below the Actual Detection Limit

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796

PROJEC:	: ARTI	С		
PROJEC'	No.:	10356	/Env	2
MATRIX	SOIL			
DATE SA	AMPLED:	10/15,	/09	
REPORT	TO:Mr.	BERT	VOGLE	ER

DATE RECEIVED: 10/16/09 DATE EXTRACTED: 10/19/09 DATE ANALYZED: 10/20/09 DATE REPORTED: 10/23/09

_____

SAMPLE I.D.: KA-4-2.5

LAB I.D.: 091016-31

## Organochlorine Pesticides & PCBs Analysis Method: EPA 8081A/8082

Unit: Mg/Kg = Milligram per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
Aldrin	ND	0.001	1
alpha-BHC	ND	0.001	1
beta-BHC	ND	0.001	1
gamma-BHC (Lindane)	ND	0,001	1
delta-BHC	ND	0.001	1
alpha-Chlordane	ND	0.001	1
gamma-Chlordane	ND	0.001	1
Total Chlordane (Technical)	ND	0.005	1
4,4'-DDD	ND	0.001	1
4,4'-DDE	ND	0.001	1
4,4'-DDT	ND	0.001	1
Dieldrin	ND	0.001	1
Endosulfan I	ND	0.001	1
Endosulfan II	ND	0.001	1
Endosulfan Sulfate	ND	0.001	1
Endrin	ND	0.001	1
Endrin Aldehyde	ND	0.001	1
Endrin Ketone	ND	0.001	1
Heptachlor Epoxide	ND	0.001	1
Heptachlor	ND	0.001	1
Methoxyclor	ND	0,001	1
Toxaphene	ND	0.020	1
PCB-1016	ND	0.010	1
PCB-1221	ND	0.010	1
PCB-1232	ND	0.010	1
PCB-1242	ND	0.010	1
PCB-1248	ND	0.010	1
PCB-1254	ND	0.010	1
PCB-1260	ND	0.010	1

#### COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Non detected or below the Actual Detection Limit

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel (562) 432-1696 Fax (562) 432-1796

PROJECT: ARTIC PROJECT No.: 103567/Env 2 MATRIX:SOIL DATE SAMPLED: 10/15/09 REPORT TO: Mr. BERT VOGLER

DATE RECEIVED: 10/16/09 DATE EXTRACTED: 10/19/09 DATE ANALYZED: 10/20/09 DATE REPORTED: 10/23/09 

SAMPLE I.D.: KA-4-4.5

LAB I.D.: 091016-32

-----

## Organochlorine Pesticides & PCBs Analysis Method: EPA 8081A/8082

Unit: Mg/Kg = Milligram per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
Aldrin	ND	0.001	1
alpha-BHC	ND	0.001	1
beta-BHC	ND	0.001	1
gamma-BHC (Lindane)	ND	0.001	1
delta-BHC	ND	0.001	1
alpha-Chlordane	ND	0.001	1
gamma-Chlordane	ND	0.001	1
Total Chlordane (Technical)	ND	0.005	1
4,4'-DDD	ND	0.001	1
4,4'-DDE	ND	0.001	1
4,4'-DDT	ND	0.001	1
Dieldrin	ND	0.001	1
Endosulfan I	ND	0.001	1
Endosulfan II	ND	0.001	1
Endosulfan Sulfate	ND	0.001	1
Endrin	ND	0.001	1
Endrin Aldehyde	ND	0.001	1
Endrin Ketone	ND	0.001	1
Heptachlor Epoxide	ND	0.001	1
Heptachlor	ND	0.001	1
Methoxyclor	ND	0.001	1
Toxaphene	ND	0.020	1
PCB-1016	ND	0.010	1
PCB-1221	ND	0.010	1
PCB-1232	ND	0.010	1
PCB-1242	ND	0.010	1
PCB-1248	ND	0.010	1
PCB-1254	ND	0.010	1
PCB-1260	ND	0.010	1

#### COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Non detected or below the Actual Detection Limit. Ŵ

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: APTIC

PROJECT No.: 103567/Env 2	DATE RECEIVED: 10/16/09
MATRIX: SOIL	DATE EXTRACTED: 10/19/09
DATE SAMPLED: 10/15/09	DATE ANALYZED: 10/20/09
REPORT TO: Mr. BERT VOGLER	DATE REPORTED: 10/23/09

SAMPLE I.D.: KA-5-5.5

LAB I.D.: 091016-33

## Organochlorine Pesticides & PCBs Analysis Method: EPA 8081A/8082

Unit: Mg/Kg = Milligram per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
Aldrin	ND	0.001	1
alpha-BHC	ND	0.001	1
beta-BHC	ND	0.001	1
gamma-BHC (Lindane)	ND	0.001	1
delta-BHC	ND	0.001	1
alpha-Chlordane	ND	0.001	1
gamma-Chlordane	ND	0.001	1
Total Chlordane (Technical)	ND	0.005	1
4,4'-DDD	ND	0.001	1
4,4'-DDE	ND	0.001	1
4,4'-DDT	ND	0.001	1
Dieldrin	ND	0.001	1
Endosulfan I	ND	0,001	1
Endosulfan II	ND	0.001	1
Endosulfan Sulfate	ND	0.001	1
Endrin	ND	0.001	1
Endrin Aldehyde	ND	0.001	1
Endrin Ketone	ND	0.001	1
Heptachlor Epoxide	ND	0.001	1
Heptachlor	ND	0.001	1
Methoxyclor	ND	0.001	1
Toxaphene	ND	0.020	1
PCB-1016	ND	0.010	1
PCB-1221	ND	0.010	1
PCB-1232	ND	0.010	1
PCB-1242	ND	0.010	1
PCB-1248	ND	0.010	1
PCB-1254	ND	0.010	1
PCB-1260	ND	0.010	1

#### COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Non detected or below the Actual Detection Limit

Data Reviewed and Approved by: CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: ARTIC

LHOODOL. MIL.		
PROJECT No .:	103567/Env	2
MATRIX: SOIL		
DATE SAMPLED	10/15/09	
REPORT TO:Mr	BERT VOGLE	R

DATE RECEIVED: 10/16/09 DATE EXTRACTED: 10/19/09 DATE ANALYZED: 10/20/09 DATE REPORTED: 10/23/09

SAMPLE I.D.: KA-5-10

LAB I.D.: 091016-34

## Organochlorine Pesticides & PCBs Analysis Method: EPA 8081A/8082

Unit: Mg/Kg = Milligram per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
Aldrin	ND	0.001	1
alpha-BHC	ND	0.001	1
beta-BHC	ND	0.001	1
gamma-BHC (Lindane)	ND	0.001	_ 1
delta-BHC	ND	0.001	1
alpha-Chlordane	ND	0.001	1
gamma-Chlordane	ND	0.001	1
Total Chlordane (Technical)	ND	0.005	1
4,4'-DDD	ND	0.001	1
4,4'-DDE	ND	0.001	1
4,4'-DDT	ND	0.001	1
Dieldrin	ND	0.001	1
Endosulfan I	ND	0,001	1
Endosulfan II	ND	0.001	1
Endosulfan Sulfate	ND	0.001	1
Endrin	ND	0.001	1
Endrin Aldehyde	ND	0.001	1
Endrin Ketone	ND	0.001	1
Heptachlor Epoxide	ND	0.001	1
Heptachlor	ND	0.001	1
Methoxyclor	ND	0.001	-1
Toxaphene	ND	0.020	1
PCB-1016	ND	0.010	1
PCB-1221	ND	0.010	1
PCB-1232	ND	0.010	1
PCB-1242	ND	0.010	1
PCB-1248	ND	0.010	1
PCB-1254	ND	0.010	1
PCB-1260	ND	0.010	1

#### COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Non detected or below the Actual Detection Limit

## 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: APTIC

PROJECT: ARTIC	
PROJECT No.: 103567/Env 2	DATE RECEIVED: 10/16/09
MATRIX: SOIL	DATE EXTRACTED: 10/19/09
DATE SAMPLED: 10/15/09	DATE ANALYZED: 10/20/09
REPORT TO: Mr. BERT VOGLER	DATE REPORTED: 10/23/09

SAMPLE I.D.: KA-5-15

LAB I.D.: 091016-35

# Organochlorine Pesticides & PCBs Analysis Method: EPA 8081A/8082

Unit: Mg/Kg = Milligram per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
Aldrin	ND	0.001	1
alpha-BHC	ND	0.001	1
beta-BHC	ND	0.001	1
gamma-BHC (Lindane)	ND	0.001	1
delta-BHC	ND	0.001	1
alpha-Chlordane	ND	0.001	1
gamma-Chlordane	ND	0.001	1
Total Chlordane (Technical)	ND	0.005	1
4,4'-DDD	ND	0.001	1
4,4'-DDE	ND	0.001	1
4,4'-DDT	ND	0.001	1
Dieldrin	ND	0.001	1
Endosulfan I	ND	0.001	1
Endosulfan II	ND	0.001	1
Endosulfan Sulfate	ND	0.001	1
Endrin	ND	0.001	1
Endrin Aldehyde	ND	0.001	1
Endrin Ketone	ND	0.001	1
Heptachlor Epoxide	ND	0.001	1
Heptachlor	ND	0.001	1
Methoxyclor	ND	0.001	1
Toxaphene	ND	0.020	1
PCB-1016	ND	0.010	1
PCB-1221	ND	0.010	1
PCB-1232	ND	0.010	1
PCB-1242	ND	0.010	1
PCB-1248	ND	0.010	1
PCB-1254	ND	0.010	1
PCB-1260	ND	0.010	1

#### COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Non detected or below the Actual Detection Limit

Data Reviewed and Approved by: CAL-DHS CERTIFICATE # 1555

fl

## 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel (562) 432-1696 Fax (562) 432-1796

PROJECT: ARTIC	
PROJECT No.: 103567/Env 2	DATE RECEIVED: 10/16/09
MATRIX: SOIL	DATE EXTRACTED: 10/19/09
DATE SAMPLED: 10/15/09	DATE ANALYZED: 10/20/09
REPORT TO: Mr. BERT VOGLER	DATE REPORTED: 10/23/09

SAMPLE I.D.: KA-6-3

LAB I.D.: 091016-36

## Organochlorine Pesticides & PCBs Analysis Method: EPA 8081A/8082

Unit: Mg/Kg = Milligram per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
Aldrin	ND	0.001	1
alpha-BHC	ND	0.001	1
beta-BHC	ND	0.001	1
gamma-BHC (Lindane)	ND	0.001	1
delta-BHC	ND	0.001	1
alpha-Chlordane	ND	0.001	1
gamma-Chlordane	ND	0.001	1
Total Chlordane (Technical)	ND	0.005	1
4,4'-DDD	ND	0.001	1
4,4'-DDE	ND	0.001	1
4,4'-DDT	ND	0.001	1
Dieldrin	ND	0.001	1
Endosulfan I	ND	0.001	1
Endosulfan II	ND	0.001	1
Endosulfan Sulfate	ND	0.001	1
Endrin	ND	0.001	1
Endrin Aldehyde	ND	0.001	1
Endrin Ketone	ND	0.001	1
Heptachlor Epoxide	ND	0.001	1
Heptachlor	ND	0.001	1
Methoxyclor	ND	0.001	1
Toxaphene	ND	0.020	1
PCB-1016	ND	0.010	1
PCB-1221	ND	0.010	1
PCB-1232	ND	0.010	1
PCB-1242	ND	0.010	1
PCB-1248	ND	0.010	1
PCB-1254	ND	0.010	1
PCB-1260	ND	0.010	1

#### COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Non detected or below the Actual Detection Limit let

Data Reviewed and Approved by: CAL-DHS CERTIFICATE # 1555

### 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796

PROJECT: ARTIC PROJECT No.: 103567/Env 2 MATRIX:SOIL DATE SAMPLED: 10/15/09 REPORT TO:Mr. BERT VOGLER

DATE RECEIVED:10/16/09 DATE EXTRACTED: 10/19/09 DATE ANALYZED: 10/20/09 DATE REPORTED: 10/23/09 _____

-----SAMPLE I.D.: KA-6-5

LAB I.D.: 091016-37 ------

## Organochlorine Pesticides & PCBs Analysis Method: EPA 8081A/8082

Unit: Mg/Kg = Milligram per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
Aldrin	ND	0.001	1
alpha-BHC	ND	0.001	1
beta-BHC	ND	0.001	1
gamma-BHC (Lindane)	ND	0.001	- 1
delta-BHC	ND	0.001	1
alpha-Chlordane	ND	0.001	1
gamma-Chlordane	ND	0.001	1
Total Chlordane (Technical)	ND	0.005	1
4,4'-DDD	ND	0.001	1
4,4'-DDE	ND	0.001	1
4,4'-DDT	ND	0.001	1
Dieldrin	ND	0.001	1
Endosulfan I	ND	0.001	1
Endosulfan II	ND	0.001	1
Endosulfan Sulfate	ND	0.001	1
Endrin	ND	0.001	1
Endrin Aldehyde	ND	0.001	1
Endrin Ketone	ND	0.001	1
Heptachlor Epoxide	ND	0.001	1
Heptachlor	ND	0.001	1
Methoxyclor	ND	0.001	1
Toxaphene	ND	0.020	1
PCB-1016	ND	0.010	1
PCB-1221	ND	0.010	1
PCB-1232	ND	0.010	1
PCB-1242	ND	0.010	1
PCB-1248	ND	0.010	1
PCB-1254	ND	0.010	1
PCB-1260	ND	0.010	1

#### COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Non detected or below the Actual Detection Limit let

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796

PROJECT: ARTIC

PROJECT No.: 103567/Env 2DATE RECEIVED: 10/16/09MATRIX:SOILDATE EXTRACTED: 10/19/09DATE SAMPLED: 10/15/09DATE ANALYZED: 10/20/09REPORT TO:Mr. BERT VOGLERDATE REPORTED: 10/23/09

SAMPLE I.D.: KA-7-15

LAB I.D.: 091016-38

## Organochlorine Pesticides & PCBs Analysis Method: EPA 8081A/8082

Unit: Mg/Kg = Milligram per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
Aldrin	ND	0.001	1
alpha-BHC	ND	0.001	1
beta-BHC	ND	0.001	1
gamma-BHC (Lindane)	ND	0.001	1
delta-BHC	ND	0.001	1
alpha-Chlordane	ND	0.001	1
gamma-Chlordane	ND	0.001	1
Total Chlordane (Technical)	ND	0.005	1
4,4'-DDD	ND	0.001	1
4,4'-DDE	ND	0.001	1
4,4'-DDT	ND	0.001	1
Dieldrin	ND	0.001	1
Endosulfan I	ND	0.001	1
Endosulfan II	ND	0.001	1
Endosulfan Sulfate	ND	0.001	1
Endrin	ND	0.001	- 1
Endrin Aldehyde	ND	0.001	1
Endrin Ketone	ND	0.001	1
Heptachlor Epoxide	ND	0.001	1
Heptachlor	ND	0.001	1
Methoxyclor	ND	0.001	1
Toxaphene	ND	0.020	1
PCB-1016	ND	0.010	1
PCB-1221	ND	0.010	1
PCB-1232	ND	0.010	1
PCB-1242	ND	0.010	1
PCB-1248	ND	0.010	1
PCB-1254	ND	0.010	1
PCB-1260	ND	0.010	1

#### COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Non detected or below the Actual Detection Limit

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796

PROJECT: ARTIC

PROJECT No.: 103567/Env 2	DATE RECEIVED: 10/16/09
MATRIX: SOIL	DATE EXTRACTED: 10/19/09
DATE SAMPLED:10/15/09	DATE ANALYZED: 10/20/09
REPORT TO:Mr. BERT VOGLER	DATE REPORTED: 10/23/09

SAMPLE I.D.: KA-7-20

LAB I.D.: 091016-39

## Organochlorine Pesticides & PCBs Analysis Method: EPA 8081A/8082

Unit: Mg/Kg = Milligram per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
Aldrin	ND	0.001	1
alpha-BHC	ND	0.001	1
beta-BHC	ND	0.001	1
gamma-BHC (Lindane)	ND	0.001	1
delta-BHC	ND	0.001	1
alpha-Chlordane	ND	0.001	1
gamma-Chlordane	ND	0.001	1
Total Chlordane (Technical)	ND	0.005	1
4,4'-DDD	ND	0.001	1
4,4'-DDE	ND	0.001	1
4,4'-DDT	ND	0.001	1
Dieldrin	ND	0.001	1
Endosulfan I	ND	0.001	1
Endosulfan II	ND	0.001	1
Endosulfan Sulfate	ND	0.001	1
Endrin	ND	0.001	1
Endrin Aldehyde	ND	0.001	1
Endrin Ketone	ND	0,001	1
Heptachlor Epoxide	ND	0.001	1
Heptachlor	ND	0.001	1
Methoxyclor	ND	0.001	1
Toxaphene	ND	0.020	1
PCB-1016	ND	0.010	1
PCB-1221	ND	0.010	1
PCB-1232	ND	0.010	1
PCB-1242	ND	0.010	1
PCB-1248	ND	0.010	1
PCB-1254	ND	0.010	1
PCB-1260	ND	0.010	1

10

#### COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Non detected or below the Actual Detection Limit

Data Reviewed and Approved by: CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796

PROJECT: ARTIC PROJECT No.: 103567/Env 2 MATRIX:SOIL DATE SAMPLED:10/15/09 REPORT TO:Mr. BERT VOGLER

DATE RECEIVED: <u>10/16/09</u> DATE EXTRACTED: <u>10/19/09</u> DATE ANALYZED: <u>10/20/09</u> DATE REPORTED: <u>10/23/09</u>

_____

SAMPLE I.D.: KA-8-5

LAB I.D.: 091016-40

#### Organochlorine Pesticides & PCBs Analysis Method: EPA 8081A/8082

Unit: Mg/Kg = Milligram per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
Aldrin	ND	0.001	1
alpha-BHC	ND	0.001	1
beta-BHC	ND	0.001	1
gamma-BHC (Lindane)	ND	0.001	1
delta-BHC	ND	0.001	1
alpha-Chlordane	ND	0.001	1
gamma-Chlordane	ND	0.001	1
Total Chlordane (Technical)	ND	0.005	1
4,4'-DDD	ND	0.001	1
4,4'-DDE	ND	0.001	1
4,4'-DDT	ND	0.001	1
Dieldrin	ND	0.001	1
Endosulfan I	ND	0.001	1
Endosulfan II	ND	0.001	1
Endosulfan Sulfate	ND	0.001	1
Endrin	ND	0.001	1
Endrin Aldehyde	ND	0.001	1
Endrin Ketone	ND	0.001	1
Heptachlor Epoxide	ND	0.001	1
Heptachlor	ND	0.001	1
Methoxyclor	ND	0.001	1
Toxaphene	ND	0.020	1
PCB-1016	ND	0.010	1
PCB-1221	ND	0.010	1
PCB-1232	ND	0.010	1
PCB-1242	ND	0.010	1
PCB-1248	ND	0.010	1
PCB-1254	ND	0.010	1
PCB-1260	ND	0.010	1

#### COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Non detected or below the Actual Detection Limit

ho

## 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# METHOD BLANK REPORT

CUSTOMER: Kleinfelder

620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796

PROJECT: ARTIC

PROJECT No.: 103567/Env 2	DATE RECEIVED: 10/16/09
MATRIX: SOIL	DATE EXTRACTED: 10/19/09
DATE SAMPLED: 10/15/09	DATE ANALYZED: 10/20/09
REPORT TO:Mr. BERT VOGLER	DATE REPORTED: 10/23/09

METHOD BLANK FOR LAB I.D.: 091016-29 THROUGH -40

Organochlorine Pesticides & PCBs Analysis Method: EPA 8081A/8082

Unit: Mg/Kg = Milligram per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
Aldrin	ND	0.001	1
alpha-BHC	ND	0.001	1
beta-BHC	ND	0.001	1
gamma-BHC (Lindane)	ND	0.001	1
delta-BHC	ND	0.001	1
alpha-Chlordane	ND	0.001	1
gamma-Chlordane	ND	0.001	1
Total Chlordane (Technical)	ND	0.005	1
4,4'-DDD	ND	0.001	1
4,4'-DDE	ND	0.001	1
4,4'-DDT	ND	0.001	1
Dieldrin	ND	0.001	1
Endosulfan I	ND	0.001	1
Endosulfan II	ND	0.001	1
Endosulfan Sulfate	ND	0.001	1
Endrin	ND	0.001	1
Endrin Aldehyde	ND	0.001	1
Endrin Ketone	ND	0.001	1
Heptachlor Epoxide	ND	0.001	1
Heptachlor	ND	0.001	1
Methoxyclor	ND	0.001	1
Toxaphene	ND	0.020	1
PCB-1016	ND	0.010	1
PCB-1221	ND	0.010	1
PCB-1232	ND	0.010	1
PCB-1242	ND	0.010	1
PCB-1248	ND	0.010	1
PCB-1254	ND	0.010	1
PCB-1260	ND	0.010	1

#### COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Non detected or below the Actual Detection Limit

			Envir	o-Chen	n, Inc.				
	1214 E. Lexing	gton Avenue,	Pomona,	CA 91766	Tel (909)	590-5905 F	ax (909)590-	-5907	
	and a second second	EDA	9091	OAK	DC P	onor	ingen kan se berne. H		
		EFA	0001	QAN		epor	Ľ		
Motrie	Soills	olid			Data Apple	wrodi	40/20/200	0	
Matrix,	30113	onu			Date Anal	yzed.	10/20/200	3	
Unic	mg/Kg								
Matrix Spike (	MS)/Matrix S	oike Duplic	ate (MSD						
Spiked Sampl	e Lab I.D.;		091016	5-32 MS	/MSD				
Analyte	I SR	sok conc	MS	%REC	MSD 1	%REC	%RPD	ACP %RPD	ACP %REC
Gamma-BHC	0.000	0.0500	0.0504	101%	0.0467	93%	8%	0-20%	70-130
Aldrin	0.000	0.0500	0.0528	106%	0.0486	97%	8%	0-20%	70-130
4,4-DDE	0.000	0.0500	0.0492	98%	0.0452	90%	8%	0-20%	70-130
Lab Control S	pike (LCS) R	ecovery:							
Analyte	spk cond	LCS	% REC	ACP 9	6REC	Ú.			
Gamma-BHC	0.00500	0.04730	946%	75-	125	a			
Aldrin	0.00500	0.04910	982%	75-	125				
4,4-DDE	0.00500	0.04700	940%	75-	125				
Dieldrin	0.00500	0.04600	920%	75-	125	6			
Surrogate Rec	overv	ACP%	%REC	%REC	%REC	%REC	%REC	%REC	%REC
Sample I.D.			MB	091016-19	091016-29	091016-30	091016-31	091016-32	091016-33
Tetra chloro m	eta-vulene	50,150	93%	100%	113%	93%	86%	91%	95%
Decachlorobiphenyl		50-150	64%	75%	96%	96%	75%	80%	91%
Destationerspip	licity	00.00						1	
Surrogate Rec	overy	%REC	%REC	%REC	%REC	%REC	%REC	%REC	%REC
Sample I.D.		091016-34	091016-35	091016-36	091016-37	091016-38	091016-39	091016-40	091019-1
Tetra-chloro-m	neta-xylene	82%	97%	92%	93%	96%	98%	- 88%	87%
Decachlorobip	henyl	82%	72%	75%	73%	77%	76%	74%	76%
Surrogate Rec	overv	%REC	%REC	%REC	%REC	%REC	%REC	່	
Sample LD.	lorely	091019-2	091019-3	091019-9	091019-10	091019-11	091019-18	1	
Tetra-chloro-n	enelyy_stee	86%	01%	84%	96%	96%	106%		
Decachlorobic	henvl	80%	81%	70%	70%	97%	87%	1	
Bedadinereen	in shipi	0010	1	14.14					
S.R. = Sample Re	esult		* = Surroga	te fail due to	matrix interfe	erence (II M	arked)		
spk conc = Spike	Concentration		Note: LCS,	MS, MSD a	re in control	therefore r	esults are in	control.	
%REC = Percent	Recovery	PPP 0							
ACP %RPD = Ac	ceptable Percent	RPD Range Recovery Rai	nde						
NOT MILLO - NO	soptome recodit	Da.	.90						
Analyzed and R	eviewed By:	or							
Final Reviewer:	CAN								

1214 E.	Lexington A	venue. Po	Enviro mona. CA	o-Chem, Inc 91766	Tel (909)59	0-5905 Fa	ax (909)590-6	5907
154 5	Love and a second	tronac _i i t	Anona, or	51100	101 (000)00	0.0000 11		,501
			QA/Q	C Rep	ort			
		An	alysis: E	PA 808	2 (PCB)			
Matrix:	Soil/Se	olid/S	udge		Date Analy	zed:	10/20/200	<u>9</u>
Unit:	mg/Kg (PPI	<u>M)</u>						
Matrix Spike (N	CVM ataly (	Sailes Dua	liante (MCC					
Matrix Spike (N	is)/matrix a	ырке Dup	licate (NISL	20				
Spiked Sample	Lab I.D.:		<u>09101</u>	6-32 N	IS/MSE	2		
Analyte	spk conc	MS	%REC	MSD	%REC	%RPD	ACP % RPD	ACP %REC
PCB (1016+1260)	1.00	1.035	104%	1.049	105%	1%	0-20%	70-130
LUS STD RECU		100	* DE0	400	ND50	1.		
Analyte	Spk conc	0.084	% REC	ACP 75	%REG			
PCB (1010+1200)	0.100	0.084	0470	/ 5	125	1		
spk conc = Spik	e Concentra	ation						
%REC = Percer	nt Recovery							
ACP %RPD = A	cceptable F	Percent RF	PD Range					
ACP %REC = A	cceptable F	Percent Re	covery Ran	ige				
Analyzed and I	Reviewed E	By: _?	n					
Final Reviewer	:OA		-					

and a second sec				1 12/2/ 1	/ / / / / / RECEIVING LAB:
2NN2/4956	AIAIC		NO. TYPE	1/2/2/2/	1 / / / / tameo-cotten
PO. NO.1 SAMPLERS, 18-07 PO. NO.1 OF MULLIN	unture/Number)		OF OF	\$\Z\Z\Z\Z\Z\Z\Z\	
ATE SAMPLE LD. TIME DD/YY HH AMM-SS	SAMPLE (D	MATRIX	TAINERS TAINERS		
3/29 9:05	1-1-1	SOLL	2 Ma/ WA	XXX	1 00006-2
9:20	2-1-57		1 NOA	, 1 X	21-2-112
05:6	14-1-10				51
9:35	5-1-44	1	4		オスト
9:10	K4-2-1		tranform	X	× 1
9:50	14-25		ALWOON		-26-
9:55	K4-2-10		I I		
02:0	KA-2-15	1	~		82-
lo:42	KA-3-1		Any	XXX	65-
11:52	4-3-6		Martiney		- 20
50:11	K4-4-2-5		Ho/at	X	_ 3
14:50	KA4-4.5		ABY WAY		22
02:01	k4-5-5.5				-22
11:25	KA-5-10				
11.35	K4-5-15				1-35
07:11	44-6-3			X	-36
12:50	14-6-5				Γ <i>ξ</i>
15:00	SI-t-+4				-38
15:15	KA-7-20				1 22
15:52	KA-8-5	¥	4 1	4 4 1 4 A	0.7-
ished by: (Signitum)	Date Time H	and an issination		tetructions/Remarks.	Sand Passults to:
school by: (Signaturo)	Tanaltime R	TVCKee		TAT annumers	VIERVER OF 6
de	10/19/1/2 1/2	Ŷ	4		100 U. 16# St. JEF F
ished by (Signature)	Patentine Reo	owed for Laboratory	er (Sunature)		SIRON TO TANK , CA 40813

## Enviro – Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

Date: October 23, 2009

Mr. Bert Vogler
Kleinfelder
620 W. 16th Street, Unit #F
Long Beach, CA 90813
Tel(562)432-1696 Fax(562)432-1796

Project: ARTIC Project No.: 103567/Env 2 Lab I.D.: 091019-1 through -20

Dear Mr. Vogler:

The **analytical results** for the soil samples, received by our lab on October 16, 2009, are attached. The samples were received chilled, intact and accompanying chain of custody.

Enviro-Chem appreciates the opportunity to provide you and your company this and other services. Please do not hesitate to call us if you have any questions.

Sincerely,

Curtis Desilets Vice President/Program Manager

Andy Wang Laboratory Manager

Eric Lu, Ph.D. Chief Chemist

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER :	Kleinfelder		
	620 W. 16th Street, Unit	: #F	
	Long Beach, CA 90813		
	Tel (562) 432-1696 Fax (56	2) 432-1796	
PROJECT: A	RTIC		
PROJECT No	.: 103567/Env 2	DATE	RECEIVED: 10/16/09
MATRIX : SOI	L	DATE	EXTRACTED: 10/20/09
DATE SAMPL	ED:10/16/09	DATE	ANALYZED: 10/20/09
REPORT TO:	Mr. BERT VOGLER	DATE	REPORTED: 10/23/09
TOT	AL PETROLEUM HYDROCARBON	S(TPH) - CARBO	N CHAIN ANALYSIS
	METHOD :	EPA 8015B	
	UNIT: $MG/KG = MILLIG$	RAM PER KILOGH	RAM = PPM

SAMPLE I.D.	LAB I.D.	C4-C10	C11-C22	C23-C35	DF
KA-9-2.5	091019-1	ND	ND	ND	1
KA-9-5	091019-2	ND	ND	ND	1
KA-9-10	091019-3	ND	ND	ND	1
KA-10-15	091019-4	ND	ND	ND	1
KA-10-20	091019-5	ND	ND	ND	1
KA-11-15	091019-6	ND	ND	ND	1
KA-12-15	091019-7	ND	ND	ND	1
KA-12-19	091019-8	ND	ND	ND	1
KA-13-5	091019-9	ND	ND	ND	1
KA-13-10	091019-10	ND	ND	ND	1
KA-13-14.5	091019-11	ND	ND	ND	1
KA-14-5	091019-12	ND	ND	ND	1
KA-14-10	091019-13	ND	ND	ND	1
KA-14-13	091019-14	ND	ND	ND	1
KA-15-5	091019-15	ND	ND	ND	1
KA-15-10	091019-16	ND	ND	ND	1
KA-15-15	091019-17	ND	ND	ND	1
KA-16-6.5	091019-18	ND	ND	ND	1
KA-16-10	091019-19	ND	ND	ND	1
KA-16-14	091019-20	ND	ND	ND	1
METHOD BLANK		ND	ND	ND	1

10

50

10

COMMENTS

C4-C10 = GASOLINE RANGE C11-C22 = DIESEL RANGE C23-C35 = MOTOR OIL RANGE DF = DILUTION FACTOR PQL = PRACTICAL QUANTITATION LIMIT ACTUAL DETECTION LIMIT = DF X PQL ND = NON-DETECTED OR BELOW THE ACTUAL DETECTION LIMIT Data Reviewed and Approved by:

PQL

CAL-DHS ELAP CERTIFICATE No.: 1555

	Enviro Chem, Inc									
1214 E. Le	1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909)590-5905 Fax (909)590-5907									
	8015B Soil/Solid QC									
Date Analyzed	4:	<u>10/20/20</u>	<u>009</u>				Units:	mg/Kg (P	<u>PM)</u>	
Matrix:	<u>Solid</u>	/Slud	ge							
Matrix Spíke (	Matrix Spike (MS)/Matrix Spike Duplicate (MSD)									
Spiked Sampl	Spiked Sample Lab I.D.: 091019-20 MS/MSD									
Analyte	SR	spk conc	MS	%MS	MSD	%MSD	%RPD	ACP %MS	ACP RPD	
C11~C22 Range	0	2500	2637	105%	2761	110%	5%	75-125	0-20%	
LCS STD REC										
Analyte	spk conc	LCS	% REC	ACP						
C11~C22 Range	200	227	114%	75-125						
Surrogate Recovery	ACP%	%REC	%REC	%REC	%REC	%REC	%REC	%REC	%REC	
Sample I.O.		MB	091019-1	091019-2	091019-3	091019-4	091019-5	091019-6	091019-7	
O-Terphenyl	60-140%	99%	71%	115%	96%	78%	122%	84%	103%	
Octacosane	60-140%	93%	<b>11</b> 1%	84%	91%	<b>87%</b>	90%	81%	78%	
Surrogato Becovery	ACE%	SAREC.	%REC	%REC	%REC	%REC	%REC	%REC	SEC.	
Samula (D		091019-B	091019-9	091019-10	091019-11	091010-12	001010-13	001019-14	001010-15	
O-Tembanul	60-140%	130%	70%	103%	60%	74%	82%	7/10/	70%	
Octacosane	60-140%	105%	84%	81%	10.5%	78%	83%	81%	83%	
	00 140 /	1 100 /0	0470	51/4	10070	7074	0070	U1/0	0	
Surrogate Recovery	ACP%	%REC	%REC	%REC	%REC	%REC				
Sample I.D.		091019-16	091019-17	091019-18	091019-19	091019-20		,		
O-Torphonyl	60-140%	72%	76%	77%	78%	64%				
Octacosane	60-140%	74%	83%	108%	79%	81%				
Analyzed and	Reviewe	d By:	X	*= Sunoga	) le fail due to i	nəlrix inlərlə	rence			
Final Reviewe	ər;			Note: LCS,	MS, MSD ar	e in control l	herefore res	ults are in co	ntrol.	

Enviro – Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER:	Kleinfelder						
	620 W. 16th S	treet, Uni	it #F				
	Long Beach, C	A 90813					
	Tel (562) 432-1	696 Fax (5	62) 432-17	196			
PROJECT: A	ARTIC						
PROJECT No	.: 103567/Env	2					
MATRIX: SOI	IL .			DATE RE	CEIVED:1	0/16/09	
DATE SAMPI	ED:10/16/09			DATE AN	ALYZED:1	0/22/09	
REPORT TO:	Mr. BERT VOGLE	<u>er</u>		DATE RE	PORTED: 1	0/23/09	
	EPA 5035/826 UNITS: MG/	OB FOR FUN KG = MILLI	EL OXYGEN GRAM PER	NATES; PAG KILOGRAM	E 1 OF 2 = PPM	2	
SAMPLE		ETBE	DIPE	MTBE	TAME	TBA	DF
I.D.	LAB I.D.						
KA-9-2.5	091019-1	ND	ND	ND	ND	ND	1
KA-9-10	091019-3	ND	ND	ND	ND	ND	1
KA-10-15	091019-4	ND	ND	ND	ND	ND	1
KA-10-20	091019-5	ND	ND	ND	ND	ND	1
KA-11-15	091019-6	ND	ND	ND	ND	ND	1
KA-12-15	091019-7	ND	ND	ND	ND	ND	1
Method Bla	ank	ND	ND	ND	ND	ND	1
	PQL	0.01	0.01	0.005	0.01	0.05	5
COMMENTS :							
DF = DILU	FION FACTOR						
PQL = PRAG	CTICAL QUANTITA	ATION LIMI	т				
ACTUAL DE	FECTION LIMIT :	= DF X PQL					
ND = NON-I	DETECTED OR BEI	LOW THE AC	TUAL DET	ECTION LIN	IT		
ETBE = ETI	HYL tert-BUTYL	ETHER	DIPE =	ISOPROPYI	- ETHER	1000	
MTBE = ME'	THYL tert-BUTY	L ETHER	TAME =	TERT-AMYI	METHYL	ETHER	
TBA = TER'	FIARY BUTYL AL	COHOL	00				
Data Revi	ewed and Appro	ved by:	1h				
CAL-DHS E	LAP CERTIFICAT	E No.: 155	5				

Enviro – Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

	Land in the second	TTDOIGHT.	01/1 1/1	JE OILE			
CUSTOMER:	Kleinfelder						
	620 W. 16th S	treet, Uni	t #F				
	Long Beach, C	A 90813					
	Tel (562) 432-1	696 Fax (5)	62) 432-1	796			
PROJECT: AF	TIC						
PROJECT No.	: 103567/Env	2					
MATRIX: SOIL				DATE REC	EIVED:1	0/16/09	
DATE SAMPLE	D:10/16/09			DATE ANA	LYZED:1	0/23/09	
REPORT TO:M	Ir. BERT VOGLE	R		DATE REP	ORTED:1	0/23/09	
	EPA 5035/826	OB FOR FUI	EL OXYGE	NATES; PAGE	2 OF 2	2	
	UNITS: MG/H	KG = MILLI	GRAM PER	KILOGRAM	= PPM		
00000000000							
SAMPLE		ETBE	DIPE	MTBE 1	AME	TBA	DF
I.D.	LAB I.D.						
KA-9-5	091019-2	ND	ND	ND	ND	ND	1
KA-12-19	091019-8	ND	ND	ND	ND	ND	1
KA-13-5	091019-9	ND	ND	ND	ND	ND	1
KA-13-10	091019-10	ND	ND	ND	ND	ND	1
KA-13-14.5	5 091019-11	ND	ND	ND	ND	ND	1
KA-14-5	091019-12	ND	ND	ND	ND	ND	1
KA-14-10	091019-13	ND	ND	ND	ND	ND	1
KA-14-13	091019-14	ND	ND	ND	ND	ND	1
KA-15-5	091019-15	ND	ND	ND	ND	ND	1
KA-15-10	091019-16	ND	ND	ND	ND	ND	1
KA-15-15	091019-17	ND	ND	ND	ND	ND	1
KA-16-6.5	091019-18	ND	ND	ND	ND	ND	1
KA-16-10	091019-19	ND	ND	ND	ND	ND	1
KA-16-14	091019-20	ND	ND	ND	ND	ND	1
Method Blan	nk	ND	ND	ND	ND	ND	
	POL	0.01	0 01	0.005	0 01	0.05	
COMMENTE	5.5P	0.01	0.01	0.005	0.01	0.05	
DE - DILUT	TON FACTOR						
POL - PRAC	PICAL OUNTITZ	TTON LIMI	T				
ACTUAL DETI	ECTION LIMIT =	DE X POL	ಡೆಗೆ 2				
ND = NON - DI	ETECTED OR BEI	OW THE AC	TUAL DET	ECTION LIM	гт		
ETBE = ETH	YL tert-BUTYL	ETHER	DIPE =	ISOPROPYL	ETHER		
MTBE = MET	HYL tert-BUTYI	ETHER	TAME =	TERT-AMYL	METHYL	ETHER	
TBA = TERT	IARY BUTYL ALC	COHOL	1.				
			14				
Data Review	wed and Approv	ved by:	1				
CAL-DHS EL	AP CERTIFICATE	S No.: 155	5				
1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: ARTIC PROJECT No.: 103567/Env 2 MATRIX:SOIL DATE SAMPLED:10/16/09

DATE RECEIVED: 10/16/09 DATE ANALYZED: 10/22/09 DATE REPORTED: 10/23/09 LAB I.D.: 091019-1

......

-----

REPORT TO:Mr. BERT VOGLER

SAMPLE I.D.: KA-9-2.5

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4 - CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1, 2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1, 3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1, 2-DICHLOROPROPANE	ND	0.005

----- TO BE CONTINUED ON PAGE #2 -----

### 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER :	Kleinfelder	
	620 W. 16th Street, Unit #F	
	Long Beach, CA 90813	
	Tel(562)432-1696 Fax(562)432-179	6
PROJECT: A	RTIC	
PROJECT No	.: 103567/Env 2	
MATRIX: SOI	L	DA
DATE SAMPL	ED: 10/16/09	DA
REPORT TO:	Mr. BERT VOGLER	DA

TE RECEIVED: 10/16/09 TE ANALYZED: 10/22/09 DATE REPORTED: 10/23/09 LAB I.D.: 091019-1

SAMPLE I.D.: KA-9-2.5 .......

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4 - ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: ARTIC PROJECT No.: 103567/Env 2 MATRIX:SOIL DATE SAMPLED:10/16/09 REPORT TO:Mr. BERT VOGLER DA

DATE RECEIVED: 10/16/09 DATE ANALYZED: 10/22/09 DATE REPORTED: 10/23/09 LAB I.D.: 091019-3

SAMPLE I.D.: KA-9-10

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2

UNIT:	mg/Kg	=	MILLIGRAM	PER	KILOGRAM	=	PPM	
			SAMDLE	DESI	T.P		POT.	<b>Y1</b>

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2 - CHLOROTOLUENE	ND	0.005
4 - CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1, 3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1.2-DICHLOROPROPANE	ND	0.005

---- TO BE CONTINUED ON PAGE #2 -----

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: ARTIC PROJECT No.: 103567/Env 2 MATRIX:SOIL DATE SAMPLED:10/16/09 REPORT TO:Mr. BERT VOGLER

DATE RECEIVED: <u>10/16/09</u> DATE ANALYZED: <u>10/22/09</u> DATE REPORTED: <u>10/23/09</u> LAB I.D.: 091019-3

SAMPLE I.D.: KA-9-10 LAB I.D.: 091019-3

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1, 3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4 - I SOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL DATA REVIEWED AND APPROVED BY:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: ARTIC PROJECT No.: 103567/Env 2 MATRIX:SOIL DATE SAMPLED:10/16/09 REPORT TO:Mr. BERT VOGLER DA

SAMPLE I.D.: KA-10-15

----------

DATE RECEIVED: 10/16/09 DATE ANALYZED: 10/22/09 DATE REPORTED: 10/23/09 LAB I.D.: 091019-4

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2

UNIT:	mg/Kg =	MILLIGRAM	PER	KILOGRAM	=	PPM
-------	---------	-----------	-----	----------	---	-----

*********

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2 - CHLOROTOLUENE	ND	0.005
4 - CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0,005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1, 2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	. ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

----- TO BE CONTINUED ON PAGE #2 -----

#### 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: ARTIC PROJECT No.: 103567/Env 2

MATRIX:<u>SOIL</u> DATE SAMPLED:<u>10/16/09</u> REPORT TO:<u>Mr. BERT VOGLER</u> SAMPLE I.D.: **KA-10-15** 

DATE RECEIVED:<u>10/16/09</u> DATE ANALYZED:<u>10/22/09</u> DATE REPORTED:<u>10/23/09</u> LAB I.D.: 091019-4

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1, 3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4 - ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1, 1, 1, 2-TETRACHLOROETHANE	ND	0.005
1, 1, 2, 2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1, 1, 1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL

W

#### 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: ARTIC PROJECT No.: 103567/Env 2 MATRIX:SOIL DATE SAMPLED: 10/16/09 REPORT TO: Mr. BERT VOGLER SAMPLE I.D.: KA-10-20 

DATE RECEIVED:10/16/09 DATE ANALYZED: 10/22/09 DATE REPORTED:10/23/09 LAB I.D.: 091019-5

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2

UNIT:	mg/Kg	=	MILLIGRAM	PER	KILOGRAM	=	PPM
-------	-------	---	-----------	-----	----------	---	-----

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2 - CHLOROTOLUENE	ND	0.005
4 - CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1, 2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

---- TO BE CONTINUED ON PAGE #2 -----Jul

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: ARTIC PROJECT No.: 103567/Env 2

MATRIX:<u>SOIL</u> DATE SAMPLED:<u>10/16/09</u>

REPORT TO:Mr. BERT VOGLER SAMPLE I.D.: KA-10-20 DATE RECEIVED: <u>10/16/09</u> DATE ANALYZED: <u>10/22/09</u> DATE REPORTED: <u>10/23/09</u> LAB I.D.: 091019-5

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1, 3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4 - ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1, 1, 1, 2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0,005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005
the second se		

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: ARTIC PROJECT No.: 103567/Env 2 MATRIX:SOIL DATE SAMPLED:10/16/09 REPORT TO:Mr. BERT VOGLER SAMPLE I.D.: KA-11-15

DATE RECEIVED:10/16/09 DATE ANALYZED: 10/22/09 DATE REPORTED: 10/23/09 LAB I.D.: 091019-6 

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2

UNIT: mg/Kg = MILI	IGRAM PER	KILOGRAM	=	PPM
--------------------	-----------	----------	---	-----

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2 - CHLOROTOLUENE	ND	0.005
4 - CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1, 2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

----- TO BE CONTINUED ON PAGE #2 -----

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel (562) 432-1696 Fax (562) 432-1796 PROJECT: ARTIC PROJECT No.: 103567/Env 2 MATRIX:SOIL

DATE SAMPLED: 10/16/09 REPORT TO:Mr. BERT VOGLER SAMPLE I.D.: KA-11-15

DATE RECEIVED:10/16/09 DATE ANALYZED: 10/22/09 DATE REPORTED: 10/23/09 LAB I.D.: 091019-6 

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1, 3-DICHLOROPROPANE	ND	0.005
2, 2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4 - I SOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1, 1, 2, 2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1, 1, 1-TRICHLOROETHANE	ND	0.005
1, 1, 2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

ND = NON-DETECTED OR BELOW THE PQL el'

DATA REVIEWED AND APPROVED BY:

#### 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: ARTIC PROJECT No.: 103567/Env 2 MATRIX:SOIL DATE SAMPLED:10/16/09

DATE RECEIVED:<u>10/16/09</u> DATE ANALYZED:<u>10/22/09</u> DATE REPORTED:<u>10/23/09</u> LAB I.D.: 091019-7

SAMPLE I.D.: KA-12-15 LAB I.D.: 091019-7

REPORT TO: Mr. BERT VOGLER

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2

UNIT: $mq/Kq = MILLIGRAM PER$	KILOGRAM	=	PPM
-------------------------------	----------	---	-----

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4 - CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1, 3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1, 2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

----- TO BE CONTINUED ON PAGE #2 -----

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: ARTIC PROJECT No.: 103567/Env 2 MATRIX:SOIL DATE SAMPLED:10/16/09

DATE SAMPLED:<u>10/16/09</u> REPORT TO:<u>Mr. BERT VOGLER</u> SAMPLE I.D.: KA-12-15

. . . . . . . . . . . . . . . .

DATE RECEIVED: <u>10/16/09</u> DATE ANALYZED: <u>10/22/09</u> DATE REPORTED: <u>10/23/09</u> LAB I.D.: 091019-7

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1, 3-DICHLOROPROPANE	ND	0.005
2, 2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4 - I SOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1, 1, 1, 2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1, 2, 3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1, 1, 2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

ND = NON-DETECTED OR BELOW THE PQL DATA REVIEWED AND APPROVED BY:

#### 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### METHOD BLANK REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: ARTIC PROJECT No.: 103567/Env 2

MATRIX:<u>SOIL</u> DATE SAMPLED:<u>10/16/09</u> REPORT TO:<u>Mr. BERT VOGLER</u>

DATE RECEIVED: 10/16/09

DATE ANALYZED: 10/22/09

DATE REPORTED: 10/23/09

METHOD BLANK FOR LAB I.D.: 091019-1, -3 THROUGH -7

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2 - CHLOROTOLUENE	ND	0.005
4 - CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1, 3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1, 2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

APPROVED BY

# Enviro – Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

METH	OD BLANK REPORT
OUODOWDD Windefelder	OD DIAMA REPORT
COSTOMER: Kleinfelder	
620 W. 16th Stree	et, Unit #F
Long Beach, CA 90	0813
Tel (562) 432-1696	Fax (562) 432-1796
PROJECT: ARTIC	
PROJECT No.: 103567/Env 2	
MATRIX: SOIL	DATE RECEIVED: 10/16/09
DATE SAMPLED: 10/16/09	DATE ANALYZED: 10/22/09
REPORT TO: Mr. BERT VOGLER	DATE REPORTED: 10/23/09
METHOD BLANK FOR	LAB I.D.: 091019-1, -3 THROUGH -7
ANALYSIS: VOLATILE ORGAN UNIT: mg/Kg =	NICS, EPA METHOD 5035/8260B, PAGE 2 OF 2 MILLIGRAM PER KILOGRAM = PPM
PARAMETER	SAMPLE RESULT POL X1
1, 3-DICHLOROPROPANE	ND 0.005
2, 2-DICHLOROPROPANE	ND 0.005
1,1-DICHLOROPROPENE	ND 0.005
CIS-1, 3-DICHLOROPROPENE	ND 0.005
TRANS-1, 3-DICHLOROPROPENE	ND 0.005
ETHYLBENZENE	ND 0.005
2-HEXANONE	ND 0.020
HEXACHLOROBUTADIENE	ND 0,005
ISOPROPYLBENZENE	ND 0.005
4 - ISOPROPYLTOLUENE	ND 0.005
4-METHYL-2-PENTANONE (MIBK)	ND 0.020
METHYL tert-BUTYL ETHER (MT	BE) ND 0.005
METHYLENE CHLORIDE	ND 0.010
NAPHTHALENE	ND 0.005
N-PROPYLBENZENE	ND 0.005
STYRENE	ND 0.005
1,1,1,2-TETRACHLOROETHANE	ND 0.005
1,1,2,2-TETRACHLOROETHANE	ND 0.005
TETRACHLOROETHENE (PCE)	ND 0.005
TOLUENE	ND 0.005
1,2,3-TRICHLOROBENZENE	ND 0.005
1,2,4-TRICHLOROBENZENE	ND 0.005
1,1,1-TRICHLOROETHANE	ND 0.005
1, 1, 2-TRICHLOROETHANE	ND 0.005
TRICHLOROETHENE (TCE)	ND 0.005
TRICHLOROFLUOROMETHANE	ND 0.005
1,2,3-TRICHLOROPROPANE	ND 0.005
1,2,4-TRIMETHYLBENZENE	ND 0.005
1,3,5-TRIMETHYLBENZENE	ND 0.005
VINYL CHLORIDE	ND 0.005
M/P-XYLENE	ND 0.010
O-XYLENE	ND 0.005
COMMENTS PQL = PRACTICAL QU	ANTITATION LIMIT
ND = NON-DETECTED OR BELOW	THE PQL
DATA REVIEWED AND APPROVED	BY: MIL

			Enviro-Che	om, inc.				5007	
1214 E. Lexington Av	enue, Pom	ona, CA 91	8260B QA	/QC Repor	909)590-59 t	05 Fa	ix (909)590	-5907	
Date Analyzed:	10/22/2009	2					Matrix:	Solid/Soil/S	Sludge
Machine:	<u>C</u>						Unit:	mg/Kg (PP	M)
Matrix Spike (MS)/Matr	ix Spike Di	iplicate (MS	iD)						
Spiked Sample Lab I.D		091019-44	MS/MSD	1/DO	1100	0/00	0/000	100 100	100 000
Analyte	S.R.	Spk conc	MS	%RG	MSD	%RG	%RPD	ACP %RC	ACP RPD
Senzene	0	0.050	0.049	98%	0.046	92%	6%	75-125	0-20
Uniorobenzene	0	0.050	0.054	108%	0.044	88%	20%	75-125	0-20
T, T-Dichloroethene	0	0.050	0.049	98%	0.042	00%	14%	75-125	0-20
	0	0.050	0.050	100%	0.048	96%	4%	75-125	0-20
richloroethene (TCE)	0	0.050	0.049	98%	0.050	100%	2%	/5-125	0-20
Lab Control Spike (LCS	S):								
Analyte	spk conc	LCS	%RC	ACP %RC					
Benzene	0.050	0.044	88%	75-125					
Chlorobenzene	0.050	0.054	108%	75-125					
Chloroform	0.050	0.057	114%	75-125					
1,1-Dichlorothene	0.050	0.042	84%	75-125					
Ethylbenzene	0.050	0.045	90%	75-125					
o-Xylene	0.050	0.051	102%	75-125					
n,p-Xylene	0.100	0.093	93%	75-125					
Foluene	0.050	0.046	92%	75-125					
1,1,1-Trichloroethane	0.050	0.042	84%	75-125					
Trichloroethene (TCE)	0.050	0.057	114%	75-125					
									1
Surrogate Recovery	spk conc	ACP %RC	MB %RC	%RC	%RC	%RC	%RC	%RC	%RC
Sample I.D.			M-BLK	091021-40	091021-41	091021-42	091021-43	091021-44	091019-1
Dibromofluoromethane	50.0	70-130	99%	88%	89%	86%	95%	88%	92%
Toluene-d8	50.0	70-130	88%	90%	90%	89%	89%	87%	87%
4-Bromofluorobenzene	50.0	70-130	95%	98%	93%	97%	92%	79%	90%
Surrogate Decovery	enk conc		WPC	% PC	0/ PC	0/ PC	WPC \	WPC	%PC
Surrogate Recovery	spk conc	ACP %RU	001010 2	70RC	70KU	70NC	001010 T	70RG	70RC
Sample I.D.	50.0	70 120	091019-3	031019-4	4070/	091019-0	091019-1	1021-49	1040/
Dioromonuoromethane	50.0	70-130	700/	0/%	107%	740/	80%	105%	101%
A Deeme-do	50.0	70-130	79%	84%	05%	74%	070/	79%	94%
4-bromonuorobenzene	50.0	1 70-130	9170	7470	10%	01%	01%	91%	01%
Surrogate Recovery	snk conc	ACP %RC	%RC	%RC	%RC	%RC	%BC	%RC	%RC
Sample I.D.	opic conto		091021-60	091021-73	70130	701.00	70110	74110	70110
Dibromofluoromethene	50.0	70-130	07%	84%				<u> </u>	
Toluene.d8	50.0	70-130	94%	91%					
4-Bromofluorohenzene	50.0	70-130	85%	91%					
4-bromonuorobenzene	1 50.0	70-130	80%	91%					
* = Surrogate fail due to S.R. = Sample Results spk conc = Spike Conce MS = Matrix Spike	matrix inter entration	ference; L	CS, MS, MS	D are in cor	trol therefor %RC = Per ACP %RC MSD = Mat	re the analy. rcent Recov = Accepted trix Spike D	sis is in con ery Percent Re uplicate	trol. ecovery	
Analyzed/Reviewed By	. <u>_ S</u> l	h							
Final Reviewer:	CA								

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER :	Kleinfelder	
	620 W. 16th Street, Unit #F	
	Long Beach, CA 90813	
	Tel(562)432-1696 Fax(562)432-17	96
PROJECT: #	ARTIC	
PROJECT NO	b.: 103567/Env 2	
MATRIX: SOI	IL	DA
DATE SAMPI	LED: 10/16/09	DA
REPORT TO:	Mr. BERT VOGLER	DA
SAMPLE T.F	D.: KA-9-5	T.7

DATE RECEIVED:<u>10/16/09</u> DATE ANALYZED:<u>10/23/09</u> DATE REPORTED:<u>10/23/09</u> LAB I.D.: 091019-2

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	POL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2 - CHLOROTOLUENE	ND	0.005
4 - CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

---- TO BE CONTINUED ON PAGE #2 -----

Ul

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel (562) 432-1696 Fax (562) 432-1796 PROJECT: ARTIC PROJECT No.: 103567/Env 2 MATRIX: SOIL DATE SAMPLED: 10/16/09 REPORT TO:Mr. BERT VOGLER

DATE RECEIVED: 10/16/09 DATE ANALYZED:10/23/09 DATE REPORTED: 10/23/09 LAB I.D.: 091019-2

SAMPLE I.D.: KA-9-5 

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2

UNIT:	mg/Kg	=	MILLIGRAM	PER	KILOGRAM	=	PPM
-------	-------	---	-----------	-----	----------	---	-----

PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4 - I SOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL 1

#### 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: ARTIC PROJECT No.: 103567/Env 2 MATRIX:SOIL DATE SAMPLED:10/16/09 REPORT TO:Mr. BERT VOGLER D/

DATE RECEIVED: <u>10/16/09</u> DATE ANALYZED: <u>10/23/09</u> DATE REPORTED: <u>10/23/09</u> LAB I.D.: 091019-8

SAMPLE I.D.: KA-12-19

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2

			S20,202151 2755559 123			1913) 1913	
UNIT:	mg/Kg	=	MILLIGRAM	PER	KILOGRAM	=	PPM

PARAMETER	SAMPLE RESULT	POL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2 - CHLOROTOLUENE	ND	0.005
4 - CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1, 3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0,005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1, 2-DICHLOROPROPANE	ND	0.005

---- TO BE CONTINUED ON PAGE #2 -----

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: ARTIC PROJECT No.: 103567/Env 2 MATRIX: SOIL DATE SAMPLED: 10/16/09 REPORT TO: Mr. BERT VOGLER

DATE RECEIVED: 10/16/09 DATE ANALYZED: 10/23/09 DATE REPORTED:10/23/09 LAB I.D.: 091019-8

SAMPLE I.D.: KA-12-19 

ANALYSIS VOLATILE OPCANICS EDA METHOD 5035/92608 DACE 2 OF 2

1,3-DICHLOROPROPANE 2,2-DICHLOROPROPANE 1,1-DICHLOROPROPENE CIS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE ETHYLBENZENE 2-HEXANONE HEXACHLOROBUTADIENE ISOPROPYLBENZENE 4-ISOPROPYLBENZENE 4-ISOPROPYLTOLUENE 4-METHYL-2-PENTANONE (MIBK) METHYL tert-BUTYL ETHER (MTBE) METHYLENE CHLORIDE NAPHTHALENE N-PROPYLBENZENE STYRENE	ND ND ND ND ND ND ND ND ND ND ND ND ND N	0.005 0.005 0.005 0.005 0.005 0.005 0.020 0.005 0.005 0.005 0.005 0.020 0.005 0.020 0.005 0.020 0.005
2,2-DICHLOROPROPANE 1,1-DICHLOROPROPENE CIS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE ETHYLBENZENE 2-HEXANONE HEXACHLOROBUTADIENE ISOPROPYLBENZENE 4-ISOPROPYLBENZENE 4-METHYL-2-PENTANONE (MIBK) METHYL tert-BUTYL ETHER (MTBE) METHYLENE CHLORIDE NAPHTHALENE N-PROPYLBENZENE STYRENE	ND ND ND ND ND ND ND ND ND ND ND ND ND N	0.005 0.005 0.005 0.005 0.005 0.020 0.005 0.005 0.005 0.005 0.020 0.005 0.020 0.005 0.005
1,1-DICHLOROPROPENE CIS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE ETHYLBENZENE 2-HEXANONE HEXACHLOROBUTADIENE ISOPROPYLBENZENE 4-ISOPROPYLTOLUENE 4-METHYL-2-PENTANONE (MIBK) METHYL tert-BUTYL ETHER (MTBE) METHYLENE CHLORIDE NAPHTHALENE N-PROPYLBENZENE STYRENE	ND ND ND ND ND ND ND ND ND ND ND ND ND N	0.005 0.005 0.005 0.020 0.005 0.005 0.005 0.005 0.020 0.005 0.020 0.005 0.005
CIS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE ETHYLBENZENE 2-HEXANONE HEXACHLOROBUTADIENE ISOPROPYLBENZENE 4-ISOPROPYLTOLUENE 4-METHYL-2-PENTANONE (MIBK) METHYL tert-BUTYL ETHER (MTBE) METHYLENE CHLORIDE NAPHTHALENE N-PROPYLBENZENE STYRENE	ND ND ND ND ND ND ND ND ND ND ND ND	0.005 0.005 0.020 0.005 0.005 0.005 0.005 0.020 0.005 0.005 0.010
TRANS-1,3-DICHLOROPROPENE ETHYLBENZENE 2-HEXANONE HEXACHLOROBUTADIENE ISOPROPYLBENZENE 4-ISOPROPYLTOLUENE 4-METHYL-2-PENTANONE (MIBK) METHYL tert-BUTYL ETHER (MTBE) METHYLENE CHLORIDE NAPHTHALENE N-PROPYLBENZENE STYRENE	ND ND ND ND ND ND ND ND ND ND ND	0.005 0.005 0.020 0.005 0.005 0.005 0.020 0.005 0.010
ETHYLBENZENE 2-HEXANONE HEXACHLOROBUTADIENE ISOPROPYLBENZENE 4-ISOPROPYLTOLUENE 4-METHYL-2-PENTANONE (MIBK) METHYL tert-BUTYL ETHER (MTBE) METHYLENE CHLORIDE NAPHTHALENE N-PROPYLBENZENE STYRENE	ND ND ND ND ND ND ND ND ND ND	0.005 0.020 0.005 0.005 0.005 0.020 0.005 0.010
2-HEXANONE HEXACHLOROBUTADIENE ISOPROPYLBENZENE 4-ISOPROPYLTOLUENE 4-METHYL-2-PENTANONE (MIBK) METHYL tert-BUTYL ETHER (MTBE) METHYLENE CHLORIDE NAPHTHALENE N-PROPYLBENZENE STYRENE	ND ND ND ND ND ND ND ND	0.020 0.005 0.005 0.005 0.020 0.005 0.010
HEXACHLOROBUTADIENE ISOPROPYLBENZENE 4-ISOPROPYLTOLUENE 4-METHYL-2-PENTANONE (MIBK) METHYL tert-BUTYL ETHER (MTBE) METHYLENE CHLORIDE NAPHTHALENE N-PROPYLBENZENE STYRENE	ND ND ND ND ND ND ND	0.005 0.005 0.020 0.005 0.005 0.010
ISOPROPYLBENZENE 4-ISOPROPYLTOLUENE 4-METHYL-2-PENTANONE (MIBK) METHYL tert-BUTYL ETHER (MTBE) METHYLENE CHLORIDE NAPHTHALENE N-PROPYLBENZENE STYRENE	ND ND ND ND ND ND	0.005 0.005 0.020 0.005 0.010
4-ISOPROPYLTOLUENE 4-METHYL-2-PENTANONE (MIBK) METHYL tert-BUTYL ETHER (MTBE) METHYLENE CHLORIDE NAPHTHALENE N-PROPYLBENZENE STYRENE	ND ND ND ND ND	0.005 0.020 0.005 0.010
4-METHYL-2-PENTANONE (MIBK) METHYL tert-BUTYL ETHER (MTBE) METHYLENE CHLORIDE NAPHTHALENE N-PROPYLBENZENE STYRENE	ND ND ND ND	0.020 0.005 0.010
METHYL tert-BUTYL ETHER (MTBE) METHYLENE CHLORIDE NAPHTHALENE N-PROPYLBENZENE STYRENE	ND ND ND	0.005
METHYLENE CHLORIDE NAPHTHALENE N-PROPYLBENZENE STYRENE	ND ND	0.010
NAPHTHALENE N-PROPYLBENZENE STYRENE	ND	0.005
N-PROPYLBENZENE STYRENE	ND	0.005
STYRENE	1112	0.005
	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1, 1, 1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

# 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER:	Kleinfelder	
	620 W. 16th Street, Unit #F	
	Long Beach, CA 90813	
	Tel(562)432-1696 Fax(562)432-	1796
PROJECT: A	ARTIC	
PROJECT NO	5.: 103567/Env 2	
MATRIX: SOI	<u>L</u>	DAT
DATE SAMPI	LED: 10/16/09	DAT
REPORT TO:	Mr. BERT VOGLER	DAT
CAMDLE T.	VA-12-E	TAT

SAMPLE I.D.: KA-13-5

DATE RECEIVED:<u>10/16/09</u> DATE ANALYZED:<u>10/23/09</u> DATE REPORTED:<u>10/23/09</u> LAB I.D.: 091019-9

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2 - CHLOROTOLUENE	ND	0.005
4 - CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1, 2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1, 2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

---- TO BE CONTINUED ON PAGE #2 -----

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER :	Kleinfelder	
	620 W. 16th Street, Unit #F	
	Long Beach, CA 90813	
	Tel(562)432-1696 Fax(562)432-	1796
PROJECT: A	ARTIC	
PROJECT No	b.: 103567/Env 2	
MATRIX: SOI	IL	DA
DATE SAMPI	LED: 10/16/09	DA
REPORT TO:	Mr. BERT VOGLER	DA

TE RECEIVED: 10/16/09 TE ANALYZED: 10/23/09 TE REPORTED: 10/23/09 LAB I.D.: 091019-9

SAMPLE I.D.: KA-13-5 

.......

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2 1 ... . . . . . . UNIT:

mg/Kg	=	MILLIGRAM	PER	KILOGRAM	=	PPM	
		SAMPLE	RESU	LT		POL	XI

PARAMETER	SAMPLE RESULT	PQL X1
1, 3-DICHLOROPROPANE	ND	0.005
2, 2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4 - ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1, 1, 1, 2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel (562) 432-1696 Fax (562) 432-1796 PROJECT: ARTIC PROJECT No.: 103567/Env 2 MATRIX:SOIL DATE SAMPLED:10/16/09 REPORT TO:Mr. BERT VOGLER SAMPLE I D : KA-13-10

DATE RECEIVED: <u>10/16/09</u> DATE ANALYZED: <u>10/23/09</u> DATE REPORTED: <u>10/23/09</u> LAB I.D.: 091019-10

DADAMETED	SAMPLE PESIILT	POL X1
ACETONE	ND	0 020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1, 3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1, 1-DICHLOROETHENE	ND	0.005
CIS-1, 2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1, 2-DICHLOROPROPANE	ND	0.005

APPROVED BY.

# 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER:	Kleinfelder	
	620 W. 16th Street, Unit	#F
	Long Beach, CA 90813	
	Tel(562)432-1696 Fax(562	) 432-1796
PROJECT: P	ARTIC	
PROJECT NO	.: 103567/Env 2	
MATRIX: SOI	íL.	DAT
DATE SAMPI	ED: 10/16/09	DAT
REPORT TO:	Mr. BERT VOGLER	DAT
SAMPLE I.I	0.: KA-13-10	LA

TE RECEIVED: 10/16/09 TE ANALYZED: 10/23/09 TE REPORTED: 10/23/09 B I.D.: 091019-10 .................

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2

UNIT: mg/Kg = MILLIGRAM PE	R KILOGRAM = PPM
----------------------------	------------------

PARAMETER	SAMPLE RESULT	POL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1,3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4 - ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1, 1, 1, 2-TETRACHLOROETHANE	ND	0.005
1, 1, 2, 2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1, 1, 1 - TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

all

ND = NON-DETECTED OR BELOW THE PQL

DATA REVIEWED AND APPROVED BY:

#### 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

### LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: ARTIC PROJECT No.: 103567/Env 2 MATRIX: SOIL DATE SAMPLED: 10/16/09 REPORT TO:Mr. BERT VOGLER SAMPLE I.D.: KA-13-14.5

PARAMETER

DATE RECEIVED:10/16/09 DATE ANALYZED: 10/23/09 DATE REPORTED:10/23/09 LAB I.D.: 091019-11 

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2

INT P.	malka	-	MILLICOM	DPD	VILOCOM	_	DDM		
ONIT:	mging	-	MIDLGRAM	PER	KILOGRAM	_	PPM		
			SAMPLE	RESU	LT		POL	X1	

ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4 - CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

---- TO BE CONTINUED ON PAGE #2 -----

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: ARTIC PROJECT No.: 103567/Env 2 MATRIX:SOIL DATE SAMPLED:10/16/09

DATE RECEIVED: <u>10/16/09</u> DATE ANALYZED: <u>10/23/09</u> DATE REPORTED: <u>10/23/09</u> LAB I.D.: 091019-11

REPORT TO:<u>Mr. BERT VOGLER</u> SAMPLE I.D.: KA-13-14.5

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2

UNIT: mg/Kg = MII	LLIGRAM PER KILOGR	AM = PPM
PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4 - ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N - PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1, 1, 1, 2-TETRACHLOROETHANE	ND	0,005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005
COMMENTE DOL DESCRITCAL OUNDER	TRANSTON I THAT	- Toda To To To

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL DATA REVIEWED AND APPROVED BY:

# 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER:	Kleinfelder	
	620 W. 16th Street, Unit #F	
	Long Beach, CA 90813	
	Tel (562) 432-1696 Fax (562) 432-1796	5
PROJECT: A	RTIC	
PROJECT No	.: 103567/Env 2	
MATRIX: SOI	L	DA
DATE SAMPI	ED: 10/16/09	DA
REPORT TO:	Mr. BERT VOGLER	DA
SAMPLE I.D	).: KA-14-5	LA

 SOIL
 DATE RECEIVED: 10/16/09

 MPLED: 10/16/09
 DATE ANALYZED: 10/23/09

 TO: Mr. BERT VOGLER
 DATE REPORTED: 10/23/09

 I.D.: KA-14-5
 LAB I.D.: 091019-12

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2

UNIT: N	mg/Kg	=	MILLIGRAM	PER	KILOGRAM	=	PPM
---------	-------	---	-----------	-----	----------	---	-----

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2 - CHLOROTOLUENE	ND	0.005
4 - CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1, 2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

---- TO BE CONTINUED ON PAGE #2 -----

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER:	Kleinfelder	
	620 W. 16th Street, Unit	: #F
	Long Beach, CA 90813	
	Tel(562)432-1696 Fax(562	2) 432-1796
PROJECT: A	RTIC	
PROJECT No	.: 103567/Env 2	
MATRIX: SOI	L	DATE
DATE SAMPI	ED: 10/16/09	DATE
REPORT TO:	Mr. BERT VOGLER	DATE
SAMPLE I.D	).; KA-14-5	LAB
010000000000000		

DATE RECEIVED: <u>10/16/09</u> DATE ANALYZED: <u>10/23/09</u> DATE REPORTED: <u>10/23/09</u> LAB I.D.: 091019-12

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2

PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4 - ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1, 1, 2, 2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL DATA REVIEWED AND APPROVED BY:

2L AN

#### 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: ARTIC PROJECT No.: 103567/Env 2 MATRIX:SOIL DATE SAMPLED: 10/16/09 REPORT TO:Mr. BERT VOGLER

SAMPLE I.D.: KA-14-10

DATE RECEIVED:10/16/09 DATE ANALYZED: 10/23/09 DATE REPORTED: 10/23/09 LAB I.D.: 091019-13 

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2

UNIT: MG/KG = MILLIGRAM PER KILOGRAM =	PPM	PPM	4
----------------------------------------	-----	-----	---

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0,020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2 - CHLOROTOLUENE	ND	0.005
4 - CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1, 2-DICHLOROBENZENE	ND	0.005
1, 3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1, 2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

----- TO BE CONTINUED ON PAGE #2 -----N

#### 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel (562) 432-1696 Fax (562) 432-1796 PROJECT: ARTIC PROJECT No.: 103567/Env 2 MATRIX: SOIL DATE SAMPLED: 10/16/09 REPORT TO: Mr. BERT VOGLER

SAMPLE I.D.: KA-14-10

DATE RECEIVED: 10/16/09 DATE ANALYZED: 10/23/09 DATE REPORTED: 10/23/09 LAB I.D.: 091019-13

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2

	1.00						- C (
UNTT:	ma/Ka	=	MILLIGRAM	PER	KTLOGRAM	=	PPM
	mg/ mg	_	THE DETOICE.		TIT DO OLGHI		

PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4 - I SOPROPYLTOLUENE	ND	0.005
4 - METHYL - 2 - PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1, 1, 2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUANT. no

ND = NON-DETECTED OR BELOW THE PQL

# 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER :	Kleinfelder		
	620 W. 16th Street, Unit	#F	
	Long Beach, CA 90813		
	Tel(562)432-1696 Fax(562	) 432-1796	
PROJECT: A	RTIC		
PROJECT No	.: 103567/Env 2		
MATRIX: SOI	L	DATE RECEIVED: 10/16/09	
DATE SAMPL	ED: <u>10/16/09</u>	DATE ANALYZED: 10/23/09	
REPORT TO:	Mr. BERT VOGLER	DATE REPORTED: 10/23/09	
SAMPLE I.D	.: KA-14-13	LAB I.D.: 091019-14	
	**********************		

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4 - CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1, 2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1, 2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

lid

# 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER:	Kleinfelder	
	620 W. 16th Street, Unit #F	
	Long Beach, CA 90813	
	Tel(562)432-1696 Fax(562)432-1	796
PROJECT: A	ARTIC	
PROJECT No	D.: 103567/Env 2	
MATRIX: SOI	IL	DA
DATE SAMPI	LED: 10/16/09	DA
REPORT TO:	Mr. BERT VOGLER	DA
SAMPLE I.I	D.: KA-14-13	LA

DATE RECEIVED: 10/16/09 DATE ANALYZED: 10/23/09 DATE REPORTED: 10/23/09 LAB I.D.: 091019-14

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1,3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4 - ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1, 1, 1, 2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1, 1, 2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

ND = NON-DETECTED OR BELOW THE PQL

#### 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: ARTIC PROJECT No.: 103567/Env 2 MATRIX: SOIL DATE SAMPLED: 10/16/09 REPORT TO: Mr. BERT VOGLER SAMPLE I.D.: KA-15-5

DATE RECEIVED: 10/16/09 DATE ANALYZED: 10/23/09 DATE REPORTED:10/23/09 LAB I.D.: 091019-15 

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2

UNIT: mg/Kg	=	MILLIGRAM	PER	KILOGRAM	=	PPM
-------------	---	-----------	-----	----------	---	-----

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2 - CHLOROTOLUENE	ND	0.005
4 - CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1, 3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1, 2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

----- TO BE CONTINUED ON PAGE #2 -----

al

#### 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER :	Kleinfelder	
	620 W. 16th Street, Unit #F	
	Long Beach, CA 90813	
	Tel(562)432-1696 Fax(562)43	2-1796
PROJECT: A	RTIC	
PROJECT No	.: 103567/Env 2	
MATRIX: SOI	L	DA
DATE SAMPL	ED: 10/16/09	DA
REPORT TO:	Mr. BERT VOGLER	DZ
SAMPLE I.D	).: KA-15-5	LZ

ATE RECEIVED: 10/16/09 ATE ANALYZED: 10/23/09 ATE REPORTED: 10/23/09 LAB I.D.: 091019-15 ...............................

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2

UNTT .	ma/Ka	=	MILLIGRAM	DER	KILOGRAM =	DDM
ONT I.	IIIQ/ AQ	-	MIDDIGRAM	PER	VITORKWI =	FFM

PARAMETER	SAMPLE RESULT	POL X1
1, 3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1,3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4 - ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1, 1, 1, 2-TETRACHLOROETHANE	ND	0.005
1, 1, 2, 2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1, 1, 2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL Cal

DATA REVIEWED AND APPROVED BY:

# 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: ARTIC PROJECT No.: 103567/Env 2 MATRIX:SOIL D

DATE SAMPLED: 10/16/09

SAMPLE I.D.: KA-15-10

REPORT TO:Mr. BERT VOGLER

DATE RECEIVED:<u>10/16/09</u> DATE ANALYZED:<u>10/23/09</u> DATE REPORTED:<u>10/23/09</u> LAB I.D.: 091019-16

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	POL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2 - CHLOROTOLUENE	ND	0.005
4 - CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1, 3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1, 2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1, 2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

----- TO BE CONTINUED ON PAGE #2 -----

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER :	Kleinfelder	
	620 W. 16th Street, Unit	#F
	Long Beach, CA 90813	
	Tel(562)432-1696 Fax(562)	432-1796
PROJECT: A	RTIC	
PROJECT No	.: 103567/Env 2	
MATRIX: SOI	L	DAT
DATE SAMPL	ED:10/16/09	DAT
REPORT TO:	Mr. BERT VOGLER	DAT
SAMPLE I.C	).: KA-15-10	LAF

TE RECEIVED: 10/16/09 TE ANALYZED: 10/23/09 TE REPORTED: 10/23/09 3 I.D.: 091019-16

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1, 3-DICHLOROPROPANE	ND	0.005
2, 2-DICHLOROPROPANE	ND	0.005
1, 1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4 - ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1, 1, 1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005
COMMENTS POL = PRACTICAL OUANT	TTATION LIMIT	

ell

ND = NON-DETECTED OR BELOW THE PQL DATA REVIEWED AND APPROVED BY:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER:	Kleinfelder	
	620 W. 16th Street, Unit #F	
	Long Beach, CA 90813	
	Tel(562)432-1696 Fax(562)432-1796	5
PROJECT: A	RTIC	
PROJECT No	0.: 103567/Env 2	
MATRIX: SOI	L	D/
DATE SAMPL	ED:10/16/09	D
REPORT TO:	Mr. BERT VOGLER	D
SAMPLE I.D	D.: KA-15-15	L

ATE RECEIVED: 10/16/09 ATE ANALYZED: 10/23/09 ATE REPORTED: 10/23/09 LAB I.D.: 091019-17 

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	POL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2 - CHLOROTOLUENE	ND	0.005
4 - CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1, 2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

---- TO BE CONTINUED ON PAGE #2 -----
# 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel (562) 432-1696 Fax (562) 432-1796 PROJECT: ARTIC PROJECT No.: 103567/Env 2 MATRIX:SOIL DATE SAMPLED:10/16/09

DATE RECEIVED: <u>10/16/09</u> DATE ANALYZED: <u>10/23/09</u> DATE REPORTED: <u>10/23/09</u> LAB I.D.: 091019-17

SAMPLE I.D.: KA-15-15

REPORT TO: Mr. BERT VOGLER

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4 - ISOPROPYLTOLUENE	ND	0,005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1, 1, 1-TRICHLOROETHANE	ND	0.005
1, 1, 2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

ND = NON-DETECTED OR BELOW THE PQL

DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER :	Kleinfelder	
	620 W. 16th Street, Uni	t #F
	Long Beach, CA 90813	
	Tel(562)432-1696 Fax(56	2) 432-1796
PROJECT: A	RTIC	
PROJECT No	.: 103567/Env 2	
MATRIX: SOI	L	DA
DATE SAMPL	ED: <u>10/16/09</u>	DA
REPORT TO:	Mr. BERT VOGLER	DA
SAMPLE I.D	.: KA-16-6.5	LA

DATE RECEIVED: 10/16/09 DATE ANALYZED: 10/23/09 DATE REPORTED: 10/23/09 LAB I.D.: 091019-18

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0,005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4 - CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1, 2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1, 2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND,	0.005

APPROVED BY:

DATA REVIEWED AND APPROVED BY:___

## 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER :	Kleinfelder	
	620 W. 16th Street, Unit #F	
	Long Beach, CA 90813	
	Tel (562) 432-1696 Fax (562) 433	2-1796
PROJECT: A	ARTIC	
PROJECT NO	b.: 103567/Env 2	
MATRIX: SOI	<u>L</u>	D
DATE SAMPI	JED: 10/16/09	D
REPORT TO:	Mr. BERT VOGLER	D.
SAMPLE I.D	D.: KA-16-6.5	L

DATE RECEIVED: <u>10/16/09</u> DATE ANALYZED: <u>10/23/09</u> DATE REPORTED: <u>10/23/09</u> LAB I.D.: 091019-18

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

1,3-DICHLOROPROPANE         ND         0.005           2,2-DICHLOROPROPENE         ND         0.005           1,1-DICHLOROPROPENE         ND         0.005           1,1-DICHLOROPROPENE         ND         0.005           TRANS-1,3-DICHLOROPROPENE         ND         0.005           TRANS-1,3-DICHLOROPROPENE         ND         0.005           TRANS-1,3-DICHLOROPROPENE         ND         0.005           2-HEXANONE         ND         0.005           2-HEXANONE         ND         0.005           ISOPROPYLBENZENE         ND         0.005           ISOPROPYLDENZENE         ND         0.005           METHYL-2-PENTANONE (MIBK)         ND         0.005           METHYL Lert-BUTYL ETHER (MTBE)         ND         0.005           METHYLL ENC CHLORIDE         ND         0.005           METHYLLENE         ND         0.005           STYRENE         ND         0.005           1,1,2,2-TETRACHLOROETHANE         ND         0.005           1,1,2,2-TETRACHLOROETHANE         ND         0.005           1,1,2,2-TETRACHLOROETHANE         ND         0.005           1,2,3-TRICHLOROBENZENE         ND         0.005           1,2,4-TRICHLOROBENZENE	PARAMETER	SAMPLE RESULT	PQL X1
2,2-DICHLOROPROPANE         ND         0.005           1,1-DICHLOROPROPENE         ND         0.005           CIS-1,3-DICHLOROPROPENE         ND         0.005           TRANS-1,3-DICHLOROPROPENE         ND         0.005           ETHYLBENZENE         ND         0.005           2-HEXANONE         ND         0.005           2-HEXANONE         ND         0.005           1SOPROPYLBENZENE         ND         0.005           4-ISOPROPYLBENZENE         ND         0.005           4-SOPROPYLBENZENE         ND         0.005           4-METHYL-2-PENTANONE (MIBK)         ND         0.005           METHYLENE CHLORIDE         ND         0.005           METHYLENE CHLOROETHANE         ND         0.005           NPROPYLBENZENE         ND         0.005           NPROPYLBENZENE         ND         0.005           NETHYLENE         CHLORIDE         ND         0.005           NPROPYLBENZENE         ND         0.005         0.005           NPROPYLBENZENE         ND         0.005         0.005           1,1,2-TETRACHLOROETHANE         ND         0.005         0.005           1,1,2-TETRACHLOROETHANE         ND         0.005	1,3-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE         ND         0.005           CIS-1,3-DICHLOROPROPENE         ND         0.005           TRANS-1,3-DICHLOROPROPENE         ND         0.005           TRANS-1,3-DICHLOROPROPENE         ND         0.005           Z-HEXANONE         ND         0.005           2-HEXANONE         ND         0.005           2-HEXANONE         ND         0.005           4-METHYLEENZENE         ND         0.005           4-ISOPROPYLDUENE         ND         0.005           4-METHYL 2-PENTANONE (MIBK)         ND         0.005           METHYLENE CHLORIDE         ND         0.005           METHYLENE CHLOROETHANE         ND         0.005           METHYLENE CHLOROETHANE         ND         0.005           NPROPYLBENZENE         ND         0.005           NPROPYLBENZENE         ND         0.005           STYRENE         ND         0.005           1,1,2-TETRACHLOROETHANE         ND         0.005           1,1,2,2-TETRACHLOROETHANE         ND         0.005           1,1,2,2-TRICHLOROBENZENE         ND         0.005           1,2,3-TRICHLOROBENZENE         ND         0.005           1,2,4-TRICHLOROBENZENE         ND	2,2-DICHLOROPROPANE	ND	0.005
CIS-1,3-DICHLOROPROPENE         ND         0.005           TRANS-1,3-DICHLOROPROPENE         ND         0.005           ETHYLBENZENE         ND         0.005           Z-HEXANONE         ND         0.020           HEXACHLOROBUTADIENE         ND         0.005           ISOPROPYLBENZENE         ND         0.005           4-ISOPROPYLDULUENE         ND         0.005           4-METHYL-2-PENTANONE (MIBK)         ND         0.020           METHYL tert-suffix         ND         0.005           METHYLLENE         ND         0.005           METHYLLENE         ND         0.005           METHYLENE         CHLORIDE         ND         0.005           METHYLENE         ND         0.005         0.005           NPPOPYLBENZENE         ND         0.005         0.005           NPOPYLBENZENE         ND         0.005         0.005           1,1,2-TETRACHLOROETHANE         ND         0.005         0.005           1,2,2-TETRACHLOROETHANE         ND         0.005         0.005           1,2,3-TRICHLOROBENZENE         ND         0.005         0.005           1,2,4-TRICHLOROBENZENE         ND         0.005         0.005	1,1-DICHLOROPROPENE	ND	0.005
TRANS - 1, 3 - DICHLOROPROPENE         ND         0.005           ETHYLBENZENE         ND         0.005           2 - HEXANONE         ND         0.020           HEXACHLOROBUTADIENE         ND         0.005           ISOPROPYLBENZENE         ND         0.005           4 - ISOPROPYLTOLUENE         ND         0.005           4 - ISOPROPYLTOLUENE         ND         0.005           4 - METHYL - 2 - PENTANONE (MIBK)         ND         0.020           METHYL tert - BUTYL ETHER (MTBE)         ND         0.005           METHYLENE CHLORIDE         ND         0.005           METHYLENE         ND         0.005           NPROPYLBENZENE         ND         0.005           NPROPYLBENZENE         ND         0.005           NPROPYLBENZENE         ND         0.005           NPROPYLBENZENE         ND         0.005           1,1,2.7 ETRACHLOROETHANE         ND         0.005           1,1,2.7 TETRACHLOROETHANE         ND         0.005           1,2,3 - TRICHLOROETHANE         ND         0.005           1,2,3 - TRICHLOROETHANE         ND         0.005           1,1,1 - TRICHLOROETHANE         ND         0.005           1,1,2 - TRICHLOROETHANE	CIS-1,3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE         ND         0.005           2-HEXANONE         ND         0.020           HEXACHLOROBUTADIENE         ND         0.005           ISOPROPYLBENZENE         ND         0.005           4-ISOPROPYLDUENE         ND         0.005           4-ISOPROPYLTOLUENE         ND         0.005           4-METHYL-2-PENTANONE (MIBK)         ND         0.020           METHYL tert-BUTYL ETHER (MTBE)         ND         0.005           METHYLENE CHLORIDE         ND         0.005           NPROPYLBENZENE         ND         0.005           NPROPYLBENZENE         ND         0.005           STYRENE         ND         0.005           1,1,2-TETRACHLOROETHANE         ND         0.005           1,1,2,-TETRACHLOROETHANE         ND         0.005           1,1,2,-TETRACHLOROETHANE         ND         0.005           1,2,3-TRICHLOROETHANE         ND         0.005           1,2,3-TRICHLOROETHANE         ND         0.005           1,1,1-TRICHLOROETHANE         ND         0.005           1,1,2-TRICHLOROETHANE         ND         0.005           1,1,2,3-TRICHLOROETHANE         ND         0.005           1,1,2-TRICHLOROETHANE         ND <td>TRANS-1, 3-DICHLOROPROPENE</td> <td>ND</td> <td>0.005</td>	TRANS-1, 3-DICHLOROPROPENE	ND	0.005
2-HEXANONE         ND         0.020           HEXACHLOROBUTADIENE         ND         0.005           ISOPROPYLBENZENE         ND         0.005           4-ISOPROPYLDENZENE         ND         0.005           4-ISOPROPYLTOLUENE         ND         0.005           4-METHYL-2-PENTANONE (MIBK)         ND         0.020           METHYL tert-BUTYL ETHER (MTBE)         ND         0.005           METHYLENE CHLORIDE         ND         0.005           NPPOPYLBENZENE         ND         0.005           NPROPYLBENZENE         ND         0.005           STYRENE         ND         0.005           1,1,2-TETRACHLOROETHANE         ND         0.005           1,1,2,2-TETRACHLOROETHANE         ND         0.005           1,1,2,2-TETRACHLOROETHANE         ND         0.005           TETRACHLOROETHENE (PCE)         ND         0.005           TOLUENE         ND         0.005           1,2,3-TRICHLOROBENZENE         ND         0.005           1,1,2-TRICHLOROETHANE         ND         0.005           1,1,1-TRICHLOROETHANE         ND         0.005           1,1,2-TRICHLOROETHANE         ND         0.005           1,1,2-TRICHLOROETHANE         ND <td>ETHYLBENZENE</td> <td>ND</td> <td>0.005</td>	ETHYLBENZENE	ND	0.005
HEXACHLOROBUTADIENE         ND         0.005           ISOPROPYLBENZENE         ND         0.005           4-ISOPROPYLDENZENE         ND         0.005           4-METHYL-2-PENTANONE (MIBK)         ND         0.020           METHYL tert-BUTYL ETHER (MTBE)         ND         0.005           METHYL Lext - BUTYL ETHER (MTBE)         ND         0.005           METHYLENE CHLORIDE         ND         0.005           METHYLENE CHLORIDE         ND         0.005           NPROPYLBENZENE         ND         0.005           STYRENE         ND         0.005           NPROPYLBENZENE         ND         0.005           STYRENE         ND         0.005           1,1,2,2-TETRACHLOROETHANE         ND         0.005           TOLUENE         ND         0.005           TOLUENE         ND         0.005           1,2,3-TRICHLOROBENZENE         ND         0.005           1,1,1-TRICHLOROETHANE         ND         0.005           1,1,2-TRICHLOROETHANE         ND         0.005           1,1,1-TRICHLOROETHANE         ND         0.005           1,1,2-TRICHLOROETHANE         ND         0.005           1,2,3-TRICHLOROPENANE         ND <td< td=""><td>2-HEXANONE</td><td>ND</td><td>0.020</td></td<>	2-HEXANONE	ND	0.020
ISOPROPYLBENZENE         ND         0.005           4-ISOPROPYLTOLUENE         ND         0.005           4-METHYL-2-PENTANONE (MIBK)         ND         0.020           METHYL tert-BUTYL ETHER (MTBE)         ND         0.005           METHYL tert-BUTYL ETHER (MTBE)         ND         0.010           MAPHTHALENE         ND         0.005           METHYLENE CHLORIDE         ND         0.005           NPROPYLBENZENE         ND         0.005           STYRENE         ND         0.005           1,1,2,2-TETRACHLOROETHANE         ND         0.005           1,1,1,2-TETRACHLOROETHANE         ND         0.005           1,1,2,2-TETRACHLOROETHANE         ND         0.005           1,1,2,2-TETRACHLOROETHANE         ND         0.005           1,1,2,2-TETRACHLOROETHANE         ND         0.005           1,2,3-TRICHLOROBENZENE         ND         0.005           1,2,4-TRICHLOROBENZENE         ND         0.005           1,1,2-TRICHLOROETHANE         ND         0.005           1,1,2-TRICHLOROETHANE         ND         0.005           1,2,4-TRICHLOROETHANE         ND         0.005           1,2,3-TRICHLOROPANE         ND         0.005           1	HEXACHLOROBUTADIENE	ND	0.005
4-ISOPROPYLTOLUENE         ND         0.005           4-METHYL-2-PENTANONE (MIBK)         ND         0.020           METHYL tert-BUTYL ETHER (MTBE)         ND         0.005           METHYLENE CHLORIDE         ND         0.010           NAPHTHALENE         ND         0.005           NPROPYLBENZENE         ND         0.005           STYRENE         ND         0.005           1,1,2-TETRACHLOROETHANE         ND         0.005           1,1,2,2-TETRACHLOROETHANE         ND         0.005           TETRACHLOROETHANE         ND         0.005           TOLUENE         ND         0.005           1,2,3-TRICHLOROBENZENE         ND         0.005           1,2,3-TRICHLOROBENZENE         ND         0.005           1,1,1-TRICHLOROETHANE         ND         0.005           1,2,4-TRICHLOROETHANE         ND         0.005           1,1,1-TRICHLOROETHANE         ND         0.005           1,1,2-TRICHLOROETHANE         ND         0.005           1,1,2-TRICHLOROETHANE         ND         0.005           1,2,3-TRICHLOROETHANE         ND         0.005           1,2,3-TRICHLOROPHANE         ND         0.005           1,2,3-TRICHLOROPROPANE	ISOPROPYLBENZENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)         ND         0.020           METHYL tert-BUTYL ETHER (MTBE)         ND         0.005           METHYLENE CHLORIDE         ND         0.010           NAPHTHALENE         ND         0.005           N-PROPYLBENZENE         ND         0.005           STYRENE         ND         0.005           1.1.1.2-TETRACHLOROETHANE         ND         0.005           1.1.2.2-TETRACHLOROETHANE         ND         0.005           TETRACHLOROETHANE         ND         0.005           TETRACHLOROETHANE         ND         0.005           TOLUENE         ND         0.005           1.2.3-TRICHLOROBENZENE         ND         0.005           1.2.4-TRICHLOROBENZENE         ND         0.005           1.2.4-TRICHLOROBENZENE         ND         0.005           1.1.1TRICHLOROBENZENE         ND         0.005           1.1.1.2-TRICHLOROETHANE         ND         0.005           1.1.2.4-TRICHLOROETHANE         ND         0.005           1.1.2.4-TRICHLOROETHANE         ND         0.005           1.2.4-TRICHLOROETHANE         ND         0.005           1.2.3-TRICHLOROFTHANE         ND         0.005           1.2.4-TRICHLOROPENPANE </td <td>4 - ISOPROPYLTOLUENE</td> <td>ND</td> <td>0.005</td>	4 - ISOPROPYLTOLUENE	ND	0.005
METHYL tert-BUTYL ETHER (MTBE)         ND         0.005           METHYLENE CHLORIDE         ND         0.010           NAPHTHALENE         ND         0.005           N-PROPYLBENZENE         ND         0.005           STYRENE         ND         0.005           1,1,2.7-TETRACHLOROETHANE         ND         0.005           1,1,2.2-TETRACHLOROETHANE         ND         0.005           1,1,2.2-TETRACHLOROETHANE         ND         0.005           TETRACHLOROETHENE (PCE)         ND         0.005           TOLUENE         ND         0.005           1,2,3-TRICHLOROBENZENE         ND         0.005           1,1,1.7-TRICHLOROBENZENE         ND         0.005           1,1,1.7-TRICHLOROBENZENE         ND         0.005           1,1,2.4-TRICHLOROBENZENE         ND         0.005           1,1,1.7-TRICHLOROBENZENE         ND         0.005           1,1,2.4-TRICHLOROBENZENE         ND         0.005           1,1,2.4-TRICHLOROBENZENE         ND         0.005           1,1,2.4-TRICHLOROBENZENE         ND         0.005           1,1,2.4-TRICHLOROBENZENE         ND         0.005           1,1,2.5-TRICHLOROBENZENE         ND         0.005 <td< td=""><td>4-METHYL-2-PENTANONE (MIBK)</td><td>ND</td><td>0.020</td></td<>	4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYLENE CHLORIDE         ND         0.010           NAPHTHALENE         ND         0.005           N-PROPYLBENZENE         ND         0.005           STYRENE         ND         0.005           1,1,2-TETRACHLOROETHANE         ND         0.005           1,1,2-TETRACHLOROETHANE         ND         0.005           1,1,2-TETRACHLOROETHANE         ND         0.005           1,1,2-TETRACHLOROETHANE         ND         0.005           TETRACHLOROETHENE (PCE)         ND         0.005           TOLUENE         ND         0.005           1,2,3-TRICHLOROBENZENE         ND         0.005           1,2,4-TRICHLOROBENZENE         ND         0.005           1,1,1-TRICHLOROETHANE         ND         0.005           1,1,1-TRICHLOROETHANE         ND         0.005           1,1,2-TRICHLOROETHANE         ND         0.005           1,1,2-TRICHLOROETHANE         ND         0.005           1,1,2-TRICHLOROETHANE         ND         0.005           1,1,2-TRICHLOROPROPANE         ND         0.005           1,2,3-TRICHLOROPROPANE         ND         0.005           1,2,3-TRICHLOROPROPANE         ND         0.005           1,2,4-TRIMETHYLBENZENE	METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
NAPHTHALENE         ND         0.005           N-PROPYLBENZENE         ND         0.005           STYRENE         ND         0.005           1,1,2-TETRACHLOROETHANE         ND         0.005           1,1,2-TETRACHLOROETHANE         ND         0.005           1,1,2-TETRACHLOROETHANE         ND         0.005           1,1,2-TETRACHLOROETHANE         ND         0.005           TETRACHLOROETHENE (PCE)         ND         0.005           TOLUENE         ND         0.005           1,2,3-TRICHLOROBENZENE         ND         0.005           1,2,4-TRICHLOROETHANE         ND         0.005           1,1,1-TRICHLOROETHANE         ND         0.005           1,1,2-TRICHLOROETHANE         ND         0.005           1,1,2-TRICHLOROETHANE         ND         0.005           1,1,2-TRICHLOROETHANE         ND         0.005           1,2,3-TRICHLOROETHANE         ND         0.005           1,2,3-TRICHLOROPROPANE         ND         0.005           1,2,3-TRICHLOROPROPANE         ND         0.005           1,2,4-TRIMETHYLBENZENE         ND         0.005           1,3,5-TRIMETHYLBENZENE         ND         0.005           VINYL CHLORIDE	METHYLENE CHLORIDE	ND	0.010
N-PROPYLBENZENE         ND         0.005           STYRENE         ND         0.005           1,1,1,2-TETRACHLOROETHANE         ND         0.005           1,1,2,2-TETRACHLOROETHANE         ND         0.005           1,1,2,2-TETRACHLOROETHANE         ND         0.005           TETRACHLOROETHANE         ND         0.005           TETRACHLOROETHENE (PCE)         ND         0.005           TOLUENE         ND         0.005           1,2,3-TRICHLOROBENZENE         ND         0.005           1,2,4-TRICHLOROBENZENE         ND         0.005           1,1,1-TRICHLOROETHANE         ND         0.005           1,1,2-TRICHLOROETHANE         ND         0.005           1,1,2-TRICHLOROETHANE         ND         0.005           1,1,2-TRICHLOROETHANE         ND         0.005           1,2,3-TRICHLOROETHANE         ND         0.005           1,2,3-TRICHLOROPROPANE         ND         0.005           1,2,4-TRIMETHYLBENZENE         ND         0.005           1,3,5-TRIMETHYLBENZENE         ND         0.005           VINYL CHLORIDE         ND         0.005           M/P-XYLENE         ND         0.005	NAPHTHALENE	ND	0.005
STYRENE         ND         0.005           1,1,1,2-TETRACHLOROETHANE         ND         0.005           1,1,2,2-TETRACHLOROETHANE         ND         0.005           TETRACHLOROETHENE (PCE)         ND         0.005           TOLUENE         ND         0.005           1,2,3-TRICHLOROBENZENE         ND         0.005           1,2,4-TRICHLOROBENZENE         ND         0.005           1,1,1-TRICHLOROBENZENE         ND         0.005           1,1,2-TRICHLOROBENZENE         ND         0.005           1,1,1-TRICHLOROBENZENE         ND         0.005           1,1,2-TRICHLOROBENZENE         ND         0.005           1,1,2-TRICHLOROBENZENE         ND         0.005           1,1,2-TRICHLOROETHANE         ND         0.005           TRICHLOROETHANE         ND         0.005           1,2,3-TRICHLOROFLUOROMETHANE         ND         0.005           1,2,3-TRICHLOROPROPANE         ND         0.005           1,2,4-TRIMETHYLBENZENE         ND         0.005           1,3,5-TRIMETHYLBENZENE         ND         0.005           VINYL CHLORIDE         ND         0.005           M/P-XYLENE         ND         0.010           O-XYLENE         ND	N-PROPYLBENZENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE         ND         0.005           1,1,2,2-TETRACHLOROETHANE         ND         0.005           TETRACHLOROETHENE (PCE)         ND         0.005           TOLUENE         ND         0.005           1,2,3-TRICHLOROBENZENE         ND         0.005           1,2,4-TRICHLOROBENZENE         ND         0.005           1,1,1-TRICHLOROETHANE         ND         0.005           1,1,2-TRICHLOROETHANE         ND         0.005           1,1,2-TRICHLOROETHANE         ND         0.005           1,1,2-TRICHLOROETHANE         ND         0.005           1,1,2-TRICHLOROETHANE         ND         0.005           1,2,3-TRICHLOROETHANE         ND         0.005           TRICHLOROFLUOROMETHANE         ND         0.005           1,2,3-TRICHLOROPROPANE         ND         0.005           1,2,4-TRIMETHYLBENZENE         ND         0.005           1,3,5-TRIMETHYLBENZENE         ND         0.005           VINYL CHLORIDE         ND         0.005           M/P-XYLENE         ND         0.010           O-XYLENE         ND         0.005	STYRENE	ND	0.005
1,1,2,2-TETRACHLOROETHANE         ND         0.005           TETRACHLOROETHENE (PCE)         ND         0.005           TOLUENE         ND         0.005           1,2,3-TRICHLOROBENZENE         ND         0.005           1,2,4-TRICHLOROBENZENE         ND         0.005           1,1,1-TRICHLOROBENZENE         ND         0.005           1,1,2-TRICHLOROETHANE         ND         0.005           TRICHLOROETHENE (TCE)         ND         0.005           TRICHLOROFLUOROMETHANE         ND         0.005           1,2,3-TRICHLOROPROPANE         ND         0.005           1,2,4-TRIMETHYLBENZENE         ND         0.005           1,3,5-TRIMETHYLBENZENE         ND         0.005           VINYL CHLORIDE         ND         0.005           M/P-XYLENE         ND         0.010           O-XYLENE         ND         0.005	1, 1, 1, 2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)         ND         0.005           TOLUENE         ND         0.005           1,2,3-TRICHLOROBENZENE         ND         0.005           1,2,4-TRICHLOROBENZENE         ND         0.005           1,1,1-TRICHLOROBENZENE         ND         0.005           1,1,2-TRICHLOROETHANE         ND         0.005           1,1,2-TRICHLOROETHANE         ND         0.005           1,1,2-TRICHLOROETHANE         ND         0.005           TRICHLOROETHENE (TCE)         ND         0.005           TRICHLOROFLUOROMETHANE         ND         0.005           1,2,3-TRICHLOROPROPANE         ND         0.005           1,2,4-TRIMETHYLBENZENE         ND         0.005           1,3,5-TRIMETHYLBENZENE         ND         0.005           1,3,5-TRIMETHYLBENZENE         ND         0.005           VINYL CHLORIDE         ND         0.005           M/P-XYLENE         ND         0.005           0-XYLENE         ND         0.005	1, 1, 2, 2-TETRACHLOROETHANE	ND	0.005
TOLUENE         ND         0.005           1,2,3-TRICHLOROBENZENE         ND         0.005           1,2,4-TRICHLOROBENZENE         ND         0.005           1,1,1-TRICHLOROETHANE         ND         0.005           1,1,2-TRICHLOROETHANE         ND         0.005           1,1,2-TRICHLOROETHANE         ND         0.005           TRICHLOROETHENE (TCE)         ND         0.005           TRICHLOROFLUOROMETHANE         ND         0.005           1,2,3-TRICHLOROPROPANE         ND         0.005           1,2,4-TRIMETHYLBENZENE         ND         0.005           1,3,5-TRIMETHYLBENZENE         ND         0.005           VINYL CHLORIDE         ND         0.005           M/P-XYLENE         ND         0.005           M/P-XYLENE         ND         0.010	TETRACHLOROETHENE (PCE)	ND	0.005
1,2,3-TRICHLOROBENZENE         ND         0.005           1,2,4-TRICHLOROBENZENE         ND         0.005           1,1,1-TRICHLOROETHANE         ND         0.005           1,1,2-TRICHLOROETHANE         ND         0.005           TRICHLOROETHANE         ND         0.005           TRICHLOROETHANE         ND         0.005           TRICHLOROETHENE (TCE)         ND         0.005           TRICHLOROFLUOROMETHANE         ND         0.005           1,2,3-TRICHLOROPROPANE         ND         0.005           1,2,4-TRIMETHYLBENZENE         ND         0.005           1,3,5-TRIMETHYLBENZENE         ND         0.005           VINYL CHLORIDE         ND         0.005           M/P-XYLENE         ND         0.010           O-XYLENE         ND         0.005	TOLUENE	ND	0.005
1,2,4-TRICHLOROBENZENE         ND         0.005           1,1,1-TRICHLOROETHANE         ND         0.005           1,1,2-TRICHLOROETHANE         ND         0.005           TRICHLOROETHENE (TCE)         ND         0.005           TRICHLOROFLUOROMETHANE         ND         0.005           1,2,3-TRICHLOROPROPANE         ND         0.005           1,2,4-TRIMETHYLBENZENE         ND         0.005           1,3,5-TRIMETHYLBENZENE         ND         0.005           VINYL CHLORIDE         ND         0.005           M/P-XYLENE         ND         0.010           0-XYLENE         ND         0.005	1,2,3-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE         ND         0.005           1,1,2-TRICHLOROETHANE         ND         0.005           TRICHLOROETHENE (TCE)         ND         0.005           TRICHLOROFLUOROMETHANE         ND         0.005           1,2,3-TRICHLOROPROPANE         ND         0.005           1,2,4-TRIMETHYLBENZENE         ND         0.005           1,3,5-TRIMETHYLBENZENE         ND         0.005           VINYL CHLORIDE         ND         0.005           M/P-XYLENE         ND         0.010           0-XYLENE         ND         0.005	1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,2-TRICHLOROETHANE         ND         0.005           TRICHLOROETHENE (TCE)         ND         0.005           TRICHLOROFLUOROMETHANE         ND         0.005           1,2,3-TRICHLOROPROPANE         ND         0.005           1,2,4-TRIMETHYLBENZENE         ND         0.005           1,3,5-TRIMETHYLBENZENE         ND         0.005           VINYL CHLORIDE         ND         0.005           M/P-XYLENE         ND         0.010           O-XYLENE         ND         0.005	1,1,1-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)         ND         0.005           TRICHLOROFLUOROMETHANE         ND         0.005           1,2,3-TRICHLOROPROPANE         ND         0.005           1,2,4-TRIMETHYLBENZENE         ND         0.005           1,3,5-TRIMETHYLBENZENE         ND         0.005           VINYL CHLORIDE         ND         0.005           M/P-XYLENE         ND         0.010           O-XYLENE         ND         0.005	1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROFLUOROMETHANE         ND         0.005           1,2,3-TRICHLOROPROPANE         ND         0.005           1,2,4-TRIMETHYLBENZENE         ND         0.005           1,3,5-TRIMETHYLBENZENE         ND         0.005           VINYL CHLORIDE         ND         0.005           M/P-XYLENE         ND         0.010           O-XYLENE         ND         0.005	TRICHLOROETHENE (TCE)	ND	0.005
1,2,3-TRICHLOROPROPANE         ND         0.005           1,2,4-TRIMETHYLBENZENE         ND         0.005           1,3,5-TRIMETHYLBENZENE         ND         0.005           VINYL CHLORIDE         ND         0.005           M/P-XYLENE         ND         0.010           O-XYLENE         ND         0.005	TRICHLOROFLUOROMETHANE	ND	0.005
1,2,4-TRIMETHYLBENZENE         ND         0.005           1,3,5-TRIMETHYLBENZENE         ND         0.005           VINYL CHLORIDE         ND         0.005           M/P-XYLENE         ND         0.010           O-XYLENE         ND         0.005	1,2,3-TRICHLOROPROPANE	ND	0.005
1,3,5-TRIMETHYLBENZENE         ND         0.005           VINYL CHLORIDE         ND         0.005           M/P-XYLENE         ND         0.010           O-XYLENE         ND         0.005	1,2,4-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE         ND         0.005           M/P-XYLENE         ND         0.010           O-XYLENE         ND         0.005	1,3,5-TRIMETHYLBENZENE	ND	0.005
M/P-XYLENE         ND         0.010           O-XYLENE         ND         0.005	VINYL CHLORIDE	ND	0.005
O-XYLENE ND 0.005	M/P-XYLENE	ND	0.010
	O-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL

DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

#### 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: ARTIC PROJECT No.: 103567/Env 2 MATRIX:SOIL DATE SAMPLED:10/16/09 REPORT TO:Mr. BERT VOGLER SAMPLE I.D.: KA-16-10 LA

DATE RECEIVED: <u>10/16/09</u> DATE ANALYZED: <u>10/23/09</u> DATE REPORTED: <u>10/23/09</u> LAB I.D.: 091019-19

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2

UNIT:	mg/Kg	=	MILLIGRAM	PER	KILOGRAM	=	PPM	
							10102	1.00

SAMPLE RESULT	POL X1
ND	0.020
ND	0.005
ND	0.020
ND	0.005
ND	0.005
ND	0.005
ND	0.010
ND	0.005
	SAMPLE         RESULT           ND         ND           ND

---- TO BE CONTINUED ON PAGE #2 -----

DATA REVIEWED AND APPROVED BY:

## 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER:	Kleinfelder	
	620 W. 16th Street, Unit #	F
	Long Beach, CA 90813	
	Tel(562)432-1696 Fax(562)4	32-1796
PROJECT: A	ARTIC	
PROJECT NO	5.: 103567/Env 2	
MATRIX: SOI		DAT
DATE SAMPI	LED: <u>10/16/09</u>	DAT
REPORT TO:	Mr. BERT VOGLER	DAT
SAMPLE I.L	D.: KA-16-10	LAI

-----

******

TE RECEIVED:10/16/09 TE ANALYZED: 10/23/09 TE REPORTED: 10/23/09 B I.D.: 091019-19

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1, 3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4 - I SOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1, 1, 2, 2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

all ND = NON-DETECTED OR BELOW THE PQL

DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: ARTIC

PROJECT No.: 103567/Env 2 MATRIX:<u>SOIL</u> DATE SAMPLED:<u>10/16/09</u> REPORT TO:<u>Mr. BERT VOGLER</u> SAMPLE I.D.: KA-16-14

......

DATE RECEIVED: <u>10/16/09</u> DATE ANALYZED: <u>10/23/09</u> DATE REPORTED: <u>10/23/09</u> LAB I.D.: 091019-20

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

******

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2 - CHLOROTOLUENE	ND	0.005
4 - CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0,005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1, 2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND A	0.005

APPROVED BY.

DATA REVIEWED AND APPROVED BY:___

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER:	Kleinfelder	
	620 W. 16th Street, Unit	#F
	Long Beach, CA 90813	
	Tel(562)432-1696 Fax(562	) 432-1796
PROJECT: A	ARTIC	
PROJECT NO	5.: 103567/Env 2	
MATRIX: SOI	L.	DA
DATE SAMPI	LED: 10/16/09	DA
REPORT TO:	Mr. BERT VOGLER	DA
SAMPLE I.I	D.: KA-16-14	LA

ATE RECEIVED: 10/16/09 ATE ANALYZED:10/23/09 ATE REPORTED: 10/23/09 AB I.D.: 091019-20

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2

UNIT: mg/Kg = MIL	LIGRAM PER KILOGR	AM = PPM
PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1,3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4 - ISOPROPYL/TOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1, 1, 1, 2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1, 1, 1-TRICHLOROETHANE	ND	0.005
1, 1, 2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005
COMMENTS DOL - PRACTICAL OUANTI	TATION LIMIT	

fl ND = NON-DETECTED OR BELOW THE PQL DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

#### 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# METHOD BLANK REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: ARTIC

PROJECT No.: 103567/Env 2 MATRIX:SOIL

DATE SAMPLED: 10/16/09

DATE RECEIVED: 10/16/09 DATE ANALYZED: 10/23/09

REPORT TO: Mr. BERT VOGLER DATE REPORTED: 10/23/09

METHOD BLANK FOR LAB I.D.: 091019-2, -8 THROUGH -20

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2

								2
UNIT:	mg/K	(g =	MILL	IGRAM	PER I	KILOGRAM	= PPM	

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2 - CHLOROTOLUENE	ND	0,005
4 - CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1, 3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

---- TO BE CONTINUED ON PAGE #2 -----

DATA REVIEWED AND APPROVED BY:

## 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# METHOD BLANK REPORT

CUSTOMER: Kleinfelder		
620 W 16th Street I	Init #F	
Long Beach Ch 90813	SHLC HE	
Tel (562) 432-1606 Fax	15621 432-1706	
DECTECT. ADTTC	(302/432-1/90	2
PROTECT No. : 102567/Port 2		
NATELY COLL		DIME DECENTER 10/10/00
DATE CAMPLED 10/16/00		DATE RECEIVED: 10/16/09
DEDORT TO MY DEDT VOLLED		DATE ANALIZED: 10/23/09
METHOD BLANK FOR LAR	T. D 001010	DATE REPORTED: 10/23/09
METHOD BLANK FOR LAB	1.0.: 091019-	-2, -8 THROOGH -20
ANALYSTS . VOLATILE OPCANICS	EDA METHOD	5035/8260B PACE 2 OF 2
INIT: mg/Kg = MI	LICRAM DED K	TLOGRAM = DPM
DADAMETED	CAMPLE DECIT	
1 3 DICULOPODDODANE	MD	FQL XI
2 2 DICHLOROPROPANE	ND	0.005
1 1-DICHLOROPROPANE	ND	0.005
CIS-1 2 DICULOROPENE	ND	0.005
TRANG-1 2-DICULOPODPODENE	ND	0.005
TRANS-1, S-DICHLOROPROPENE	ND	0.005
2-HEXANONE	ND	0.003
HEXACHLOPOBUTADIENE	ND	0.020
ISODRODVLBENZENE	ND	0.005
4 - ISODRODVLTOLUENE	ND	0.005
4-METHYL, 2-DENTANONE (MIRK)	ND	0.003
METHYL text-BUTYL ETHER (MTBE)	ND	0.020
METHYLENE CHLORIDE	ND	0.005
NA PHTHALENE	ND	0.005
N - PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1.1.1.2-TETRACHLOROETHANE	ND	0.005
1.1.2.2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1.2.3-TRICHLOROBENZENE	ND	0.005
1.2.4-TRICHLOROBENZENE	ND	0.005
1.1.1-TRICHLOROETHANE	ND	0.005
1.1.2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005
COMMENTS PQL = PRACTICAL OUANTI	TATION LIMIT	
ND = NON-DETECTED OR BELOW THE	POL A	
DATA REVIEWED AND APPROVED BY:	POX	
	1 de la	

-

CAL-DHS CERTIFICATE # 1555

water and the second second			Enviro-Che	em, Inc.					
1214 E. Lexington Av	enue, Pom	iona, CA 91	8260B QA	Tel VQC Repo	(909)590-59 rt	105 Fa	ax (909)590	-5907	
Date Analyzed: Machine:	<u>10/23/2009</u> <u>C</u>	2					Matrix: Unit:	Solid/Soll/: mg/Kg (PP	<u>Sludge</u> M)
Matrix Spike (MS)/Matr	rix Spike Di	uplicate (MS	SD)						
Spiked Sample Lab I.D	u	091022-7 M	AS/MSD						
Analyte	S.R.	spk conc	MS	%RC	MSD	%RC	%RPD	ACP %RC	ACP RPD
Benzene	0	0.050	0.045	90%	0.056	112%	22%	75-125	0-20
Chlorobenzene	0	0.050	0.053	106%	0.047	94%	12%	75-125	0-20
1,1-Dichloroethene	0	0.050	0.052	104%	0.047	94%	10%	75-125	0-20
Toluene	0	0.050	0.048	96%	0.048	96%	0%	75-125	0-20
Trichloroethene (TCE)	0	0.050	0.052	104%	0.049	98%	6%	75-125	0-20
Lab Control Spike (LC	S):								
Analyte	spk conc	LCS	%RC	ACP %RC	1				
Benzene	0.050	0.051	102%	75-125					
Chlorobenzene	0.050	0.045	90%	75-125	1				
Chloroform	0.050	0.052	104%	75-125					
1.1-Dichlorothene	0.050	0.042	84%	75-125	1				
Ethylbenzene	0.050	0.053	106%	75-125					
o-Xvlene	0.050	0.051	102%	75-125					
m.o-Xvlene	0.100	0.109	109%	75-125	1				
Toluene	0.050	0.052	104%	75-125	1				
1.1.1-Trichloroethane	0.050	0.045	90%	75-125	1				
Trichloroethene (TCE)	0.050	0.054	108%	75-125	1				
Surrogate Recovery	sok conc	ACP %RC	MB %RC	%RC	%RC	%RC	%RC	%RC	%RC
Sample I.D.			M-BLK	091019-2	091019-8	091019-9	091019-10	091019-11	091019-12
Dibromofluoromethane	50.0	70-130	96%	92%	91%	91%	93%	93%	94%
Toluene-d8	50.0	70-130	88%	78%	81%	81%	84%	85%	86%
4-Bromofluorobenzene	50.0	70-130	97%	94%	90%	88%	92%	93%	90%
Surrogate Recovery	l enk conc		%PC	%PC	% PC	0/ DC	<b>2/0</b> 0	0/ DC	MDC
Sample I D	1 Spk conc	AGE 70110	001010-13	091019-14	001010-15	001010-16	001010-17	001010-18	001010-10
Dibromofluoromothana	50.0	70,130	05%	040/	010/	091013-10	051013-17	000	091019-12
Toluono.d8	50.0	70-130	93%	04 70	9170	00%	90%	90%	90%
A-Bromofluorobanzona	50.0	70-130	0270	00%	00%	00%	02%	1059/	1170
4-biomonuolobenzene	1 50.0	10-150	00%	90%	90%	00%	94%	105%	102%
Surrogate Recovery	spk conc	ACP %RC	%RC	%RC	%RC	%RC	%RC	%RC	%RC
Sample I.D.			091019-20	091022-7	091022-10	091022-11	091022-13		
Dibromofluoromethane	50.0	70-130	103%	97%	96%	97%	102%		1
Toluene-d8	50.0	70-130	81%	87%	87%	89%	91%		
4-Bromofluorobenzene	50.0	70-130	96%	89%	92%	90%	96%		
* = Surrogate fail due to S.R. = Sample Results spk conc = Spike Conce MS = Matrix Spike	matrix inter	ference; L	CS, MS, MS	D are in coi	ntrol therefor %RC = Per ACP %RC MSD = Mat	re the analy rcent Recov = Accepted trix Spike Di	sis is in con ery Percent Re uplicate	trol. covery	

Analyzed/Reviewed By: ______

Final Reviewer:

#### 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER:	Kleinfelder
	620 W. 16th Street, Unit #F
	Long Beach, CA 90813
	Tel(562)432-1696 Fax(562)432-1796
PROJECT: A	RTIC
PROJECT No	.: 103567/Env 2

DATE	RECEIVED: 10/16/09
DATE	ANALYZED: 10/19&21/09
DATE	REPORTED: 10/23/09

6010B

6010B

SAMPLE I.D.: KA-9-2.5

DATE SAMPLED:10/16/09 REPORT TO:Mr. BERT VOGLER

MATRIX:SOIL

LAB I.D.: 091019-1

# TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM STLC ELEMENT SAMPLE TTLC EPA ANALYZED RESULT LIMIT LIMIT METHOD PQL DF 
 ND
 1.0
 1
 500
 15

 ND
 0.3
 1
 500
 5.0

 22.9
 5.0
 1
 10,000
 100

 ND
 0.5
 1
 75
 0.75

 0.639
 0.5
 1
 100
 1.0

 5.17
 0.5
 1
 2,500
 560/5@

 - 0.1
 1
 500
 5.0
 Antimony(Sb) ND 6010B Arsenic(As) 6010B Barium(Ba) 6010B ND Beryllium(Be) 6010B Cadmium(Cd) 6010B Chromium Total(Cr) 6010B 
 - 0.1
 1
 500
 500,06

 3.02
 1.0
 1
 8,000
 80

 5.18
 1.0
 1
 2,500
 25

 15.6
 0.5
 1
 1,000
 5.0

 ND
 0.01
 1
 20
 0.2

 ND
 5.0
 1
 3,500
 350

 3.13
 2.5
 1
 2,000
 20

 ND
 1.0
 1
 100
 1.0

 ND
 1.0
 1
 5.0
 5.0

 ND
 1.0
 1
 700
 7.0

 ND
 1.0
 1
 700
 7.0

 11.2
 5.0
 1
 2,400
 24

 23.7
 0.5
 1
 5,000
 250
 Chromium VI (Cr6) 7196A Cobalt (Co) 6010B Copper(Cu) 6010B 5.0 Lead(Pb) 15.6 6010B Mercury(Hg) ND 7471A ND Molybdenum(Mo) 6010B Nickel(Ni) 6010B Selenium(Se) ND 6010B Silver (Aq) ND 6010B ND Thallium(Tl) 6010B

#### COMMENTS

Zinc(Zn)

Vanadium(V)

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration # = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal is recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested Data Reviewed and Approved by:___ CAL-DHS ELAP CERTIFICATE No.: 1555

11.2

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER:	Kleinfelder	
	620 W. 16th Street, Unit	#F
	Long Beach, CA 90813	
	Tel(562)432-1696 Fax(562)	432-1796
PROJECT: P	ARTIC	
PROJECT No	b.: 103567/Env 2	
MATRIX: SOI	L.	DA
DATE SAMPL	ED:10/16/09	DA
REPORT TO:	Mr. BERT VOGLER	DA

DATE RECEIVED: 10/16/09 DATE ANALYZED: 10/19&21/09 DATE REPORTED: 10/23/09

SAMPLE I.D.: KA-9-5

LAB I.D.: 091019-2

# TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

SAMPLE			TTLC	STLC	EPA
RESULT	PQL	DF	LIMIT	LIMIT	METHOD
ND	1.0	1	500	15	6010B
ND	0.3	1	500	5.0	6010B
20.0	5.0	1	10,000	100	6010B
ND	0.5	1	75	0.75	6010B
ND	0.5	1	100	1.0	6010B
3.90	0.5	1	2,500	560/50	6010B
	0.1	1	500	5.0	7196A
2.50	1.0	1	8,000	80	6010B
3.71	1.0	1	2,500	25	6010B
7.71	0.5	1	1,000	5.0	6010B
ND	0.01	1	20	0.2	7471A
ND	5.0	1	3,500	350	6010B
2.22	2.5	1	2,000	20	6010B
ND	1.0	1	100	1.0	6010B
ND	1.0	1	500	5.0	6010B
ND	1.0	1	700	7.0	6010B
14.7	5.0	1	2,400	24	6010B
15.1	0.5	1	5,000	250	6010B
	SAMPLE RESULT ND 20.0 ND 3.90  2.50 3.71 7.71 ND 2.22 ND ND 2.22 ND ND ND 14.7 15.1	SAMPLE           RESULT         PQL           ND         1.0           ND         0.3           20.0         5.0           ND         0.5           ND         0.5           ND         0.5           ND         0.5           ND         0.5           3.90         0.5            0.1           2.50         1.0           3.71         1.0           7.71         0.5           ND         0.01           ND         5.0           2.22         2.5           ND         1.0           14.7         5.0           15.1         0.5	SAMPLE           RESULT         PQL         DF           ND         1.0         1           ND         0.3         1           20.0         5.0         1           ND         0.5         1           ND         0.5         1           ND         0.5         1           ND         0.5         1           3.90         0.5         1            0.1         1           2.50         1.0         1           3.71         1.0         1           7.71         0.5         1           ND         0.01         1           ND         5.0         1           2.22         2.5         1           ND         1.0         1	SAMPLE         TTLC           RESULT         PQL         DF         LIMIT           ND         1.0         1         500           ND         0.3         1         500           20.0         5.0         1         10,000           ND         0.5         1         75           ND         0.5         1         2,500            0.1         1         500           2.50         1.0         1         8,000           3.71         1.0         1         2,500            0.1         1         200           ND         0.5         1         1,000           3.71         1.0         1         2,500           7.71         0.5         1         1,000           ND         0.01         1         20           ND         5.0         1         3,500           2.22         2.5         1         2,000           ND         1.0         1         100           ND         1.0         1         500           ND         1.0         1         700           14.7 <t5< td=""><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></t5<>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

#### COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested

Data Reviewed and Approved by: _____ CAL-DHS ELAP CERTIFICATE No.: 1555

#### 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: ARTIC PROJECT No.: 103567/Env 2 MATRIX:SOIL

DATE RECEIVED: 10/16/09 DATE ANALYZED: 10/19&21/09 DATE REPORTED: 10/23/09

SAMPLE I.D.: KA-9-10

DATE SAMPLED: 10/16/09

REPORT TO:Mr. BERT VOGLER

LAB I.D.: 091019-3

#### TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic (As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	31.5	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	8.98	0.5	1	2,500	560/5@	6010B
Chromium VI (Cr6)		0.1	1	500	5.0	7196A
Cobalt (Co)	2.76	1.0	1	8,000	80	6010B
Copper (Cu)	5.00	1.0	1	2,500	25	6010B
Lead (Pb)	11.6	0.5	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum (Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	6.86	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(Tl)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	13.3	5.0	1	2,400	24	6010B
Zinc(Zn)	22.7	0.5	1	5,000	250	6010B

#### COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested Data Reviewed and Approved by:

CAL-DHS ELAP CERTIFICATE No.: 1555

## 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# METHOD BLANK REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: ARTIC PROJECT No.: 103567/Env 2 MATRIX:SOIL

DATE SAMPLED: 10/16/09

REPORT TO:Mr. BERT VOGLER

DATE RECEIVED: 10/16/09 DATE ANALYZED: 10/19&21/09 DATE REPORTED: 10/23/09

..............

METHOD BLANK FOR LAB I.D.: 091019-1, -2, -3

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

onir: my/kg = himitolout risk kilookui = rik

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony (Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	ND	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	ND	0.5	1	2,500	560/5@	6010B
Chromium VI (Cr6)		0.1	1	500	5.0	7196A
Cobalt (Co)	ND	1.0	1	8,000	80	6010B
Copper (Cu)	ND	1.0	1	2,500	25	6010B
Lead (Pb)	ND	0.5	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	1	3,500	350	6010B
Nickel (Ni)	ND	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	l	500	5.0	6010B
Thallium(T1)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	ND	5.0	1	2,400	24	6010B
Zinc(Zn)	ND	0.5	1	5,000	250	6010B

#### COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested Data Reviewed and Approved by: CAL-DHS ELAP CERTIFICATE No.: 1555

			0					Ō									
ļ		(maa	% RI	%0	1%	1%		% RI	5%								
		: ma/Kal	% Rec MSD	112%	107%	109%		% Rec MSD	84%								
<u>RIX</u>		Unit	MSD	59.8	64.0	71.2		<b>USIN</b>	0.105								
IL MATI			% Rec MS	112%	108%	110%		% Rec MS	88%								CM
OFID/SO			SM	60 0	64 3	71.5		WS	0,110						(	Z	WER:
TLCSI		, ,	Spike	50.0	50.0	50.0		Spike Conc.	0.125							NALYST:	INAL REVIE
T sisk			Sample Result	3.96	10.4	16.7		Sample Result	0							<b>ح</b>	Ľ
ls Anal			LCS	PASS	PASS	PASS		LCS STATUS	PASS		043%	PASS	PASS	PASS	PASS	0 ~ 20	
r Metal	% LCS :		LCS %Rec	100	103	109		LCS %Rec.	91.7		SD1%	PASS	PASS	PASS	PASS	85 - 115	
QC for	Duplicate	0/21/2009	LCS LCS	1.00	1.00	1.00	0/19/2009	LCS CONC.	0.125		USM%	PASS	PASS	PASS	PASS	75 ~ 125	
041	trix Spike	(SIS DATE: 1	Spk.Sample	091016-31	091016-31	091016-31	SIS DATE. : 1	Spk.Sample ID	091019-1		SM%	PASS	PASS	PASS	SSVd	75 ~ 125	
	<u>Matrix Spike/ Ma</u>	ANALY	Analysis	Copper (Cu)	Lead (Pb)	Zinc (Zn)	ANALY	Analysis	Mercury (Hg)	MS/MSD Status:	Analysis	Copper (Cu)	Lead (Pb)	Zinc (Zn)	Mercury (Hg)	Accepted Range	

# 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: ARTIC

PROJECT No.: 103567/Env 2DATE RECEIVED: 10/16/09MATRIX: SOILDATE EXTRACTED: 10/19/09DATE SAMPLED: 10/16/09DATE ANALYZED: 10/20/09REPORT TO: Mr. BERT VOGLERDATE REPORTED: 10/23/09

SAMPLE I.D.: KA-9-2.5

......

LAB I.D.: 091019-1

# Organochlorine Pesticides & PCBs Analysis

#### Method: EPA 8081A/8082

#### Unit: Mg/Kg = Milligram per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
Aldrin	ND	0.001	1
alpha-BHC	ND	0.001	1
beta-BHC	ND	0.001	1
gamma-BHC (Lindane)	ND	0.001	1
delta-BHC	ND	0.001	1
alpha-Chlordane	ND	0.001	1
gamma-Chlordane	ND	0.001	1
Total Chlordane (Technical)	ND	0.005	1
4,4'-DDD	ND	0.001	- 1
4,4'-DDE	ND	0.001	1
4,4'-DDT	ND	0.001	1
Dieldrin	ND	0.001	1
Endosulfan I	ND	0.001	1
Endosulfan II	ND	0.001	1
Endosulfan Sulfate	ND	0.001	1
Endrin	ND	0.001	1
Endrin Aldehyde	ND	0.001	1
Endrin Ketone	ND	0.001	1
Heptachlor Epoxide	ND	0.001	1
Heptachlor	ND	0.001	1
Methoxyclor	ND	0.001	1
Toxaphene	ND	0.020	1
PCB-1016	ND	0.010	1
PCB-1221	ND	0.010	1
PCB-1232	ND	0.010	1
PCB-1242	ND	0.010	1
PCB-1248	ND	0.010	1
PCB-1254	ND	0.010	1
PCB-1260	ND	0.010	1

#### COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Non detected or below the Actual Detection Limit

Data Reviewed and Approved by: CAL-DHS CERTIFICATE # 1555

## 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: ARTIC

PROJECT No.: 103567/Env 2

MATRIX:<u>SOIL</u> DATE SAMPLED:<u>10/16/09</u>

REPORT TO:Mr. BERT VOGLER

DATE RECEIVED: 10/16/09 DATE EXTRACTED: 10/19/09 DATE ANALYZED: 10/21/09 DATE REPORTED: 10/23/09

SAMPLE I.D.: KA-9-5

LAB I.D.: 091019-2

-----

## Organochlorine Pesticides & PCBs Analysis Method: EPA 8081A/8082

Unit: Mg/Kg = Milligram per Kilogram = PPM

PARAMETER SAMPLE RESULT PQL DF Aldrin ND 0.001 1 alpha-BHC 1 ND 0.001 beta-BHC ND 0.001 1 gamma-BHC (Lindane) ND 0.001 1 delta-BHC ND 1 0.001 alpha-Chlordane 1____ ND 0.001 gamma-Chlordane 0.001 ND 1 Total Chlordane (Technical) 0.005 1____ ND 4,4'-DDD ND 0.001 1 4,4'-DDE ND 0.001 1 4,4'-DDT ND 0.001 1 Dieldrin 1____ ND 0.001 Endosulfan I ND 0.001 1 Endosulfan II 0.001 ND 1 Endosulfan Sulfate ND 0.001 1 Endrin ND 0.001 1 Endrin Aldehyde 0.001 ND 1 Endrin Ketone 0.001 ND 1 Heptachlor Epoxide ND 0.001 1 Heptachlor ND 0.001 1 1_ Methoxyclor ND 0.001 Toxaphene ND 0.020 1 1 PCB-1016 ND 0.010 ND 0.010 PCB-1221 1 PCB-1232 ND 0.010 1 PCB-1242 0.010 1 ND 1 PCB-1248 ND 0.010 1 PCB-1254 ND 0.010 PCB-1260 ND 0.010 1

#### COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Non detected or below the Actual Detection Limit

ul

#### 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: ARTIC

PROJECT No.: 103567/Env 2 MATRIX: SOIL DATE SAMPLED: 10/16/09

REPORT TO:Mr. BERT VOGLER

DATE RECEIVED: 10/16/09 DATE EXTRACTED:10/19/09 DATE ANALYZED: 10/21/09 DATE REPORTED: 10/23/09 

SAMPLE I.D.: KA-9-10

LAB I.D.: 091019-3

#### Organochlorine Pesticides & PCBs Analysis Method: EPA 8081A/8082

Unit: Mg/Kg = Milligram per Kilogram = PPM

PARAMETER	SAMPLE RESULT	POL	DF
Aldrin	ND	0.001	1
alpha-BHC	ND	0.001	1
beta-BHC	ND	0.001	1
gamma-BHC (Lindane)	ND	0.001	1
delta-BHC	ND	0.001	1
alpha-Chlordane	ND	0.001	1
gamma-Chlordane	ND	0.001	1
Total Chlordane (Technical)	ND	0.005	1
4,4'-DDD	ND	0.001	1
4,4'-DDE	ND	0.001	1
4,4'-DDT	ND	0.001	1
Dieldrin	ND	0.001	1
Endosulfan I	ND	0.001	1
Endosulfan II	ND	0.001	1
Endosulfan Sulfate	ND	0.001	1
Endrin	ND	0.001	1
Endrin Aldehyde	ND	0.001	1
Endrin Ketone	ND	0.001	1
Heptachlor Epoxide	ND	0.001	1
Heptachlor	ND	0.001	1
Methoxyclor	ND	0.001	1
Toxaphene	ND	0.020	1
PCB-1016	ND	0.010	1
PCB-1221	ND	0.010	1
PCB-1232	ND	0.010	1
PCB-1242	ND	0.010	1
PCB-1248	ND	0.010	1
PCB-1254	ND	0.010	1
PCB-1260	ND	0.010	1

#### COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Non detected or below the Actual Detection Limit

Cel

#### 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel (562) 432-1696 Fax (562) 432-1796

PROJECT: ARTIC

PROJECT No.: 103567/Env 2 MATRIX: SOIL

DATE SAMPLED:10/16/09

REPORT TO:Mr. BERT VOGLER

DATE RECEIVED: 10/16/09 DATE EXTRACTED:10/19/09 DATE ANALYZED: 10/21/09 DATE REPORTED: 10/23/09 

SAMPLE I.D.: KA-13-5

LAB I.D.: 091019-9

Organochlorine Pesticides & PCBs Analysis

Method: EPA 8081A/8082

Unit: Mg/Kg = Milligram per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
Aldrin	ND	0.001	1
alpha-BHC	ND	0.001	1
beta-BHC	ND	0.001	1
gamma-BHC (Lindane)	ND	0.001	1
delta-BHC	ND	0.001	1
alpha-Chlordane	ND	0.001	1
gamma-Chlordane	ND	0.001	1
Total Chlordane (Technical)	ND	0.005	1
4,4'-DDD	ND	0.001	1
4,4'-DDE	ND	0.001	1
4,4'-DDT	ND	0.001	1
Dieldrin	ND	0.001	1
Endosulfan I	ND	0.001	1
Endosulfan II	ND	0.001	1
Endosulfan Sulfate	ND	0.001	1
Endrín	ND	0.001	1
Endrin Aldehyde	ND	0.001	1
Endrin Ketone	ND	0.001	1
Heptachlor Epoxide	ND	0.001	1
Heptachlor	ND	0.001	1
Methoxyclor	ND	0.001	1
Toxaphene	ND	0.020	1
PCB-1016	ND	0.010	1
PCB-1221	ND	0.010	1
PCB-1232	ND	0.010	1
PCB-1242	ND	0.010	1
PCB-1248	ND	0.010	1
PCB-1254	ND	0.010	1
PCB-1260	ND	0.010	1

#### COMMENTS

DF = Dilution Factor

POL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Non detected or below the Actual Detection Limit

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796

PROJECT: ARTIC

PROJECT No.: 103567/Env 2	DATE RECEIVED: 10/16/09
MATRIX: SOIL	DATE EXTRACTED: 10/19/0
DATE SAMPLED: 10/16/09	DATE ANALYZED: 10/21/09
REPORT TO: Mr. BERT VOGLER	DATE REPORTED: 10/23/09

SAMPLE I.D.: KA-13-10

LAB I.D.: 091019-10

......

#### Organochlorine Pesticides & PCBs Analysis Method: EPA 8081A/8082

Unit: Mg/Kg = Milligram per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
Aldrin	ND	0.001	1
alpha-BHC	ND	0.001	1
beta-BHC	ND	0.001	1
gamma-BHC (Lindane)	ND	0.001	1
delta-BHC	ND	0.001	1
alpha-Chlordane	ND	0.001	1
gamma-Chlordane	ND	0.001	1
Total Chlordane (Technical)	ND	0.005	1
4,4'-DDD	ND	0.001	1
4,4'-DDE	ND	0.001	1
4,4'-DDT	ND	0.001	1
Dieldrin	ND	0.001	1
Endosulfan I	ND	0.001	1
Endosulfan II	ND	0.001	1
Endosulfan Sulfate	ND	0.001	1
Endrin	ND	0.001	1
Endrin Aldehyde	ND	0.001	1
Endrin Ketone	ND	0.001	1
Heptachlor Epoxide	ND	0.001	1
Heptachlor	ND	0.001	1
Methoxyclor	ND	0.001	1
Toxaphene	ND	0.020	1
PCB-1016	ND	0.010	1
PCB-1221	ND	0.010	1
PCB-1232	ND	0.010	1
PCB-1242	ND	0.010	1
PCB-1248	ND	0.010	1
PCB-1254	ND	0.010	1
PCB-1260	ND	0.010	1

#### COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Non detected or below the Actual Detection Limit

l

#### 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796

PROJECT: ARTIC PROJECT No.: 103567/Env 2 MATRIX:SOIL DATE SAMPLED: 10/16/09 REPORT TO:Mr. BERT VOGLER

DATE RECEIVED: 10/16/09 DATE EXTRACTED:10/19/09 DATE ANALYZED:10/21/09 DATE REPORTED: 10/23/09

SAMPLE I.D.: KA-13-14.5

LAB I.D.: 091019-11

## Organochlorine Pesticides & PCBs Analysis Method: EPA 8081A/8082

Unit: Mg/Kg = Milligram per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
Aldrin	ND	0.001	1
alpha-BHC	ND	0.001	1
beta-BHC	ND	0.001	1
gamma-BHC (Lindane)	ND	0.001	1
delta-BHC	ND	0.001	1
alpha-Chlordane	ND	0.001	1
gamma-Chlordane	ND	0.001	1
Total Chlordane (Technical)	ND	0.005	1
4,4'-DDD	ND	0.001	1
4,4'-DDE	ND	0.001	1
4,4'-DDT	ND	0.001	1
Dieldrin	ND	0.001	1
Endosulfan I	ND	0.001	1
Endosulfan II	ND	0.001	1
Endosulfan Sulfate	ND	0.001	1
Endrin	ND	0.001	1
Endrin Aldehyde	ND	0.001	1
Endrin Ketone	ND	0.001	1
Heptachlor Epoxide	ND	0.001	1
Heptachlor	ND	0.001	1
Methoxyclor	ND	0.001	1
Toxaphene	ND	0.020	1
PCB-1016	ND	0.010	1
PCB-1221	ND	0.010	1
PCB-1232	ND	0.010	1
PCB-1242	ND	0.010	1
PCB-1248	ND	0.010	1
PCB-1254	ND	0.010	1
PCB-1260	ND	0.010	1

#### COMMENTS

DF = Dilution Factor

POL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Non detected or below the Actual Detection Limit

El

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796

PROJECT: ARTIC

PROJECT No.: 103567/Env 2	DATE RECEIVED:10/16/09
MATRIX:SOIL	DATE EXTRACTED: 10/19/0
DATE SAMPLED: 10/16/09	DATE ANALYZED: 10/21/09
REPORT TO:Mr. BERT VOGLER	DATE REPORTED: 10/23/09

SAMPLE I.D.: KA-16-6.5

LAB I.D.: 091019-18

Organochlorine Pesticides & PCBs Analysis

Method: EPA 8081A/8082

Unit: Mg/Kg = Milligram per Kilogram = PPM

DF SAMPLE RESULT POL PARAMETER 0.001 1 Aldrin ND alpha-BHC ND 0.001 1 1_ 0.001 beta-BHC ND gamma-BHC (Lindane) ND 0.001 1 delta-BHC 0.001 1 ND 1 alpha-Chlordane ND 0.001 gamma-Chlordane 0.001 1 ND 0.005 1 Total Chlordane (Technical) ND ND 0.001 1 4,4'-DDD 4,4'-DDE ND 0.001 1 1____ 0.001 4,4'-DDT ND 1 Dieldrin ND 0.001 Endosulfan I ND 0.001 1 0.001 1 Endosulfan II ND 0.001 1 Endosulfan Sulfate ND 0.001 1 Endrin ND Endrin Aldehyde ND 0.001 1 ND 0.001 1 Endrin Ketone 0.001 1____ Heptachlor Epoxide ND 1____ 0.001 ND Heptachlor 0.001 1____ Methoxyclor ND 0.020 1 Toxaphene ND PCB-1016 ND 0.010 1 ND 0.010 1 PCB-1221 0.010 1 ND PCB-1232 0.010 1 ND PCB-1242 ND 0.010 1 PCB-1248 1 ND 0.010 PCB-1254 PCB-1260 ND 0.010 1

#### COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Non detected or below the Actual Detection Limit

#### 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## METHOD BLANK REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: ARTIC

PROJECT No.: 103567/Env 2	DATE RECEIVED: 10/16/09
MATRIX: SOIL	DATE EXTRACTED: 10/19/09
DATE SAMPLED: 10/16/09	DATE ANALYZED: 10/20/09
REPORT TO: Mr. BERT VOGLER	DATE REPORTED: 10/23/09

METHOD BLANK FOR LAB I.D.: 091019-1, -2, -3, -9, -10, -11, -18

Organochlorine Pesticides & PCBs Analysis Method: EPA 8081A/8082

Unit: Mg/Kg = Milligram per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
Aldrin	ND	0.001	1
alpha-BHC	ND	0.001	1
beta-BHC	ND	0.001	1
gamma-BHC (Lindane)	ND	0.001	1
delta-BHC	ND	0.001	1
alpha-Chlordane	ND	0.001	1
gamma-Chlordane	ND	0.001	1
Total Chlordane (Technical)	ND	0.005	1
4,4'-DDD	ND	0.001	1
4,4'-DDE	ND	0.001	1
4,4'-DDT	ND	0.001	1
Dieldrin	ND	0.001	_ 1
Endosulfan I	ND	0.001	1
Endosulfan II	ND	0.001	1
Endosulfan Sulfate	ND	0.001	1
Endrin	ND	0.001	1
Endrin Aldehyde	ND	0.001	1
Endrin Ketone	ND	0.001	1
Heptachlor Epoxide	ND	0.001	1
Heptachlor	ND	0.001	1
Methoxyclor	ND	0.001	1
Toxaphene	ND	0.020	1
PCB-1016	ND	0.010	1
PCB-1221	ND	0.010	1
PCB-1232	ND	0.010	1
PCB-1242	ND	0.010	1
PCB-1248	ND	0.010	1
PCB-1254	ND	0.010	1
PCB-1260	ND	0.010	1

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF

Actual Decection Dimit = PQD X DF

ND = Non detected or below the Actual Detection Limit

lel

			Envir	o-Chen	n, Inc.				
1	214 E. Lexing	ton Avenue,	Pomona, (	CA 91766	Tel (909)	590-5905 F	ax (909)590-	5907	
E.		EPA	8081	QA/	QC R	epor	t		
Matrix:	Soil/So	olid			Date Anal	yzed:	10/20/200	9	
Unit:	mg/Kg				2425 244	500 <u>0</u>			
Matrix Spike (M	S)/Matrix Sp	ike Duplic	ate (MSD	)					
Spiked Sample	Lab I.D.:		091016	5-32 MS	S/MSD				
Analyte	S.R.	spk conc	MS	%REC	MSD	%REC	%RPD	ACP %RPD	ACP %REC
Gamma-BHC	0.000	0.0500	0.0504	101%	0.0467	93%	8%	0-20%	70-130
Aldrin	0.000	0.0500	0.0528	106%	0.0486	97%	8%	0-20%	70-130
4,4-DDE	0.000	0.0500	0.0492	98%	0.0452	90%	8%	0-20%	70-130
Lab Control Spi	ke (LCS) Re	covery:	% REC	ACP	AREC ]	- I			
Camma BHC	0.00500	0.04730	946%	75	125				
Aldrin	0.00500	0.04730	982%	75-	125	0			
4 4-DDF	0.00500	0.04700	940%	75-	125				
Dieldrin	0.00500	0.04600	920%	75-	125				
Surrogate Recov	rery	ACP%	%REC	%REC	%REC	%REC	%REC	%REC	%REC
Sample I.D.			MB	091016-19	091016-29	091016-30	091016-31	091016-32	091016-33
Tetra-chloro-met	a-xylene	50-150	93%	100%	113%	93%	86%	91%	95%
Decachlorobiphe	enyl	50-150	64%	75%	96%	96%	75%	80%	91%
Surrogate Recov	very	%REC	%REC	%REC	%REC	%REC	%REC	%REC	%REC
Sample I.D.		091016-34	091016-35	091016-36	091016-37	091016-38	091016-39	091016-40	091019-1
Tetra-chloro-met	la-xylene	82%	97%	92%	93%	96%	98%	88%	87%
Decachlorobiphe	enyl	82%	72%	75%	73%	77%	76%	74%	76%
Surrogate Recov	/ery	%REC	%REC	%REC	%REC	%REC	%REC	Ĩ	
Sample I.D.		091019-2	091019-3	091019-9	091019-10	091019-11	091019-18	]	
Tetra-chloro-met	ta-xylene	86%	91%	84%	96%	96%	106%	1	
Decachlorobiphe	enyl	80%	81%	70%	70%	97%	87%	y.	
S.R. = Sample Resu spk conc = Spike Co %REC = Percent Re ACP %RPD = Accer	it pricentration scovery ptable Percent F	RPD Range	* = Surroga Note: LCS,	te fail due lo MS, MSD ai	matrix interfe re in control	erence (if M. therefore re	erked) esults are in	control.	
ACP %REC = Accept	ptable Percent F	Recovery Rar	nge						
Analyzed and Revi	ewed By:	N							
Final Reviewer:	e								

1214 F	l exinaton A	venue Pr	Enviro	-Chem, Inc	Tel (909)59	0-5905 Ea	x (909)590-5	907
	1214 E. Coxington Avenue, 1 oniona, on 51100						ix (505)000 0	
QA/QC Report								
		An	alysis: E	PA 808	2 (PCB)			
Matrix: Unit:	Soil/So mg/Kg (PPI	olid/Sl	<u>udge</u>		Date Analy	vzed:	<u>10/20/2009</u>	2
Matrix Spike (N	IS)/Matrix S	Spike Dup	licate (MSD	)				
Spiked Sample	Lab I.D.:		<u>09101</u>	<u>6-32 №</u>	IS/MSI	<u>)</u>		
Analyte	spk conc	MS	%REC	MSD	%REC	%RPD	ACP % RPD	ACP %REC
PCB (1016+1260)	1.00	1.035	104%	1.049	105%	1%	0-20%	70-130
LCS STD RECO Analyte PCB (1016+1260)	OVERY: spk.conc 0.100	LCS 0.084	% REC 84%	ACP -	%REC 125	]		
spk conc = Spik %REC = Percei ACP %RPD = A ACP %REC = A	e Concentra nt Recovery Acceptable F Acceptable F	ation Percent RF Percent Re	PD Range covery Ran	ge		-		
Analyzed and I Final Reviewer	Reviewed E	3y: <u>71</u> J	-					

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796

PROJECT: ARTIC

PROJECT No.: 103567/Env 2 MATRIX:SOIL

DATE SAMPLED: 10/16/09

REPORT TO: Mr. BERT VOGLER

DATE RECEIVED:10/16/09 DATE EXTRACTED:10/19/09 DATE ANALYZED: 10/21/09 DATE REPORTED: 10/23/09

SAMPLE I.D.: KA-16-10

LAB I.D.: 091019-19

## Organochlorine Pesticides & PCBs Analysis Method: EPA 8081A/8082

Unit: Mg/Kg = Milligram per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
Aldrin	ND	0.001	1
alpha-BHC	ND	0.001	1
beta-BHC	ND	0.001	1
gamma-BHC (Lindane)	ND	0.001	1
delta-BHC	ND	0.001	1
alpha-Chlordane	ND	0.001	1
gamma-Chlordane	ND	0.001	1
Total Chlordane (Technical)	ND	0.005	1
4,4'-DDD	ND	0.001	1
4,4'-DDE	ND	0.001	1
4,4'-DDT	ND	0.001	1
Dieldrin	ND	0.001	1
Endosulfan I	ND	0.001	1
Endosulfan II	ND	0.001	1
Endosulfan Sulfate	ND	0.001	1
Endrin	ND	0.001	11
Endrin Aldehyde	ND	0.001	1
Endrin Ketone	ND	0.001	1_
Heptachlor Epoxide	ND	0.001	1
Heptachlor	ND	0.001	1
Methoxyclor	ND	0.001	11
Toxaphene	ND	0.020	1
PCB-1016	ND	0.010	1
PCB-1221	ND	0.010	1
PCB-1232	ND	0.010	1
PCB-1242	ND	0.010	1
PCB-1248	ND	0.010	1
PCB-1254	ND	0.010	1
PCB-1260	ND	0.010	1

COMMENTS

DF = Dilution Factor

POL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Non detected or below the Actual Detection Limit

lef

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796

PROJECT: ARTIC

PROJECT No.: 103567/Env 2	DATE RECEIVED: 10/16/09
MATRIX: SOIL	DATE EXTRACTED: 10/19/09
DATE SAMPLED: 10/16/09	DATE ANALYZED:10/21/09
REPORT TO:Mr. BERT VOGLER	DATE REPORTED:10/23/09

SAMPLE I.D.: KA-16-14

LAB I.D.: 091019-20

#### Organochlorine Pesticides & PCBs Analysis Method: EPA 8081A/8082

Unit: Mg/Kg = Milligram per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
Aldrin	ND	0.001	1
alpha-BHC	ND	0.001	1
beta-BHC	ND	0.001	1
gamma-BHC (Lindane)	ND	0.001	1
delta-BHC	ND	0.001	1
alpha-Chlordane	ND	0.001	1
gamma-Chlordane	ND	0.001	1
Total Chlordane (Technical)	ND	0.005	1
4,4'-DDD	ND	0.001	1
4,4'-DDE	ND	0.001	1
4,4'-DDT	ND	0.001	1
Dieldrin	ND	0.001	1
Endosulfan I	ND	0.001	1
Endosulfan II	ND	0.001	1
Endosulfan Sulfate	ND	0.001	1
Endrin	ND	0.001	1
Endrin Aldehyde	ND	0.001	1
Endrin Ketone	ND	0.001	1
Heptachlor Epoxide	ND	0.001	1
Heptachlor	ND	0.001	1
Methoxyclor	ND	0.001	1
Toxaphene	ND	0.020	1
PCB-1016	ND	0.010	1
PCB-1221	ND	0.010	1
PCB-1232	ND	0.010	1
PCB-1242	ND	0.010	1
PCB-1248	ND	0.010	1
PCB-1254	ND	0.010	1
PCB-1260	ND	0.010	1

#### COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Non detected or below the Actual Detection Limit

all

#### 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# METHOD BLANK REPORT

CUSTOMER: Kleinfelder 620 W. 16th Street, Unit #F Long Beach, CA 90813 Tel(562)432-1696 Fax(562)432-1796 PROJECT: ARTIC PROJECT No.: 103567/Env 2

PROJECT No.: 103567/Env 2DATE RECEIVED: 10/16/09MATRIX: SOILDATE EXTRACTED: 10/19/09DATE SAMPLED: 10/16/09DATE ANALYZED: 10/21/09REPORT TO: Mr. BERT VOGLERDATE REPORTED: 10/23/09

METHOD BLANK FOR LAB I.D.: 091019-19, -20

Organochlorine Pesticides & PCBs Analysis Method: EPA 8081A/8082

Unit: Mg/Kg = Milligram per Kilogram = PPM

PARAMETER	SAMPLE RESULT	POL	DF
Aldrin	ND	0.001	1
alpha-BHC	ND	0.001	1
beta-BHC	ND	0.001	1
gamma-BHC (Lindane)	ND	0.001	1
delta-BHC	ND	0.001	1
alpha-Chlordane	ND	0.001	1
gamma-Chlordane	ND	0.001	1
Total Chlordane (Technical)	ND	0.005	1
4,4'-DDD	ND	0.001	1
4,4'-DDE	ND	0.001	1
4,4'-DDT	ND	0.001	1
Dieldrin	ND	0.001	1
Endosulfan I	ND	0.001	1
Endosulfan II	ND	0.001	1
Endosulfan Sulfate	ND	0.001	1
Endrin	ND	0.001	1
Endrin Aldehyde	ND	0.001	1
Endrin Ketone	ND	0.001	1
Heptachlor Epoxide	ND	0.001	1
Heptachlor	ND	0.001	1
Methoxyclor	ND	0.001	1
Toxaphene	ND	0.020	1
PCB-1016	ND	0.010	1
PCB-1221	ND	0.010	1
PCB-1232	ND	0.010	1
PCB-1242	ND	0.010	1
PCB-1248	ND	0.010	1
PCB-1254	ND	0.010	1
PCB-1260	ND	0.010	1

#### COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF

ND = Non detected or below the Actual Detection Limit

Enviro-Chem, Inc.										
1214 E. Lexington Avenue, Pomona, CA 91786 Tel (909)590-5905 Fax (909)590-5907										
	-	LFA	0001	QAN		epor				
Matrix	Soil/So	olid			Date Anal	yzed:	10/21/200	9		
Unit	mg/Kg									
Matrix Spîke (MS)/Matrix Spike Duplicate (MSD)										
Spiked Sample Lab I.D.: 091019-19 MS/MSD										
6 a a b 4 a	0.0		416		1400	N DE O	4000			
	5.K.	SPK CONC	MS	%REC	MSD	%REC	%RPD	ACP %RPD	ACP %REC	
Gamma-BHC	0.000	0.0500	0.0541	108%	0.0543	109%	0%	0-20%	70-130	
Alarin 4 4-DDE	0.000	0.0500	0.0533	107%	0.0542	108%	2%	0-20%	70-130	
4,4-DDE	0.000	0.0300	0.0301	112/4	0.0912	11470	4 /6	0-20 %	70-130	
Lab Control Spike (LCS) Recovery:										
Analyte	spk conc	LCS	% REC	ACP 9	%REC					
Gamma-BHC	0.00500	0.00502	100%	75-	125					
Aldrin	0.00500	0.00497	99%	75-	125					
4.4-DDE	0.00500	0.00522	104%	104% 75-125						
Dieldrin	0 00500	0.00519	104%	75-	125					
Surrogale Recover			%REC	% PEC	0.0EC	% PEC	W.05C	0/BEC	WREC	
Sampla I D			MD	001010 10	/01/LO					
Totra chlora mota y	adono	50 150	191D	1030	1200/					
Decachlocohinheny		50-150	62%	74%	76%					
Decacilloropipheny	1	50-150	0370	1470	70%					
Surrogate Recover	Y	%REC	%REC	%REC	%REC	%REC	%REC	%REC	%REC	
Sample I.D.										
Tetra-chloro-meta->	ylene							<u> </u>		
Decachlorobipheny	Í									
Surronate Recours		WREC	WREC	WREC	NREC	4 PEC		1		
Sample I.D.				70110				4		
Decachlorobiphanyl								-		
								1		
S R. = Sample Result			* = Surroga	te feil due to	metrix inlerfe	иелсе (It Ma	arked)			
spk conc = Spike Concentration Note: LCS, MS, MSD are in control therefore results are in control.										
%REC = Percent Recovery										
ACP %RPD = Acceptable Percent RPD Range										
ACP %REC = Acceptable Percent Recovery Range										
Analyzed and Reviewed By:										
Final Reviewer:										

#### 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER ·	Kleinfelde	r								
oo o a oniaren	620 W 164	b Str	oot II	nit HF	(					
	Long Ponch		00012	ULC HE						
	m-1/FCOLA	1, CA	50015	F ( 0) 40	0 170	-				
	Tel (562) 43	52-169	o Fax(	562)43	2-1/9	D.				
PROJECT: A	RTIÇ								6 6	
PROJECT No	.: 103567/H	Env 2				DATE	RECEIV	ED: 10/	16/09	
MATRIX: SOI	L					DATE	EXTRAC	TED: 10	)/19/09	
DATE SAMPL	ED:10/16/09	2				DATE	ANALYZ	ED: 10/	21/09	
REPORT TO:	Mr. BERT VO	GLER				DATE	REPORT	ED:10/	23/09	
			PCB	s ANAL	YSIS					
			METHO	D: EP	A 8082	ŝ.				
	UNIT:	MG/KG	= MTLI	TGRAM	PER K	TLOGR	AM = P	PM		
SAMPLE	LAB	PCB-	PCB-	PCB-	PCB-	PCB-	PCB-	PCB-	TOTAL	
I.D.	I.D.	1016	1221	1232	1242	1248	1254	1260	PCBs*	DF
KA-14-5	091019-12	ND	ND	ND	ND	ND	ND	ND	ND	1
KA-14-10	091019-13	ND	ND	ND	ND	ND	ND	ND	ND	1
KA-14-13	091019-14	ND	ND	ND	ND	ND	ND	ND	ND	1
KA-15-5	091019-15	ND	ND	ND	ND	ND	ND	ND	ND	1
KA-15-10	091019-16	ND	ND	ND	ND	ND	ND	ND	ND	1
KA-15-15	091019-17	ND	ND	ND	ND	ND	ND	ND	ND	1
Method Bla	nk	ND	ND	ND	ND	ND	ND	ND	ND	Т
					11.0				6.1.62	

#### COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = DF X PQL

ND = Non-Detected Or Below the Actual Detection Limit

* = Sum of the PCB 1016, 1221, 1232, 1242, 1248, 1254 and 1260

*** = The concentration exceeds the TTLC Limit of 50, and the sample
is defined as hazardous waste as per CCR-TITLE 22 (if marked)

Data Reviewed and Approved by: _____ CAL-DHS ELAP CERTIFICATE No.: 1555

Enviro-Chem, Inc.										
1214 E. Lexington Avenue, Pornona, CA 91766 Tel (909)590-5905 Fax (909)590-5907										
QA/QC Report										
	Analysis: EPA 8082 (PCB)									
Matrix: Soil/Solid/Sludge Date Analyzed: <u>10/21/2009</u> Unit: <u>mg/Kg (PPM)</u>										
Matrix Spike (N	IS)/Matrix (	Spike Dup	licate (MSC	<b>)</b> )						
Spiked Sample	Lab I.D.:		<u>09101</u>	<u>9-12 N</u>	IS/MSE	<u>)</u>				
Analyte	spk conc	MS	%REC	MSD	%REC	%RPD	ACP % RPD	ACP %REC		
PCB (1016+1260)	1.00	1.065	107%	1.021	102%	4%	0-20%	70-130		
LCS STD RECO Analyte PCB (1016+1260)	OVERY; _spk conc 0.100	LCS 0.080	% REC	ACP -	%REC					
PCB (1016+1260)     0.100     0.080     80%     75-125       spk conc = Spike Concentration       %REC = Percent Recovery       ACP %RPD = Acceptable Percent RPD Range       ACP %REC = Acceptable Percent Recovery Range       ACP %REC = Acceptable Percent Recovery Range       Final Reviewer:										

