AIR QUALITY IMPACT ASSESSMENT FOR THE PROPOSED ANAHEIM REGIONAL TRANSPORTATION INTERMODAL CENTER (ARTIC) ANAHEIM, CALIFORNIA

Kleinfelder, Inc. 2 Ada, Suite 250 Irvine, California 92618

April 20, 2010 Revised July 9, 2010

Copyright 2010 Kleinfelder All Rights Reserved

Only the client or its designated representatives may use this document and only for the specific project for which this report was prepared.

Page i of x

This page left blank intentionally

CEQA Air Quality Analysis for The Proposed Anaheim Regional Transportation Intermodal Center (ARTIC)

City of Anaheim 200 South Anaheim Boulevard, Suite 276 Anaheim, California 92805

Kleinfelder Job No: 109528-012

Prepared by:

Estee Lafrenz, PE Air Quality Engineer

and

Jim Dill, PE Principal Engineer

Reviewed by:

Russell E. Erbes, CCM Senior Principal

KLEINFELDER, INC.

2 Ada, Suite 250 Irvine, California 92618

April 20, 2010

This page left blank intentionally

TABLE OF CONTENTS

Section

<u>Page</u>

1.0	EXE	CUTIVE SUMMARY	. 1-1
	1.1	INTRODUCTION	. 1-1
	1.2	EXISTING ENVIRONMENT AND PROPOSED PROJECT LOCATION.	. 1-1
	1.3	PROPOSED PROJECT EMISSIONS	. 1-2
	1.4	NEARBY AND REGIONAL AIR QUALITY IMPACT	. 1-4
	1.5	CUMULATIVE IMPACTS	. 1-4
	1.6	MITIGATION MEASURES	. 1-5
	1.7	EMISSIONS ASSOCIATED WITH A NO PROJECT ALTERNATIVE	. 1-5
	1.8	SUMMARY OF SIGNIFICANCE	. 1-5
2.0	SUM	MARY OF PROPOSED ACTION	. 2-1
3.0	EXIS	TING ENVIRONMENT	. 3-1
	3.1	PROPOSED PROJECT ENVIRONMENTAL SETTING	. 3-1
	3.2	REGIONAL CLIMATE	. 3-1
	3.3	REGIONAL AIR QUALITY	. 3-2
		3.3.1 Area Designations and Pollutant Descriptions	. 3-4
		3.3.2 Regulatory Settings	. 3-9
	3.4	PROPOSED PROJECT AREA AIR QUALITY	3-11
		3.4.1 Local Air Quality	3-11
	3.5	THRESHOLDS OF SIGNIFICANCE	3-14
		3.5.1 South Coast Air Quality Management District Thresholds	3-14
		3.5.2 SCAQMD Interim Greenhouse Gas Threshold of Significance	3-15
4.0	PRO	POSED PROJECT EMISSIONS	. 4-1
	4.1	OPERATIONAL PLANS	. 4-1
	4.2	BASELINE EMISSIONS	. 4-1
	4.3	CONSTRUCTION EMISSIONS	. 4-2
		4.3.1 Construction of New Intermodal Terminal	. 4-2
		4.3.2 Construction of New Rail Siding Tracks	. 4-3
		4.3.3 Roadway Improvement Activities	. 4-3
		4.3.4 Utility Relocation and Modification	. 4-4
		4.3.5 Total Construction Emissions	. 4-4
	4.4	ON-SITE OPERATIONAL EMISSIONS	. 4-6
		4.4.1 On-Site Operational Criteria Pollutant Emissions	. 4-6
		4.4.2 On-Site Operational Greenhouse Gas Emissions	. 4-8
	4.5	ADDITIONAL TRAFFIC EMISSIONS	. 4-9
5.0			
	OPE		. 5-1
	5.1		. 5-1
	5.2	OPERATIONAL EMISSIONS	. 5-2
		5.2.1 New Source Review	. 5-2
		5.2.2 INEW Source Performance Standards	. 5-2
		5.2.3 AB2588 HOI SPOIS Program	. 5-3
		5.2.4 CARB Diesel Regulations	. 5-3
		5.2.5 GHG Kegulations	. 5-4
		5.2.6 I ransportation Conformity	. 5-6
		5.2.7 General Conformity	. 5-7

TABLE OF CONTENTS (Continued)

<u>Section</u>	<u>on</u>		<u>Page</u>
		5.2.8 SCAQMD Rules	5-7
6.0	LOCA	L AIR QUALITY IMPACT OF PROPOSED PROJECT	6-1
	6.1	AMBIENT AIR QUALITY SIGNIFICANCE THRESHOLDS	6-1
	6.2	CONSTRUCTION IMPACTS	6-2
	6.3	WORST CASE CRITERIA POLLUTANT IMPACTS	6-2
		6.3.1 Onsite Operational Impacts	6-2
		6.3.2 CO Hot Spot Assessment from On-Road Vehicles	6-2
	6.4	AIR TOXIC IMPACTS OF THE PROPOSED PROJECT	6-4
7.0	CUML	JLATIVE IMPACTS	7-1
	7.1	EXISTING AND FUTURE NON-PROJECT EMISSIONS AND IMPAC	CTS
		IN THE PROJECT AREA	7-1
		7.1.1 Future Projects	7-1
		7.1.2 Future Traffic	7-15
		7.1.3 Cumulative Greenhouse Gas Emissions	7-15
8.0	POSS	BLE MITIGATION MEASURES AND EFFECT	8-1
	8.1	MITIGATION MEASURES REQUIRED BY REGULATION AND	0.4
		VOLUNTARILY CONDUCTED BY ARTIC.	8-1
		8.1.1 Construction Phase Mitigation Measures	8-1
	0.0	8.1.2 Operational Phase Mitigation Measures	8-4
0.0			8-4
9.0		SIONS ASSOCIATED WITH A NO PROJECT ALTERNATIVE	9-1
10.0			IU-I ONE10-1
	10.1		
	10.2	AMPIENT AID OUALITY STANDADDS TOYIC AID CONTAMINIANI	
	10.5		10.1
	10.4	CUMULATIVE IMPACTS OF THE PROPOSED PROJECT AND OTH	
	10.4	FUTURE PROJECTS	10-2
	10 5	GREENHOUSE GASES	10-2
11.0	REFF	RENCES	11-1

TABLES

Table 1-1	Maximum Proposed Project Construction Emissions	1-3
Table 1-2	Maximum Proposed Project Daily Operational Emissions Increase	ə 1-3
Table 3-1	National and California Ambient Air Quality Standards	3-3
Table 3-2	Attainment Status of Criteria Pollutants in SCAB	3-5
Table 3-3	Air Quality Monitoring Summary 2004-2008	3-5
Table 3-4	SCAQMD Significance Thresholds	3-14
Table 4-1	ARTIC Construction Worst-Case Daily Emissions	
Table 4-2	Total Proposed Project Construction Daily Emissions	
Table 4-3	ARTIC Operational Daily Emissions	4-7
Table 4-4	Proposed Project Operations Greenhouse Gas Emissions	
Table 6-1	CEQA Ambient Air Quality Emission Significance Thresholds for	
	Criteria Pollutants	6-18
Table 6-2	CEQA Ambient Air Quality Impact Significance Thresholds for	
	Criteria Pollutants	6-18
Table 6-3	Maximum CO Impacts of Traffic at the Katella Avenue and	
	Douglas Road Intersection	6-4
Table 7-1	Possible Future Projects Near the Proposed Project	

FIGURES

Figure 1-1	Proposed Project Location	1-7
Figure 1-2	Proposed Project Vicinity	1-8
Figure 2-1	Proposed ARTIC Site Plan	2-3
Figure 3-1	Location of Anaheim Air Quality Monitor	-12

APPENDICES

Appendix A	Construction	Emissions	of Criteria	Pollutants
------------	--------------	-----------	-------------	------------

Appendix B Operational Emissions of Criteria Pollutants Appendix C O Hot Spot Impact Assessment

This page left blank intentionally

AAQS	Ambient Air Quality Standards
AB 32	California's Global Warming Solutions Act of 2006
AQIA	Air Quality Impact Analysis
AQMP	Air Quality Management Plan
ARTIC	Anaheim Regional Transportation Intermodal Center
BACT	Best Available Control Technology
CAA	Clean Air Act
CAAQS	California Ambient Air Quality Standards
CAL3QHC	Dispersion model
CARB	California Air Resources Board
CCR	Code of California Regulations
CEQA	California Environmental Quality Act
CFR	Code of Federal Regulations
CHSR	California High-Speed Rail
CNSST	California-Nevada Superspeed Train
CO	Carbon monoxide
CO $_2$	Carbon dioxide
CO $_2$ e	Carbon dioxide equivalents
EMFAC	Mobile source emissions model
USEPA	United States Environmental Protection Agency
FHWA	Federal Highway Administration
FTA	Federal Transit Authority
GHG	Greenhouse Gas
GWP	Global Warming Potential
KW	Kilowatt
lb/day	Pound per day
LOSSAN	Los Angeles to San Diego
mph	Miles per hour
MT/yr	Metric tons per year
MUD	Mixed Use Development
NAAQS	National Ambient Air Quality Standards
N2O	Nitrous oxide
NO	Nitric oxide
NO2	Nitrogen dioxide
NOx	Oxides of nitrogen
NSPS	New Source Performance Standards

NSR	New Source Review
OCTA	Orange County Transit Authority
OEHHA	Office of Environmental Health Hazard Assessment
OPR	California Office of Planning and Research
PM ₁₀ PM _{2.5} PMI ppm PSD PTC	Respirable particulate matter less than 10 micron mean aerodynamic diameter Fine particulate matter less than 2.5 micron mean aerodynamic diameter Point of Maximum Impact parts per million (by volume) Prevention of Significant Deterioration Permit to construct
RCEM	Road Construction Emissions Model
ROG	Reactive Organic Gases
ROW	Right-of-way
SCAB	South Coast Air Basin
SCAQMD	South Coast Air Quality Management District
SIP	State Implementation Plan
SO ₂	Sulfur dioxide
SO _x	Oxides of sulfur
sqft	Square feet
SR	State Route
ug/m ³	micrograms per cubic meter (of air)
URBEMIS	Urban Emissions Model
U.S.	United States
VOC	Volatile Organic Compound

1.1 INTRODUCTION

The City of Anaheim (City) in collaboration with the Orange County Transportation Authority (OCTA), is proposing to relocate the existing Metrolink/Amtrak Anaheim Station (located within the Angels Stadium parking lot), approximately one quarter (0.25) mile east along the existing OCTA rail right-of-way (ROW). The proposed project would be known as the Anaheim Regional Transportation Intermodal Center (ARTIC). The OCTA ROW is also known as the Los Angeles to San Diego (LOSSAN) Corridor.

Construction is scheduled to begin in the spring of 2011 with operation to begin in the fall of 2013.

1.2 EXISTING ENVIRONMENT AND PROPOSED PROJECT LOCATION

The proposed location of the new Metrolink/Amtrak facility is approximately 0.25 miles east of the existing station. This location is south of Katella Avenue, on an approximately 16 acre site which is partially owned by OCTA (13.5 acres exclusive of the ROW) and the remaining by the City (2.2 acres). In addition to the two main parcels there are anticipated improvements to approximately 0.50 acre of rail ROW between the Santa Ana River and Katella Avenue, and improvements to Douglass Road as well. The new facility would be known as the Anaheim Regional Transportation Intermodal Center (ARTIC) and will be integrated into the Platinum Triangle, a joint mixed-use development in the City. Access to the ARTIC will be via Douglass Road from Katella Avenue, which also serves as an entry and exit during events occurring at Angel Stadium. The site location and surrounding area is shown in Figures 1-1 and 1-2.

The proposed project site is currently developed land and was previously a working maintenance yard for the County of Orange. After the transfer to OCTA, the facilities on-site were closed and their functions were transferred to other County facilities. The site is comprised of six (6) industrial buildings and is completely paved, including some ornamental landscaping along Douglass Road.

The proposed project site is located west of the Orange Freeway (State Route [SR]-57) freeway, north of the Anaheim Stadium, and south of Katella Avenue within the City of Anaheim. The City of Anaheim is part of the South Coast Air Basin (SCAB or Basin), a 6,600 square-mile area encompassing all of Orange County and the non-desert parts of

Los Angeles, Riverside and San Bernardino Counties. The ambient air quality within the SCAB is better than state and Federal ambient air quality standards (California Ambient Air Quality Standards [CAAQS] and National Ambient Air Quality Standards [NAAQS]) for all pollutants except ozone and particulate matter. Ambient air quality monitoring data obtained from a monitoring location relatively near the proposed project site (within about six miles) are consistent with the overall SCAB ambient air quality conditions.

1.3 PROPOSED PROJECT EMISSIONS

Emissions associated with the proposed project include emitting activities of construction, operation, and traffic changes. Construction emissions include fugitive dust and equipment exhaust. Phases of construction activities that will yield emissions include demolition, mass site grading, fine site grading, excavation and soil hauling offsite, building construction, paving, and architectural coating. Several different types of equipment will be used throughout the construction phases, including loaders, graders, scrapers, generators, and water trucks, among others. Construction emissions were assessed using the Urban Emissions Model, 2007, version 9.2.4 (URBEMIS), which is used by SCAQMD to estimate emissions for land use development projects. A detailed description of the construction equipment and the emissions by year is provided in Appendix A.

Road improvement projects are also included in the proposed project. Road improvements include widening of Douglass Road and elevation lowering, as well as bridge lowering and reconstruction and the addition of a widened sidewalk. Also included is an additional right turn lane at Katella Avenue. The placement of stub end rail tracks is also included and considered similar to road construction.

Table 1-1 provides a summary of the daily emissions associated with construction of the proposed project. A more detailed discussion of construction emissions is provided in Section 4.3 of this AQIA. Construction emissions are less than the significance thresholds for each of the criteria pollutants. (The significance thresholds are discussed in Section 3.5 of this AQIA.) NO_x emissions would be considered potentially significant without the proposed required mitigation measures discussed in Section 8.

Pollutant	Daily Construction Emissions (Ib/day)	Maximum Emission Year	SCAQMD Significance Thresholds (Ib/day)	Exceeds Significance Threshold?
NO _x	98.0 ¹	2012	100	No
ROG	55.0	2013	75	No
CO	89.2	2012	550	No
PM ₁₀	53.1	2012	150	No
PM _{2.5}	15.6	2012	55	No
SOx	0.1	2012	150	No
CO ₂ e	18,784.1	2012	-	-

Table 1-1Proposed Project Construction Emissions

¹ Mitigation required to reduce emissions below significance thresholds; see Section 8

Emissions associated with operation of the ARTIC facility will include typical building operations, such as heating and electricity usage. Emitting activities will also include a backup emergency generator and an increase in vehicle traffic. Operational emissions assessed for the proposed project will be shown as an increase in emissions from the existing Metrolink/Amtrak station to the proposed ARTIC facility. Table 1-2 provides a summary of the operational emissions associated with the proposed project. A more detailed discussion of operational emissions is provided in Section 4.4 with the modeling details provided in Appendix B of this AQIA. Operational emissions are less than the significance thresholds for each of the criteria pollutants.

Table 1-2Maximum Proposed Project Daily Operational Emissions Increase

Pollutant	Daily Operation Emissions Increase (Ib/day)	SCAQMD Significance Thresholds (lb/day)	Exceeds Significance Threshold?
NO _x	42.40	55	No
ROG	26.45	55	No
CO	269.00	550	No
PM ₁₀	3.36	150	No
PM _{2.5}	2.19	55	No
SO _x	0.84	150	No
CO ₂ e	5,530.8 MT/yr	10,000 MT/yr ⁽¹⁾	No

Notes:

1. SCAQMD CEQA interim GHG Significance Threshold is 10,000 MT/yr CO₂e. The threshold is compared to the total increase in operational emissions and the construction activity averaged over 30 years.

1.4 NEARBY AND REGIONAL AIR QUALITY IMPACT

The proposed project is located in an area of existing and planned urban development, including a number of new housing units and expansion of existing businesses as discussed in Section 7.0 of this AQIA. The area is also a gateway area for three future possible additional major transportation projects: Anaheim Fixed Guideway Transit Corridor, California High-Speed Rail, and the California-Nevada Super Speed Train. These projects are relevant to ARTIC but are separate, distinct, and independent from ARTIC in terms of funding, lead agency status, purpose and need, and regulatory requirements. Each project has undergone or is currently undergoing their own separate project clearance process, including but not limited to CEQA and NEPA. The proposed project emissions and potential ambient air quality impact will be considered in combination with the existing and future development.

Potential ambient air quality impacts within existing development is assessed by evaluating the existing ambient air quality and comparing proposed project emissions to SCAQMD significance thresholds as discussed in previous sections of this AQIA. Potential ambient air quality impacts within future development is discussed in the following sections.

1.5 CUMULATIVE IMPACTS

Construction emissions are not considered cumulatively considerable since various construction projects are not likely to occur at the same time and in close proximity to each other. Construction emissions are highly variable and localized, such that even if there are more than one construction projects occurring in close proximity to each other, it is not likely for the combination of emissions to exceed the significance thresholds as long as the individual construction project emissions do not exceed the thresholds.

An improved transportation center and other nearby development projects will result in increased traffic within the regional area. Development of a transportation center, that will increase the availability of mass transit alternatives, will help reduce the number of vehicles on the road regionally, which is consistent with the AQMP and other regional plan strategies. A CO Hotspot analysis was also performed to show that the increased traffic levels will not result in CO impacts above the State and Federal ambient air quality standards. In addition, more stringent regulation of vehicle emissions will help to mitigate the air quality issues associated with additional development projects to some

extent. The regional cumulative impact due to operations of the proposed project and nearby development projects is not considered cumulatively considerable.

1.6 MITIGATION MEASURES

The proposed project will incorporate a number of mitigation measures that are discussed in Section 8.0 of this AQIA. These mitigation measures result in an insignificant ambient air quality impact for all emissions.

1.7 EMISSIONS ASSOCIATED WITH A NO PROJECT ALTERNATIVE

If the proposed project is not constructed, there will be increased traffic congestion in the area (since mass transit will be less available), and other planned future projects will continue to be built. The ambient air quality impact of the No Project Alternative is potentially greater than the proposed project.

1.8 SUMMARY OF SIGNIFICANCE

Section 10 summarizes air quality significance of the proposed project and nearby future projects. Only NO_x emissions potentially exceed the thresholds with all stages of construction considered. Construction emissions from ARTIC will not be considered significant as shown in Table 1-1 through the use of mitigation measures that include schedule and equipment controls for NO_x. None of the emissions of the proposed project, as shown in Table 1-1, exceed SCAQMD significance levels, and the remaining pollutant emissions are less than about thirty percent of the significance levels. It is not likely that ARTIC could cause or contribute to a local or regional exceedance of the ambient air quality standards. Operational emissions of ARTIC are less than about fifteen percent of SCAQMD significance levels, and are not likely to cause or contribute to an exceedance of ambient air quality standards.

The cumulative effect of construction of the proposed project and other future projects in the area is not considered cumulatively considerable or significant because construction is temporary, highly variable, and localized. Cumulative impacts of ARTIC operational emissions and future projects are also not considered significant since the proposed project emissions are relatively low and other projects in the area would have similar or lower emissions. There is no anticipated cumulative exceedance of the ambient air quality standards caused by the proposed project.

The operational emissions of greenhouse gases are less than the SCAQMD greenhouse gas interim significance threshold. ARTIC's location relative to major event and destination centers within the Platinum Triangle creates availability of current and future mass transit systems to occupants and visitors. The result will be less motor vehicle traffic on local roadways and freeways and a general reduction in motor vehicle travel throughout the region. Since motor vehicle traffic is the primary source of air pollution in the region, plans to reduce traffic will result in lower GHG emissions regionally. ARTIC's greenhouse gas emissions are relatively small compared to the significance threshold, and ARTIC should reduce regional traffic so ARTIC should not have a significant impact with effect to greenhouse gas.

Figure 1-1 Proposed Project Location Map

Figure 1-2 Proposed Project Vicinity

2.0 SUMMARY OF PROPOSED ACTION

The City of Anaheim (City) in collaboration with the Orange County Transportation Authority (OCTA), is proposing to relocate the existing Metrolink/Amtrak Anaheim Station (located within the Angels Stadium parking lot), approximately one-quarter (0.25) mile east along the existing OCTA rail right-of-way (ROW). The OCTA ROW is also known as the Los Angeles to San Diego (LOSSAN) corridor. The proposed project would be known as the Anaheim Regional Transportation Intermodal Center (ARTIC), which is bound by Angel Stadium to the east, the Honda Center to the north, the Santa Ana River to the west, and the LOSSAN corridor to the south. The facility will incorporate the following public transportation services:

- Metrolink
- Amtrak
- OCTA local bus
- OCTA Bravo! BRT
- Anaheim Resort Transit shuttles and circulators
- Anaheim Go Local rubber tired mixed-flow shuttles
- "Fly-Away" airport shuttles
- Connection to offsite private intercity buses
- Private tourism buses
- Taxi Services

The project includes a new 322,000 square feet (sqft), three level intermodal terminal building, with 30,000 sqft public plaza/drop off space. The below building level will include the Bus Transit Center, the Metrolink/Amtrak Concourse, and Program Space. The at-grade and above-grade levels will include the Public Hall/Waiting Area and Program Space. The remainder of the 16-acre parcel will be graded for roadways, parking areas, and open civic space. Figure 2-1 shows the ARTIC site plan.

The ARTIC project includes the following tasks to be completed:

- Demo of existing 16-acre site;
- Building of new intermodal terminal and open space surrounding the facility;
- Creation of surface parking area to the north and south of new terminal.
- Adding a third track, or a single-ended siding track (stub-end track), to accommodate the construction of the other two tracks;
- Widening/Improvements to Douglass Road south of Katella Avenue, including relocation of utilities;

- Widening and lengthening of the existing railroad bridge over Douglass Road; and
- Adding right turn lane to Katella Avenue;

Figure 2-1 ARTIC Site Plan

3.1 PROPOSED PROJECT ENVIRONMENTAL SETTING

The project site is located within the City of Anaheim, which is part of the South Coast Air Basin (SCAB or Basin), a 6,600 square-mile area encompassing all of Orange County and the non-desert parts of Los Angeles, Riverside and San Bernardino Counties. The Basin is an area of high air pollution potential, particularly from June through September. Light winds and shallow vertical atmospheric mixing frequently reduce pollutant dispersion and cause elevated air pollution levels. Pollutant concentrations in the Basin vary with location, season and time of day. Ozone concentrations, for example, tend to be lower along the coast, higher in the near inland valleys, and lower in the far inland areas of the Basin and adjacent desert. SCAB is under the jurisdiction of the South Coast Air Quality District (SCAQMD).

The air quality assessment for the proposed project includes estimating emissions associated with short-term construction and long-term operation of the proposed project. A number of air quality modeling tools are available to assess air quality impacts of projects. In addition, certain air districts, such as SCAQMD, have created guidelines and requirements to conduct air quality analyses. SCAQMD's current guidelines, *California Environmental Quality Act (CEQA) Air Quality Handbook, 1993*, and updated through March, 2010, were adhered to in the assessment of air quality impacts for the proposed project.

3.2 REGIONAL CLIMATE

ARTIC is located in Anaheim, which is southeast of Los Angeles, about 15 miles inland from the Pacific Ocean in Southern California. The elevation is approximately 160 feet above mean sea level. The climate in the region is Mediterranean, with low humidity and an average of 328 days of sunshine each year. The average annual rainfall is 14 inches per year, with an annual average temperature of 73 °F.

Climate in the SCAB is determined by its terrain and geographical location. The Basin is a coastal plain with connecting broad valleys and low hills. The Pacific Ocean forms the southwestern border, and high mountains surround the rest of the SCAB. SCAB lies in the semi-permanent high-pressure zone of the eastern Pacific; the resulting climate is mild and tempered by cool ocean breezes. This climatological pattern is rarely interrupted. Periods of extremely hot weather, winter storms, or Santa Ana wind conditions do occur. Santa Ana condition describes a dry and warm wind in southwestern California that blows westward from the desert through the canyons and towards coastal areas. This seasonal phenomenon typically occurs from October through March.

The climate and topography are highly conducive to the formation and transport of air pollution. The local wind is generally light and the dominant wind pattern is a daytime on-shore breeze and nighttime offshore breezes. Air stagnation may occur during the early evening and early morning during periods of transition between day and night wind patterns. Santa Ana wind conditions occasionally occur to disrupt this pattern. If the Santa Ana winds are strong, they can surpass the sea breeze and carry suspended dust and pollutants from the desert into the SCAB and off the coast. If they are weak, they are opposed by the sea breeze and cause air stagnation, resulting in high pollution events.

The combination of topography, low mixing height, abundant sunshine, and emissions from the second largest urban area in the United States gives the SCAB the worst air pollution problem in the nation.

3.3 REGIONAL AIR QUALITY

Over the past 30 years, the South SCAQMD has made substantial progress in reducing air pollution levels in southern California. The area was previously designated nonattainment for all of the National Ambient Air Quality Standards (NAAQS), except for sulfur dioxide (SO₂) and lead. The area is now defined as in attainment for nitrogen dioxide (NO₂), SO₂, lead, and carbon monoxide (CO). Levels of particulate matter and ozone, while reduced substantially from their peak levels, are still far from attainment in the Basin.

Both the state of California and the federal government have established health-based ambient air quality standards (AAQS) for six air pollutants. As shown in Table 3-1, these pollutants include ozone, CO, NO₂, SO₂, respirable particulate matter equal to or less than 10 microns in diameter (PM_{10}), and lead. In July 1997, the United States Environmental Protection Agency (USEPA) adopted new standards for eight-hour ozone and for fine particulate matter less than 2.5 microns in diameter ($PM_{2.5}$). The State has set standards for sulfates, hydrogen sulfide, vinyl chloride, and visibility reducing particles. These standards are designed to protect the health and welfare of the populace with a reasonable margin of safety. Typically, the California AAQS (CAAQS), which have been adopted by the California Air Resources Board (CARB), are more stringent than the Federal AAQS (NAAQS).

				Most
Pollutant	Averaging Time	CAAQS ⁽¹⁾ (ug/m ³)	NAAQS ⁽²⁾ (ug/m ³)	Stringent Standard (ug/m ³)
Ozone	1-hour	90 ppb (180 ug/m3)	No separate standard	90 ppb
020110	8-hour	70 ppb (137 ug/m3)	75 ppb (147 ug/m ³)	70 ppb
	24-hour	50	150	50
PM ₁₀	Annual	20	No separate standard	20
PM _{2.5}	24-hour	No separate standard	35	35
	Annual	12	15	12
	1-hour	23,000	35 ppm (40,000 ug/m ³)	23,000
00	8-hour	10,000	9 ppm (10,000 ug/m ³)	10,000
NO	1-hour	339	0.100 ppm ⁽³⁾ (189 ug/m ³)	189
NO_2	Annual	57	0.053 ppm (100 ug/m ³)	57
	1-hour	655	No separate standard	655
SO ₂	3-hour	No separate standard	1,300	1,300
	24-hour	105	365	105
	Annual	No separate standard	80	80
Load	30-day	1.5	No separate standard	1.5
Leau	Quarterly	No separate standard	1.5	1.5
Sulfates	24-hour	25	No separate standard	25
Visibility Reducing Particulate	8-hour b _{ext}	<0.23 km ⁻¹	No separate standard	<0.23 km ⁻¹

Table 3-1National and California Ambient Air Quality Standards(All standards expressed in ug/m³ except as noted.)

Pollutant	Averaging Time	CAAQS ⁽¹⁾ (ug/m ³)	NAAQS ⁽²⁾ (ug/m ³)	Most Stringent Standard (ug/m ³)
Hydrogen sulfide	1-hour	42	No separate standard	42
Vinyl chloride	24-hour	26	No separate standard	26

Notes:

1. California standards for ozone, CO (except Lake Tahoe), SO₂ (1 and 24 hour), NO₂, PM₁₀, PM_{2.5}, and visibility reducing particles, are values that are not to be exceeded. All others are not to be equaled or exceeded. California ambient air quality standards are listed in the Table of Standards in Section 70200 of Title 17 of the California Code of Regulations.

2. National standards (other than ozone, particulate matter, and those based on annual averages or annual arithmetic mean) are not to be exceeded more than once a year. The ozone standard is attained when the fourth highest eight hour concentration in a year, averaged over three years, is equal to or less than the standard. For PM_{10} , the 24 hour standard is attained when the expected number of days per calendar year with a 24-hour average concentration above 150 µg/m3 is equal to or less than one. For $PM_{2.5}$, the 24 hour standard is attained when 98 percent of the daily concentrations, averaged over three years, are equal to or less than the standard. Contact USEPA for further clarification and current federal policies.

3. To attain this standard, the 3-year average of the 98th percentile of the daily maximum 1-hour average at each monitor within an area must not exceed 0.100 ppm (effective January 22, 2010).

N/A = standard is not applicable

ppm = parts per million by volume AAM = annual arithmetic mean µg/m3 = micrograms per cubic meter km = kilometer Source: CARB, March 2010

3.3.1 Area Designations and Pollutant Descriptions

The SCAB fails to meet national standards for ozone, $PM_{2.5}$, and PM_{10} and is considered a federal nonattainment area for these pollutants. Nonattainment designations are categorized into four levels of severity: (1) moderate, (2) serious, (3) severe and (4) extreme. The following are descriptions of the attainment classifications:

- Unclassified: a pollutant is designated unclassified if the data are incomplete and do not support a designation of attainment or nonattainment.
- Attainment: a pollutant is designated attainment if the state AAQS for that pollutant was not violated at any site in the area during a three year period.
- Nonattainment: a pollutant is designated nonattainment if there was at least one violation of a state AAQS for that pollutant in the area.
- Nonattainment/Transitional: is a subcategory of the nonattainment designation. An area is designated nonattainment/transitional to signify that the area is close to attaining the AAQS for that pollutant.

All air pollution control districts have been formally designated as attainment or nonattainment for each CAAQS. Table 3-2 lists the criteria pollutants and their relative attainment status. Serious or worse nonattainment areas are required to prepare air quality management plans (AQMPs) to include specified emission reduction strategies in an effort to meet clean air goals. Brief descriptions of the various regulated pollutants and others of concern follow the table.

Pollutant	California State Standards	Federal Standards
Ozone – 1-hour ¹	Extreme Nonattainment	Extreme Nonattainment ¹
Ozone – 8 hour	Extreme Nonattainment	Severe-17 Nonattainment ²
PM ₁₀	Serious Nonattainment	Serious Nonattainment ³
PM _{2.5}	Nonattainment	Nonattainment
CO	Attainment	Attainment ⁴
SO ₂	Attainment	Attainment
NO ₂	Attainment	Attainment/Maintenance
Lead	Attainment	Attainment
All Others	Attainment/Unclassified	Attainment/Unclassified

Table 3-2Attainment Status of Criteria Pollutants in SCAB

Source: CARB; changes to State Area Designations became effective July 26, 2007; changes to National Area Designations current as of February 2009 (http://www.arb.ca.gov/desig/adm/adm.htm).

1 National 1-hour ozone standard was revoked in June 2005.

2 CARB may petition for Extreme designation.

3 Annual Standard Revoked September 2006.

4 USEPA granted the request to redesignate the SCAB from nonattainment to attainment for the CO NAAQS on May 11, 2007 (Federal Register Volume 71, No.91), which became effective as of June 11, 2007.

Ozone

Ozone (smog) is formed by photochemical reactions between oxides of nitrogen (NO_x) and reactive organic gases (ROG, or volatile organic compounds [VOC]) rather than being directly emitted. Ozone is a pungent, colorless gas typical of Southern California smog. Elevated ozone concentrations result in reduced lung function, particularly during vigorous physical activity. This health problem is particularly acute in sensitive receptors

such as the sick, the elderly, and young children. Ozone levels peak during summer and early fall. USEPA has classified the SCAB as an "extreme" nonattainment area for both Federal and State one-hour ozone standards, however USEPA revoked the one-hour ozone standard, effective June 2005. USEPA had officially designated the status for the SCAB regarding the eight-hour ozone standard as "Severe 17." SCAQMD formally requested CARB to submit a request to USEPA for a voluntary reclassification of the SCAB from "Severe-17" to "Extreme" nonattainment for ozone with the submission of their 2007 AQMP on June 15, 2007. Through this request, the ozone attainment date for SCAB will be extended until June 15, 2024.

Particulate Matter Less than 10 Microns

Particulate matter is the term used for a mixture of solid particles and liquid droplets found in the air (e.g., soot, dust, smoke, fumes, and aerosols). Coarse particles (i.e., PM_{10}) derive from a variety of sources, including windblown dust and grinding operations. PM_{10} can accumulate in the respiratory system and aggravate health problems such as asthma. PM_{10} also causes visibility reduction. The entire SCAB is a nonattainment area for the Federal and State PM_{10} standards.

Particulate Matter Less than 2.5 Microns

Fine particulate matter (i.e., $PM_{2.5}$) is primarily the result of fuel combustion and exhaust from power plants, diesel buses, and trucks. Primary gas emissions, including SO₂ releases from power plants and industrial facilities and NO_X releases from power plants, automobiles and other types of combustion sources, chemically react in the atmosphere to form PM_{2.5}. USEPA's scientific review concluded that PM_{2.5}, which penetrates deeply into the lungs, is more likely than PM₁₀ to contribute to the health effects listed in a number of recently published community epidemiological studies at concentrations that extend well below those allowed by the current PM₁₀ standards. These health effects include premature death and increased hospital admissions and emergency room visits (primarily the elderly and individuals with cardiopulmonary disease); increased respiratory symptoms and disease (children and individuals with cardiopulmonary disease such as asthma); decreased lung functions (particularly in children and individuals with asthma); and alterations in lung tissue and structure and in respiratory tract defense mechanisms. The entire SCAB is a nonattainment area for the Federal and State PM_{2.5} standards.

Carbon Monoxide

CO is formed by the incomplete combustion of fossil fuels, almost entirely from automobiles. It is a colorless, odorless gas that can cause dizziness, fatigue, and impairments to central nervous system functions. Orange County has been designated by CARB to be an attainment area for State CO standards. The SCAB was formerly in nonattainment with federal CO standards. Effective June 11, 2007, USEPA designated the SCAB as attainment with federal CO standards.

Sulfur Dioxide

 SO_2 is a colorless irritating gas formed primarily from incomplete combustion of fuels containing sulfur. Industrial facilities also contribute to gaseous SO_2 levels. SO_2 irritates the respiratory tract, can injure lung tissue when combined with fine particulate matter, and reduces visibility and the level of sunlight. The entire SCAB is in attainment with both Federal and State SO_2 standards.

Nitrogen Oxides

 NO_2 , a reddish-brown gas, and nitric oxide (NO), a colorless, odorless gas, are formed from fuel combustion under high temperature or pressure. These compounds are referred to collectively as NO_x . NO_x is a primary component of and the photochemical smog (or ozone) reaction. It also contributes to other pollution problems, including a high concentration of fine particulate matter, poor visibility, and acid deposition (i.e., acid rain). NO_2 decreases lung function and may reduce resistance to infection. SCAB is designated as a maintenance area under the Federal standards and an attainment area under the State standards.

Lead

Lead is found in old paints and coatings, plumbing, and a variety of other materials. Once in the bloodstream, lead can cause damage to the brain, nervous system, and other body systems. Children are highly susceptible to the effects of lead. In the past, the primary source of lead in the air was emissions from vehicles burning leaded gasoline. As a result of the removal of lead from gasoline, there have been no violations at any of SCAQMD's regular air monitoring stations since 1982. The entire SCAB is in attainment for the Federal and State standards for lead.

Reactive Organic Gases/ Volatile Organic Compounds

Both ROG and volatile organic compounds (VOC) are precursors in forming ozone. ROG consist of compounds containing methane, ethane, propane, butane, and longer chain hydrocarbons, which are typically the result of some type of combustion/decomposition process. VOCs are hydrocarbon compounds (i.e., any compound containing various combinations of hydrogen and carbon atoms) that exist in the ambient air. Smog is formed when ROG and NO_x react through atmospheric photochemical reactions. ROG and VOCs often have an odor and can also, in some cases, be classified as a toxic air contaminant (TAC). ROGs are typically found in VOCs may be found in products such as gasoline, alcohol, vehicle exhaust. degreasers, and solvent-based paints.

Toxic Air Contaminants

TACs refer to a diverse group of air pollutants that can affect human health, however there are no ambient air quality standards adopted for TACs. With relation to the proposed project, the primary TACs of concern includes diesel particulate matter. In 1998, CARB identified diesel engine particulate matter as a TAC. Although there are no published ambient air quality standards for TACs, there are significance levels established as discussed in Section 3.5 of this AQIA.

Greenhouse Gases

GHGs have the potential to adversely affect the environment because such emissions contribute, on a cumulative basis, to global climate change. Atmospheric GHG, such as CO₂, plays a role in determining the earth's surface temperature. Solar radiation enters earth's atmosphere from space, and a portion of the radiation is absorbed by the earth's surface. Earth re-radiates this energy back toward space, but the properties of the radiation change from high-frequency solar radiation to lower-frequency infrared radiation. GHGs, which are transparent to solar radiation, are effective in absorbing infrared radiation. This radiation (that otherwise would have escaped back into space) is now retained in the atmosphere, and results in a warming of the atmosphere. This phenomenon is known as the greenhouse effect.

Since each GHG absorbs radiation at different rates, emissions of each GHG must be normalized based on a standard global warming potential. Equivalent carbon dioxide (or CO₂e) describes how much global warming a given type and amount of greenhouse

gas may cause, using the functionally equivalent amount or concentration of CO_2 as the reference.

3.3.2 Regulatory Settings

Federal Regulations/Standards

USEPA established NAAQS for six major pollutants, termed "criteria" pollutants pursuant to the Federal Clean Air Act (CAA) of 1970. Criteria pollutants are defined as those pollutants for which the Federal and State governments have established AAQS, or criteria, for outdoor concentrations in order to protect public health (see Table 3-1). USEPA has designated SCAG as the Metropolitan Planning Organization responsible for ensuring compliance with the requirements of the CAA for the SCAB.

These standards were set as primary standards to protect human health and as secondary standards to protect property. The standards are based on pollution concentrations averaged over specified time periods. Regulation towards attainment of these standards is conducted through USEPA, State and regional Air Districts.

State Regulations/Standards

Based on the CAA, state agencies are empowered to enforce the federal standards and develop additional standards as deemed necessary to protect public health and the environment. CARB was formed for this purpose and established the CAAQS, many of which are more stringent than the corresponding NAAQS (see Table 3.1). CARB and the regional air districts operate numerous air quality monitoring stations throughout the state to collect data used to measure regional pollutant concentrations to determine the level of attainment with the standards. CARB develops a State Implementation Plan (SIP) which incorporates local nonattainment plans developed by air districts for regions found to be in nonattainment with the standards. The attainment plans are required to achieve a minimum five percent annual reduction in the emissions of nonattainment pollutants unless all feasible measures have been implemented. The air districts are responsible for assuring that both federal and state standards are attained and maintained within their regions.

Regional Air Quality Planning Framework

The 1976 Lewis Air Quality Management Act established SCAQMD and other air districts throughout the State. The Federal CAA Amendments of 1977 required that each state adopt an implementation plan outlining pollution control measures to attain the Federal standards in nonattainment areas of the state.

CARB coordinates and oversees both State and Federal air pollution control programs in California. CARB oversees activities of local air quality management agencies and is responsible for incorporating AQMPs for local air basins into a State Implementation Plan (SIP) for USEPA approval. CARB maintains air quality monitoring stations throughout the State in conjunction with local air districts. Data collected at these stations are used by CARB to classify air basins as "attainment" or "nonattainment" with respect to each pollutant and to monitor progress in attaining air quality standards. CARB has divided the State into 15 air basins. Significant authority for air quality control within them has been given to local air districts that regulate stationary source emissions and develop local nonattainment plans.

SCAQMD Air Quality Management Plan

SCAQMD is required to promulgate an AQMP that will bring the area into attainment for all nonattainment pollutants. The most recent plan was approved by SCAQMD Governing Board on June 1, 2007. The AQMP included attainment plans for both annual and 24-hour $PM_{2.5}$ as well as 8-hour ozone. In subsequent meetings with CARB, AQMD Board Members and staff recommended more aggressive actions to reduce emissions from mobile sources, which contribute over 80 percent of the particulate matter pollution in the SCAB. CARB staff worked closely with SCAQMD to strengthen the plan to further reduce emissions. As a result of this joint effort, CARB staff identified several mobile source control strategies that could be strengthened together with local, federal and AQMP measures that resulted in NO_x reductions to assure attainment of the $PM_{2.5}$ standard in 2015. CARB Board adopted the State Strategy for the 2007 SIP and the 2007 South Coast AQMP as part of the SIP on September 27, 2007.

3.4 PROPOSED PROJECT AREA AIR QUALITY

3.4.1 Local Air Quality

SCAQMD, together with CARB, maintain ambient air quality monitoring stations in the SCAB. The air quality monitoring station closest to the site is the Anaheim Loara School (Pampas Lane) station, and its air quality trends are representative of the ambient air quality in the proposed project area. The pollutants monitored are CO, ozone, NO_2 , PM_{10} , and $PM_{2.5}$.

The Anaheim Loara School Station is located at 1630 Pampas Lane in Anaheim. The Anaheim monitoring station at Pampas Lane began operation in 2001, as its original location was off Harbor Boulevard in Anaheim. The location of the Anaheim air quality monitoring station with respect to the ARTIC facility is shown in Figure 3-1.

Figure 3-1 Location of Anaheim Air Quality Monitor

Table 3-3 shows the most recent five years of monitoring data, from 2004 through 2008. The ambient air quality data shows that NO₂ and CO levels are below the relevant State and Federal standards at the Anaheim Pampas Lane Station. Ozone and particulate matter levels show exceedances of both the state and federal standards.

Pollutant/			Maximum	Days Exceeding	
Period	Standard	Year	(ppm)	State Standard	Federal Standard
Ozone 1-hour	State: 0.09 ppm Federal: revoked	2004	0 120	14	-
		2005	0.095	1	-
		2006	0.113	6	-
		2007	0.127	2	-
		2008	0.105	2	-
Ozone 8-hour	State: 0.070 ppm Federal: 0.075 ppm	2004	0.098	50	29
		2005	0.078	8	2
		2006	0.089	5	3
		2007	0.100	7	1
		2008	0.086	10	5
	State: 9.0 ppm Federal: 9 ppm	2004	4.09	0	0
Carbon Monoxide (CO) 8-hour		2005	3.27	0	0
		2006	2.90	0	0
		2007	2.91	0	0
		2008	3.44	0	0
Respirable Particulate Matter (PM ₁₀) 24-hour	State: 50 ug/m3 Federal: 150 ug/m3	2004	74.0	7	0
		2005	65.0	3	0
		2006	104.0	7	0
		2007	489.0	6	1
		2008	61.0	3	0
Fine Particulate Matter (PM _{2.5}) 24-hour	State: N/A Federal: 35 ug/m3	2004	58.9	-	20
		2005	54.7	-	13
		2006	56.2	-	7
		2007	79.4	-	14
		2008	67.8	-	13
Nitrogen Dioxide (NO ₂) 1-hour	State: 0.18 ppm Federal: 0.100 ppm (98 th percentile)	2004	0.122	0	-
		2005	0.089	0	-
		2006	0.114	0	-
		2007	0.086	0	-
		2008	0.093	0	-

Table 3-3 – Air Quality Monitoring Summary 2004-2008Anaheim Pampas Lane Monitoring Station

Source: CARB Air Quality Data Statistics, data after 2008 is considered preliminary.

ppm: parts per million; μ g/m3: micrograms per cubic meter

Monitor Location: Anaheim Loara School Station, 1630 Pampas Ln, Anaheim CA 92802

3.5 THRESHOLDS OF SIGNIFICANCE

According to Appendix G of the CEQA Guidelines, a project would normally have a significant effect on the environment if the project would:

- Conflict with or obstruct implementation of the applicable air quality plan.
- Violate any air quality standard or contribute substantially to an existing or projected air quality violation.
- Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is nonattainment under an applicable Federal or State ambient air quality standard (including releasing emissions which exceed quantitative thresholds for ozone precursors).
- Expose sensitive receptors to substantial pollutant concentrations.
- Create objectionable odors affecting a substantial number of people.

3.5.1 South Coast Air Quality Management District Thresholds

CEQA allows for the significance criteria established by the applicable air quality management or air pollution control district to be used to assess impacts of a project on air quality. SCAQMD has established emission quantity thresholds of significance for air quality for construction activities and project operation as shown in Table 3-4.

Air Pollutant	Construction Phase	Operational Phase	
Reactive Organic Gases (ROG)	75	55	
Carbon Monoxide (CO)	550	550	
Nitrogen Oxides (NOx)	100	55	
Sulfur Oxides (SOx)	150	150	
Particulate Matter (PM ₁₀)	150	150	
Particulate Matter (PM _{2.5})	55	55	

Table 3-4SCAQMD Significance Thresholds (Pounds per Day)

In addition to the daily emission thresholds listed above, projects are also subject to the ambient air quality standards. These are addressed though an analysis of localized CO impacts. The California 1-hour and 8-hour CO standards are:

- 1-hour = 20 parts per million
- 8-hour = 9 parts per million

The significance of localized project impacts depends on whether ambient CO levels in the vicinity of the project are above or below State and Federal CO standards. If ambient levels are below the standards, a project is considered to have significant impacts if project emissions results exceed one or more of these standards. If ambient levels already exceed a State or Federal standard, then project emissions are considered significant if they increase ambient concentrations by a measurable amount. SCAQMD defines a measurable amount as 1.0 ppm or more for the 1-hour CO concentration or 0.45 ppm or more for the 8-hour CO concentration.

For TACs, SCAQMD has established an ambient impact threshold of not causing more than 10 in a million increased cancer risk or non-cancer health effects with a hazard index greater than 1.0.

3.5.2 SCAQMD Interim Greenhouse Gas Threshold of Significance

SCAQMD has established an interim GHG Significance Threshold on December 5, 2008 for projects in which they are the lead agency for CEQA. The threshold is 10,000 metric tones per year (MT/yr) of carbon dioxide equivalents (CO_2e). The threshold is compared to the total increase in operational emissions and the construction activity averaged over 30 years. Although this threshold is used for comparison purposes in this project, the threshold does not apply to CEQA projects where the lead agency is not SCAQMD.
4.1 OPERATIONAL PLANS

Potential emitting activities at ARTIC include the following:

- Construction;
- Onsite Operations with Increased Vehicle Trips; and
- Intersection and Traffic Flow Changes.

A baseline, no build scenario, was used to assess the current emissions from the existing Metrolink/Amtrak station. The difference in emissions from the no build scenario to ARTIC will be shown as the increase in emissions for the proposed project.

The following sections include a detailed description of the emitting activities that will occur during the proposed project.

4.2 BASELINE EMISSIONS

Baseline emissions for the no build scenario would include the emissions associated with the existing Metro station located west of the SR-57 freeway, north of the Stadium, and south of Katella Avenue, with The Grove to the west. The existing Metro station consists of a 6,814 square foot (sqft) facility, currently providing 405 parking spaces for passengers using automobiles to access the station site. The station parking demand approaches the allocated number of spaces.

Facility emissions were assessed using the Urban Emissions Model, 2007, version 9.2.4 (URBEMIS), which is used by SCAQMD to estimate emissions for land use development projects. The model uses CARB's Emission Factors, 2007 (EMFAC2007) model for on-road vehicle emissions and CARB's OFFROAD2007 model for off-road vehicle emissions. The Anaheim Metrolink/Amtrak Station was modeled using the blank land use category, with user inputs to define the project. A 6,820 sqft Metro station was added to the model and used with the 405 parking spaces to calculate the daily trip rate, assuming two trip endpoints for arrival and departure. The calculated trip rate of 118.77 trips, per 1,000 sqft, per day was used for the model assessment. Emissions for the Anaheim Metrolink/Amtrak Station are summarized in Table 4-3, with the detailed URBEMIS model results provided in Appendix B.

4.3 CONSTRUCTION EMISSIONS

Construction of ARTIC is scheduled to begin in the spring of 2011, with final construction scheduled to conclude in the fall of 2013.

Construction emissions were estimated using URBEMIS and the Road Construction Emissions Model, July 2009, Version 6.3.2 (RCEM) provided by the Sacramento Metropolitan Air Quality Management District. The following sections define the construction sequences with included activities and the anticipated schedule.

4.3.1 Construction of New Intermodal Terminal

The main construction for the new intermodal terminal will include demolition, mass grading, fine grading, excavation, building construction, paving, and architectural coating. The URBEMIS model will be used to assess the construction emissions based on the land use data entered, the duration on each construction sequence and the equipment used. The detailed model inputs and results are provided in Appendix A.

Demolition of the existing buildings and parking area will occur first. This will include 2.2 acres of parking area south of the LOSSAN corridor and the remaining 13.8 acres reserved for the intermodal terminal, civic space, drop-off areas, and parking. The demolition sequence is scheduled to occur over a period of four months. Emissions from demolition will include heavy equipment tailpipe emissions, worker trip emissions, and fugitive dust emissions.

Excavation for the terminal building will include removal of approximately 80,000 cubic yards of soil. The excavation phase will occur over a five-month period. Emissions from excavation include heavy equipment tailpipe emissions, worker trip emissions, truck travel to haul soil offsite, and fugitive dust emissions.

The grading phase will encompass the entire 16-acre site and is scheduled to occur over a six-month period. Emissions from grading include heavy equipment tailpipe emissions, worker trip emissions, and fugitive dust emissions.

Construction for ARTIC includes a 310,000 square-foot Intermodal Terminal, 86,000 sqft of platforms, and 12,000 sqft for a Stadium Pavilion. The Intermodal Terminal includes operations, bus waiting and boarding areas, and convenience retail and food

services. The construction sequence will occur over a period of fourteen months. Emissions from construction include heavy equipment tailpipe emissions, worker trip emissions, landscaping emissions, and architectural coating.

Site finishing, hardscape, and paving for ARTIC includes the remainder of the site area. Finish grading and preparation of the site will occur for two months. Paving will occur over a three-month period. Emissions from paving and landscape finishing include worker trips, paving equipment emissions, pavement off-gas emissions, and landscaping equipment emissions.

4.3.2 Construction of New Stub-End Track

The main construction sequences for the new sub-end track and platform will include minor track demolition, grading or site clearing, new tracks, and berms. RCEM will be used to assess emissions from the railway track construction, since the construction of the foundation for railway tracks is similar to the construction of roads.

Improvements to the track will include a new 2,500-ft stub-end track reaching from the current station to just west of the Santa Ana River. Construction of the railway tracks and platforms is scheduled to occur over at last seven months. Emissions from this construction activity include worker trips, heavy equipment emissions, utility modification, soil placement and fugitive dust. During construction, a modular temporary station will be used that will not have any impact on air emissions.

4.3.3 Roadway Improvement Activities

Several roadway construction/improvement activities are included in the proposed project assessment. These include lowering of Douglass Road by eight feet, widening of Douglass Road to eight lanes, construction of a sidewalk along Douglass Road, construction of a new Douglass Road rail bridge, and the addition of a right turn lane on Katella Avenue. The RCEM will be used to assess these project emissions.

The Douglass Road vertical profile will be lowered by eight feet from the existing roadway surface to provide additional clearance necessary for the widened railroad bridge. Regrading of approximately 1,100 feet north and south of the railroad bridge along Douglass Road will be necessary to meet the grade requirements. Douglass Road will remain four lanes wide from Angels Stadium to the bridge and will be widened to eight lanes as it approaches the intersection at Katella Avenue. Road widening will

include demolition of two existing buildings near the intersection and some rework of the adjacent parking area for the remaining business area. Improvements to Douglass Road are anticipated to occur over a two-month period. Emissions from the Douglass Road improvement will include worker trips, roadway regrading, heavy equipment emissions, paving emissions, and fugitive dust. These emissions were assessed using the road widening project type in the RCEM model.

An 800-foot long pedestrian sidewalk will be constructed along one side of Douglass Road under the SR-57 overpass. Construction of the sidewalk is anticipated to occur over a one-month period. Emissions from the sidewalk construction will include minimal equipment, concrete placement, and fugitive dust.

The Douglass Road Bridge will be demolished and reconstructed in three sequences over a thirteen-month period. The new bridge will be three tracks wide to accommodate the new rail stub-end track. Emissions from the bridge reconstruction will include worker trips, demolition and heavy equipment emissions, paving emissions, and fugitive dust. The bridge construction project type was used to model the emissions in the RCEM model.

Katella Avenue will be widened by five feet to add a right turn lane in the east-bound lanes for traffic turning into ARTIC. Improvements to Katella Avenue are anticipated to occur over a two-month period. Emissions from the Katella Avenue improvement projects will include worker trips, heavy equipment emissions, paving emissions, and fugitive dust.

4.3.4 Utility Relocation and Modification

Construction along Douglass Road and within the project area will require some reconfiguration of underground utilities. Utilities, drainage, and sub-grade trenching activities are included and calculated concurrently with each construction activity using either URBEMIS or RCEM.

4.3.5 Total Construction Emissions

Total construction emissions for the development of the project site and intermodal terminal were assessed using URBEMIS for each year that construction activities would occur. Road, sidewalk, bridge, and railroad track construction projects were assessed using RCEM for each specific sequence. Intermodal terminal construction will occur in

2011, 2012, and 2013, while road construction projects are anticipated to occur mainly in 2012 and 2013. The construction year with the worst case (or maximum) emissions for all projects is 2012. Emissions for the intermodal terminal construction are shown in Table 4-1.

Intermodal Terminal Construction	NO _x (lb/day)	ROG (lb/day)	CO (lb/day)	SO _x (lb/day)	PM ₁₀ (Ib/day)	PM _{2.5} (lb/day)	CO ₂ (Ib/day)
2011 Max Emissions	70.7	7.6	31.7	0.02	44.4	11.4	8,741.7
2012 Max Emissions	86.5	9.7	57.1	0.1	45.0	12.0	12,977.8
2013 Max Emissions	47.5	51.8	47.9	0.05	43.8	10.8	9,212.3

Table 4-1Intermodal Terminal Construction Worst-Case Daily Emissions

Note: The emission calculations and URBEMIS model results are shown in Appendix A.

The total proposed project emissions will include both the intermodal terminal construction and the road improvement projects. The total project emissions were used in comparison to SCAQMD significance thresholds for project construction. The total project emissions are shown in Table 4-2 and further details are provided in Appendix A.

 Table 4-2

 Total Proposed Project Construction Emissions from All Stages – Unmitigated

Construction Activity	NO _x (lb/day)	ROG (lb/day)	CO (lb/day)	SO _x (lb/day)	PM ₁₀ (Ib/day)	PM _{2.5} (Ib/day)	CO ₂ (Ib/day)
Intermodal Terminal	86.5	51.8	57.1	0.1	45.0	12.0	12,977.8
Stub-end Track	10.5	1.4	7.6	<1	2.6	1.0	1,258.3
Douglass Road Bridge	19.9	2.4	10.7	<1	1.9	1.1	2,284.0
Douglass Road Widening	17.5	2.5	11.7	<1	3.0	1.3	2,012.5
Douglass Road Sidewalk	1.4	0.4	2.1	<1	0.6	0.2	251.5
Katella Ave Right Turn Lane	15.2	1.8	7.8	<1	1.6	0.8	1,541.60
Total Proposed Project – All Stages	151.0	60.3	96.9	<1	54.7	16.4	20,325.7
Significance Thresholds	100	75	550	150	150	55	-

Construction Activity	NO _x	ROG	CO	SO _x	PM ₁₀	PM _{2.5}	CO ₂
	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(Ib/day)	(Ib/day)
Significant?	Potentially	No	No	No	No	No	No

Notes:

1. The construction URBEMIS model and RCEM calculation results are shown in Appendix A.

2. This represents a worst case where all stages of construction occur simultaneously for comparison to significance thresholds. The summary table in Appendix A provides the breakout by year.

3. RCEM model does not calculate SO_x emissions; assumed to be <1 lb/day based on URBEMIS results.

The total project emissions do not exceed the significance thresholds for construction, with the exception of NO_x . Maximum unmitigated NO_x emissions from all construction sequences was estimated at 151 lbs/day, which potentially exceeds the threshold. Mitigation of NO_x emissions below the significance thresholds can occur through considerations of schedule and the addition of controls as discussed in Section 8.0.

4.4 ON-SITE OPERATIONAL EMISSIONS

4.4.1 On-Site Operational Criteria Pollutant Emissions

Operational emissions were assessed to included criteria pollutants and greenhouse gases. The details of the calculations are shown in Appendix B.

On-Site Operational Emissions include:

- ARTIC operations;
- An increase in vehicle trips per day; and
- A emergency backup generator

ARTIC operation emissions were also assessed using URBEMIS, using SCAQMD database for vehicle emission factors (i.e., EMFAC). ARTIC was modeled using the "blank land use" category, as a 322,000 sqft building. The platforms were also modeled using the "blank land use" category, as a 42,000 sqft structure. Within the terminal building, a 5,000 sqft "convenience market" category was included to represent the retail area located and an 18,000 sqft "fast food restaurant" category was used to model the food and concessions area. The 30,000 sqft civic area was modeled using the "city park land use" category. Potential emission sources modeled include electricity and natural gas usage for building heat and power, and convenience retail and food services. Emissions from these land use sources include criteria pollutants and greenhouse gases.

The vehicle trip rates for both the existing station and the proposed ARTIC facility were provided by the traffic study performed for the project (Linscott, Law and Greenspan Engineers, 2010) and included in the URBEMIS model runs. Based on the traffic study, users of the existing Metrolink/Amtrak station average 1,015 daily trips, and 4,714 daily trips are expected for the new ARTIC facility. Emissions for the proposed ARTIC operations are summarized in Table 4-3, with the detailed URBEMIS model results provided in Appendix B.

Operational Activity	NO _x (lb/day)	ROG (lb/day)	CO (lb/day)	SO _x (lb/day)	PM ₁₀ (Ib/day)	PM _{2.5} (Ib/day)
Stationary Source (Electricity, Natural Gas Usage, Landscaping)	2.75	1.25	9.96	0.00	0.03	0.03
Emergency Backup Generator ⁽²⁾	1.54	0.93	8.02	0.57	0.22	0.17
Mobile Sources	46.43	29.69	323.78	0.37	3.96	2.54
Total ARTIC Operational	50.72	31.87	341.76	0.94	4.21	2.74
Baseline Operations – Existing Metrolink/Amtrak Station	-8.32	-5.42	-72.76	-0.10	-0.85	-0.55
Difference in Emissions (ARTIC – Existing Station)	42.40	26.45	269.00	0.84	3.36	2.19
SCAQMD Significance Threshold	55	55	550	150	150	55
Significant?	No	No	No	No	No	No

Table 4-3ARTIC Operational Daily Emissions

Note: 1. Detailed emission calculations are shown in Appendix B.

2. Emergency generator modeled conservatively at one hour per day

Additionally, a 1,000-kW emergency power backup generator will be available. Daily emissions conservatively assumed testing would occur for a maximum of one hour on a given day, although typical testing and maintenance operations are anticipated to be 15 minutes per week. Emissions from the emergency generator were assessed using emission factors based on CARB Off-Road Diesel Engine Standards for criteria pollutants and AP-42 emission factors for greenhouse gases. Using PM₁₀ emissions as

a surrogate indicator for diesel particulate matter, TAC emissions are considered negligible and insignificant.

4.4.2 On-Site Operational Greenhouse Gas Emissions

GHG emissions for the proposed project are the result of the use of electricity, natural gas combustion, and increased vehicles exhaust. URBEMIS and RCEM were used to quantify the GHG emissions from the operational on-site sources of the proposed ARTIC facility, including the terminal building and the emergency generator, as well as the temporary construction emissions. CO₂e was calculated based on the total operational emissions plus construction emissions amortized over 30 years (per SCAQMD guidance). The emissions shown in Table 4-4 demonstrate that the proposed project is below the GHG significance thresholds.

Operational Activity	CO ₂ (Ib/day)	CO ₂ e (MT/yr)
Stationary Source (Electricity, Natural Gas Usage, Landscaping)	3,178.8	526.3
Emergency Backup Generator	1,624.0	38.3
Mobile Sources	39,434.8	6,528.9
Construction ⁽¹⁾	-	197.3
Total Proposed Project Operational	44,237.6	7,093.5
Existing Metrolink/ Amtrak Station	-9,438.3	-1,562.6
Difference in Emissions (Proposed Project – Existing Station)	34,799.3	5,530.8
SCAQMD Significance Threshold	_	10,000 ⁽¹⁾
Significant?	_	No

 Table 4-4

 Proposed Project Operational Greenhouse Gas Emissions

1. Per SCAQMD CEQA interim GHG guidance, emissions from construction activity is averaged over 30 years.

4.5 ADDITIONAL TRAFFIC EMISSIONS

The proposed project will increase the number of parking spaces available for persons utilizing the transportation services. In addition, there may be increased traffic flow and possible congestion at various intersections near the proposed project site. The potential for increased traffic flow and possible congestion to cause an adverse ambient air quality impact was assessed as described in Section 6.3.2 of this AQIA.

5.0 AIR QUALITY REGULATORY REQUIREMENTS AFFECTING OPERATIONS AND EMISSIONS

ARTIC is located in SCAQMD. ARTIC is subject locally to SCAQMD rules and regulations. The applicable CARB and USEPA regulations must be followed. The applicability of the various rules and regulations to the proposed project will be discussed in this section.

5.1 CONSTRUCTION EMISSIONS

Construction activities are required to comply with applicable SCAQMD prohibitions (Regulation IV) and the following source-specific standards:

Rule 401 – Visible Emissions prohibits the emission of air contaminants that result in exceedances of the opacity limits for more than three minutes in any one hour. Diesel soot from un-tuned construction equipment and vehicles or excessive fugitive dust from the site may cause visibility issues.

Rule 402 – Nuisance states that air contaminant emissions from a given source shall not cause "injury, detriment, nuisance, or annoyance" to any large number of people or create an endangerment to "comfort, repose, health or safety" of any such people. Excessive emissions of regulated pollutants or odors from equipment or construction activities such as asphalt paving and architectural coating are typical examples of nuisance air contaminants

Rule 403 – Fugitive Dust targets excessive amounts of local atmospheric dust created from activities on man-made, unpaved areas, such as an active construction site. Dust can originate from large exposed areas where work is occurring or from vehicles driven through the site. Several dust control measures are listed in the rule, including the following:

- No visible dust emissions beyond the property line
- No dust emissions exceeding 20% opacity anywhere on the property
- No off-site increase in ambient PM₁₀ concentrations greater than 50 ug/m3
- No track-out exceeding 25 feet from the property
- Wheel washing or paving to eliminate track out
- Employment of a dust control supervisor who has the authority to expeditiously employ sufficient dust mitigation measures to ensure compliance
- Watering to maintain soil moisture at 12% on haul roads and other active unpaved surfaces that are not chemically stabilized

- Watering to prevent visible dust more than 100 feet from any earth moving or mining activity
- Watering, dust suppressants, and/or re-vegetation of inactive disturbed areas to prevent wind driven dust
- Daily watering and 15 mph speed limit on unpaved roads
- Chemical stabilization, watering, covering, and/or enclosing storage piles.

5.2 OPERATIONAL EMISSIONS

5.2.1 New Source Review

The purpose of New Source Review (NSR) is to prevent emissions from new, modified or relocated facilities from causing an exceedance in the region's attainment of the NAAQs. In SCAQMD, Regulation XIII, which implements NSR, governs projects that result in an emissions increase of any nonattainment air pollutant associated with a stationary source of emissions. If certain thresholds are exceeded, projects may be required to mitigate emissions using controls or obtain emission offsets.

For the proposed project, relocation of the intermodal to a new location within the air district will primarily result in increases to air emissions associated with mobile sources. The only permitted source of emissions expected will be a 1000 kilowatt (KW) emergency backup generator with an USEPA Certified Tier 4 engine, whose planned operation typically will be one hour per month for maintenance and testing purposes.

5.2.2 New Source Performance Standards

New Source Performance Standards (NSPS) refer to technology-based standards that were developed for specific categories of stationary sources. These standards found in 40 Code of Federal Regulations (CFR) Part 60 are intended to promote use of the best air pollution control technologies by comparing available technologies based on cost of incremental pollution reduction and any other non-air quality, health, and environmental impact and energy requirements. Since the proposal of NSPS, USEPA has promulgated 88 standards for new, modified and reconstructed affected facilities in specific source categories such as manufacturers of glass, cement, rubber tires and wool fiberglass.

The NSPS for compression ignition internal combustion engines will be applicable to the emergency generator planned for ARTIC. ARTIC will include a 1,000 KW diesel-fueled emergency generator. This engine (termed a compression ignition internal combustion

engine) will be regulated by the NSPS promulgated at 40 CFR Part 60, Subpart IIII (40 CFR 4200 et seq.). Subpart IIII specifies emission limits for emissions from the compression ignition internal combustion engine of 1.2 grams per horsepower hour NO_x and 0.11 grams per horsepower hour PM_{10} (40 CFR 4205(d)) with recordkeeping and labeling requirements. The manufacturer of the engine is required to certify that the engine does not exceed the emission limits required by this regulation.

5.2.3 AB2588 Hot Spots Program

In 1987, the California legislature passed Assembly Bill (AB) 2588, the Air Toxics "Hot Spots" Information and Assessment Act. AB 2588 requires stationary sources of air pollutants to periodically report the type and quantities of specified TACs that are routinely or intermittently released. The collected data is used by CARB to assess potential health risks caused by certain facilities on the surrounding population. Facilities subject to AB 2588 are those that emit more than ten tons per year of criteria pollutants other than carbon monoxide.

The only device at ARTIC that would potentially be subject to AB 2588 is the emergency generator. Emissions from this generator are much less than the applicable thresholds and AB 2588 requirements would not apply.

5.2.4 CARB Diesel Regulations

In 1998, after a 10-year scientific assessment process, CARB identified diesel exhaust particulate as a TAC. To follow up the listing of diesel exhaust particulate, CARB approved a "Risk Reduction Plan to Reduce Particulate Matter Emissions from Diesel-Fueled Engines and Vehicles" ("the Plan") in 2000 that leads toward control measure requirements. CARB's regulatory goal is to make diesel engines as clean as possible by establishing state-of-the-art technology requirements or emission standards to reduce diesel particulate emissions. The goal of the Plan is to reduce diesel particulate matter emissions and the associated health risk by 75 percent by 2010 and 85 percent by 2020. CARB only has authority to regulate equipment and vehicles that operate within California as USEPA has not granted authority to regulate mobile sources that cross state lines.

CARB has promulgated several regulations with the objective of reducing diesel particulate matter and other criteria pollutants from diesel equipment and commercial vehicles. Much of the construction equipment that will be operated for this project is

diesel powered and would be governed by the Off-Road Diesel or the On-Road Heavy-Duty Diesel Vehicle regulations. The Off-Road Diesel regulation pertains to equipment with engines 25 brake horsepower or greater that are not licensed to be driven on road. Heavy-Duty Diesel regulations pertain to licensed vehicles that are rated greater than 14,000 pounds gross vehicle weight rating. The equipment owner is responsible for managing this equipment such that emissions meet specified fleet averages required by CARB. For ARTIC, the equipment owner would be the construction contractor(s).

5.2.5 GHG Regulations

This subsection reviews the pertinent greenhouse gas regulations that affect ARTIC. Regulations plus additional actions by the California Attorney General's office, the California Public Utilities Commission, the Governor, and other California legislative activities are aimed at reducing greenhouse gas emissions.

CEQA guidance requires projects to consider both direct emissions (those associated with the project itself) and indirect emissions (those emissions that result from the facility, but which are not immediately generated on site). Direct emissions for the proposed project would include natural gas combustion from heating, diesel exhaust emissions from transit vehicles, the emergency generator, and increased exhaust due to commuter vehicles. Indirect emissions would primarily be due to electricity usage.

Federal

In October 1993, President Clinton announced his "Climate Change Action Plan," with the goal of returning GHG emissions to 1990 levels by the year 2000. This was to be accomplished through 50 initiatives, relying on innovative voluntary partnerships between the private sector and government aimed at producing cost-effective reductions in GHG emissions.

Although USEPA has historically maintained that it did not have authority to regulate such emissions, more recently, on March 10, 2009, it released a proposed rule that would create a comprehensive national system for reporting emissions of CO₂ and other GHGs produced by major sources in the United States. This reporting system would create the first comprehensive inventory of GHG emissions in the United States.

State

California Code of Regulations Title 24 Part 6

California's Energy Efficiency Standards for Residential and Nonresidential Buildings was first established in 1978 in response to a legislative mandate to reduce California's energy consumption. The standards, located in California Code of Regulations (CCR) Title 24 Part 6, are updated periodically to allow consideration and possible incorporation of new energy efficiency technologies and methods. Energy efficient buildings require less electricity. Overall GHG emissions will decrease as energy efficiency is increased.

California Assembly Bill 1493

Enacted on July 22, 2002, California Assembly Bill 1493 required CARB to develop and adopt regulations that reduce GHG emitted by passenger vehicles and light-duty trucks. Regulations adopted by CARB would apply to 2009 and later model year vehicles. When implemented, Assembly Bill 1493 will result in substantial reductions in transportation-based emissions throughout the State.

California Assembly Bill 32

In 2006, the California State Legislature adopted AB 32, the California Global Warming Solutions Act of 2006. AB 32 focuses on reducing GHG emissions from stationary sources in California.

AB 32 requires CARB to adopt rules and regulations that would reduce GHG emissions, equivalent to the statewide levels existing in 1990, by 2020. As a result, CARB published a list of discrete early action GHG emission reduction measures that can be implemented by 2010. The law further required that measures achieve the maximum technologically feasible and cost-effective reductions in GHGs from sources or categories of sources to achieve the statewide GHG emissions goal for 2020.

Senate Bill 97

Senate Bill 97, enacted in August 2007, directs the Office of Planning and Research (OPR) to propose CEQA Guidelines advising local agencies how to mitigate the impacts of GHG emissions. OPR released its preliminary draft CEQA guideline amendments in January 2009. The proposed Guidelines directs lead agencies to adopt their own

individual standards of significance provided those standards and conclusions as to the significance of a project's cumulative climate change impacts are supported by substantial evidence and are consistent with available guidance and current CEQA practice.

Local

SCAQMD Interim GHG Significance Threshold

SCAQMD established an interim GHG Significance Threshold on December 5, 2008 for projects in which SCAQMD is the lead agency for CEQA. The threshold is 10,000 metric tons per year (MT/yr) of carbon dioxide equivalents (CO_2e). The threshold is compared to the total increase in operational emissions as a result of the proposed project and the construction emissions from the proposed project averaged over 30 years.

5.2.6 Transportation Conformity

The concept of transportation conformity was introduced in the 1977 amendments to the CAA, which includes a provision to ensure that transportation investments conform to the SIP in meeting the NAAQS. Conformity requirements were made substantially more rigorous in the federal CAA amendments of 1990, and the transportation conformity regulation that details implementation of the conformity requirements was first issued in November 1993, with a number of subsequent amendments. The most recent complete set of amendments to the Transportation Conformity Rule is found at 40 CFR Part 51 (Subparts T and W) and Part 93 (Subpart A).

Transportation conformity is considered the project level (as opposed to a transportation plan or similar process), unless exempted by regulation. A project is subject to the transportation conformity regulations if it is located in a federal nonattainment or maintenance area and is either (a) funded, approved, or implemented by the Federal Highway Administration (FHWA) or Federal Transit Authority (FTA) or it is (b) "regionally significant." A regionally significant project means "a transportation project (other than an exempt project) that is on a facility which serves regional transportation needs (such as access to and from the area outside of the region, major activity centers in the region, major planned developments such as new retail malls, sports complexes, etc., or transportation terminals as well as most terminals themselves) and would normally be included in the modeling of a metropolitan area's transportation network, including at a minimum all principal arterial highways and all fixed guideway transit facilities that offer an alternative to regional highway travel" (40 CFR 93.101). Exempt projects are specified in 40 CFR 93.126, and include reconstruction or renovation of transit buildings and structures and rehabilitation or reconstruction of track structures, track, and track bed in existing rights of ways.

The proposed project is a rehabilitation/reconstruction of existing transportation facilities and thus is exempt from federal transportation conformity.

5.2.7 General Conformity

General conformity applies to any project (whether or not transportation related) that is located in a federal nonattainment or maintenance area and (a) is not funded, approved, or implemented by FHWA or FTA, (b) involves a "federal action", and (c) emits more than threshold quantities of nonattainment pollutants (40 CFR 51.853). In SCAQMD, the threshold quantities of federal nonattainment pollutants are 10 tons per year of VOC or NO_x for ozone nonattainment, 70 tons per year PM₁₀ for PM₁₀ nonattainment, and 100 tons per year of PM_{2.5}, NO₂, SO₂, or VOC for PM_{2.5} nonattainment. Emissions from the proposed project are less than these thresholds and General Conformity does not apply.

5.2.8 SCAQMD Rules

SCAQMD regulates emissions from stationary sources through the permitting process and, pursuant to SCAQMD Rules 201 and 212, requires permits to construct (PTC) and a permit to operate for all stationary equipment that has the potential to release air contaminants. Most of the activities associated with ARTIC do not require a PTC, as PTCs are not required for mobile sources. Any new or modified sources are subject to SCAQMD NSR, Regulation XIII for criteria pollutants. The major NSR requirements include modeling, emission offsets, and installation of best available control technology (BACT).

The NSR requirements for toxics and non-criteria pollutants emissions are enforced through Regulation XIV. SCAQMD Rule 1401 requires that the maximum increase of

individual cancer risk due to TAC emissions from a new, relocated, or modified stationary source permit unit be less than one in a million (1×10^{-6}) at any residential or worker receptors, or 10 in a million (1×10^{-5}) if the permit unit is installed with BACT for toxics. The increase in total chronic hazard index and total acute hazard index because TAC emissions must be less than one.

The new facility will have a new 1000 kW emergency backup generator that will be regulated by Rule 1470. For a new stationary emergency generator, the rule requires diesel particulate matter emissions to meet the specified Off-Road Compression Ignition Engine Standard for off-road engines with the same maximum rated power (Title 13 CCR Section 2423). For generator engines greater than 750 brake horsepower, the engine must have PM_{10} emissions less than or equal to 0.7 grams per brake horsepower-hour, or the engine must be certified to USEPA Tier 4 Interim standards.

In addition to the regulations discussed above, the ongoing operations are required to comply with applicable SCAQMD prohibitions per Regulation IV. See Section 5.1 for a detailed discussion on the applicable source-specific standards.

6.0 LOCAL AIR QUALITY IMPACT OF PROPOSED PROJECT

6.1 AMBIENT AIR QUALITY SIGNIFICANCE THRESHOLDS

SCAQMD provides both emissions and ambient air quality impact significance thresholds for criteria pollutants under CEQA. The emission thresholds are shown in Table 6-1, and the ambient air quality impact thresholds are shown in Table 6-2. Specific ambient air quality impact thresholds are published only for NO₂, PM₁₀, PM_{2.5}, sulfate, and CO.

Table 6-1

CEQA Ambient Air Quality Emission Significance Thresholds for Criteria Pollutants

Air Pollutant	Construction Sequence	Operational Phase
Reactive Organic Gases (ROG)	75	55
Carbon Monoxide (CO)	550	550
Nitrogen Oxides (NOx)	100	55
Sulfur Oxides (SOx)	150	150
Particulate Matter (PM ₁₀)	150	150
Particulate Matter (PM _{2.5})	55	55

Source: SCAQMD CEQA Handbook (SCAQMD, 1993)

Table 6-2

CEQA Ambient Air Quality Impact Significance Thresholds for Criteria Pollutants

		Ambient Air Quality
Pollutant	Averaging Time	Threshold
NO ₂	1-hour Annual	0.18 ppm 0.03 ppm
PM ₁₀	24-hour (construction) 24-hour (operation) Annual	10.4 ug/m ³ 2.5 ug/m ³ 1.0 ug/m ³
PM _{2.5}	24-hour (construction) 24-hour (operation)	10.4 ug/m ³ 2.5 ug/m ³
Sulfate	24-hour	1 ug/m ³
CO	1-hour 8-hour	20 ppm 9.0 ppm

Source: SCAQMD Rule 1303 and SCAQMD CEQA Handbook, 1993

For TACs and odor, SCAQMD significance thresholds are an incremental (i.e., an increase solely related to the proposed project) potential cancer risk of more than 10 in a million, a potential cancer burden of more than 0.5 excess cancer cases in areas that have over 1 million exposed persons, and a hazard index for non-cancer effects of more than 1.0. Significant odors are those that pose a nuisance pursuant to SCAQMD Rule 402.

The potential for the proposed project emissions and ambient air quality impact to exceed these significance thresholds is discussed in the following sections.

6.2 CONSTRUCTION IMPACTS

Construction activities from the proposed project will yield criteria pollutant emissions, as shown in Section 4.3 of this AQIA. Emissions for all of the criteria pollutants will be less than the significance thresholds with mitigation measures in affect (to be discussed in Section 8). Since construction is a temporary operation and emissions are less than significant for particulate matter and CO, ambient air quality impacts were not modeled. It is not anticipated that ambient air quality thresholds from construction activities will be exceeded.

6.3 WORST CASE CRITERIA POLLUTANT IMPACTS

6.3.1 Onsite Operational Impacts

Operations of the proposed project will yield criteria pollutant emissions, as shown in Section 4.4 of this AQIA. Emissions for all of the criteria pollutants will be less than the significance thresholds. Potential onsite operational impacts were not modeled, since the maximum daily emissions do not exceed the significance thresholds. Since emissions are less than the significance thresholds for the proposed project, ambient air quality thresholds are not anticipated to be exceeded.

6.3.2 CO Hot Spot Assessment from On-Road Vehicles

An analysis was conducted to assess the potential ambient air quality impacts of CO from traffic affected by the project. The City (David Kennedy, 2010) is referenced as the basis for traffic data used for identifying affected intersections and evaluating CO Hotspots. Based on the Traffic Data, and access to the proposed project, the

intersection of Katella Avenue and Douglass Road was identified as having the greatest increase in trip generation due to the project. The contribution to the volume of vehicles due to the project is greatest at this intersection. The level of service (LOS) for this intersection was shown to degrade to LOS F by 2030 (which is shown to be mostly due to area growth regardless of the project). The project would not cause CO Hotspots at other intersections based on traffic data if the CO impacts at the Katella Avenue and Douglass Road intersection are not significant.

Consistent with the traffic study data, the assessment included a scenario for conditions of the ARTIC in year 2013 and a scenario for full additional ARTIC services in year 2030 with mixed use development. The CO Hotspots analysis was conducted using the CAL3QHC modeling program in accordance with SCAQMD CEQA Air Quality Handbook, the Transportation Project-Level Carbon Monoxide Protocol (CO Protocol) and EPA CAL3QHC user guide. The assumptions, model input and model output files are provided in Appendix C.

Emission factors were derived from the EMFAC2007 program, which used default parameters with the following program inputs:

- Geography: Orange County
- Average Temperature: 73°F
- Relative Humidity: 65%

A speed of two miles per hour (mph) was included in the EMFAC analysis in order to obtain representative CO emission factors for queuing vehicles, including light autos (i.e., taxis), and urban buses. The EMFAC program predicts zero emission for these vehicles types if a speed of zero mph is used. Because taxis and busses are a significant portion of the vehicle types that would access the site, utilizing a speed of two mph is considered more representative of the average fleet vehicle emission factors. The EMFAC input and output files are also provided in Appendix C.

CAL3QHC calculates only a 1-hour average concentration, assuming worst case hypothetical meteorology. The 1-hour concentration was converted to an 8-hour concentration by multiplying the 1-hour concentration by a persistence factor of 0.7, as recommended by SCAQMD for nonattainment areas. The area is currently designated as attainment for CO, and the recommended persistence factor is 0.6. As a

conservative approach, the nonattainment 1-hour to 8-hour persistence factor was chosen.

The maximum modeled CO impacts are summarized in Table 6-3. The impacts from the traffic are a small fraction of the overall impacts with background included. The project impacts at Year 2030 are lower than the no project impacts due to configuration of the intersection to accommodate the project. The resulting cumulative impacts with the project and background are less than 50% of the CAAQS. The project is therefore considered to have insignificant affects on CO impacts from traffic.

Maximum CO Impacts of Traffic at the Katella Avenue and							
Douglass Road Intersection							
vimum							

Table 6-3

Scenario	Maximum CAL3QHC Result (ppmv)	Ave. Time	Max Impact (ppmv)	Background ¹ (ppmv)	Total with Background (ppmv)	CAAQS (ppmv)	Percent of CAAQS w/o Background	Percent of CAAQS with Background
2013 no	0.30	1-hr	0.30	5.8	6.1	20	1.5%	31%
project 0.30	8-hr	0.21	3.9	4.1	9.0	2.3%	46%	
2013 w/	13 w/ 0.00	1-hr	0.60	5.8	6.4	20	3.0%	32%
ARTIC 0.60	8-hr	0.42	3.9	4.3	9.0	4.7%	48%	
2030 No	0.20	1-hr	0.30	5.8	6.1	20	1.5%	31%
Project 0.30	0.30	8-hr	0.21	3.9	4.1	9.0	2.3%	46%
2030 w/	0.20	1-hr	0.20	5.8	6.0	20	1.0%	30%
ARTIC	0.20	8-hr	0.14	3.9	4.0	9.0	1.6%	44%

1) Future background CO concentrations obtained from SCAQMD CEQA guidance at: <u>http://www.aqmd.gov/cega/handbook/CO/CO.html</u>

6.4 AIR TOXIC IMPACTS OF THE PROPOSED PROJECT

The most significant TAC emission related to construction is diesel exhaust particulate from construction equipment. Modeling shows that for the maximum year (i.e., 2012), PM_{10} from engine exhaust is 6.29 lbs per day, or less than five percent of the significance threshold. Construction is a temporary activity and the potential incremental cancer risk from construction activities is very small. (Potential cancer risks are large only when there is very long continuous exposure, on the order of tens of years). The incremental cancer risk that could be caused by construction activities is not expected to exceed the cancer risk significance thresholds. Likewise, the hazard indices are not expected to be exceeded.

Diesel particulate matter is also expected to be the most significant TAC emission related to the operations of buses and other diesel-fueled vehicles that will approach the facility on public roads and use the facility for loading and unloading passengers. Currently, buses use the existing streets and the Anaheim Amtrak/Metrolink Station. Although ridership will increase as a result of the proposed project, there is no large increase in the number of buses or mileage traveled by the buses. There are no sensitive receptors within about 0.4 miles of the proposed site, which is about the same distance to sensitive receptors as currently exists. Potential diesel particulate impacts drop off rapidly with distance from roadways. Since no large increases in the number and mileage of diesel fueled vehicles are anticipated and there are no sensitive receptors close to the proposed site, exceedance of the incremental TAC significance thresholds are not anticipated.

7.1 EXISTING AND FUTURE NON-PROJECT EMISSIONS AND IMPACTS IN THE PROJECT AREA

SCAB currently does not meet the air quality standards for ozone (including NO_2 and VOC) and particulate matter (including PM_{10} , and $PM_{2.5}$). NO_2 , VOC, PM_{10} , and $PM_{2.5}$ are considered nonattainment pollutants. The remaining criteria pollutants (CO, SO₂, lead) are attainment pollutants. The following logic is used to assess the potential for cumulatively considerable or significant air quality impacts.

- Construction emissions are not considered cumulatively considerable since various construction projects are not likely to occur at the same time and in close proximity to each other. Construction emissions are highly variable and localized. It is not likely for the combination of emissions to exceed the significance thresholds as long as the individual construction project emissions do not exceed the thresholds even if there are more than one construction projects occurring in close proximity to each other.
- 2. For the nonattainment pollutants, if the emissions from the proposed project alone are about 55 percent of the significance thresholds, as long as there are no planned future projects in the vicinity of the proposed project that would individually likely have relatively large emissions (e.g., a proposed electrical generating station or major new hospital or sports arena), the emissions are not considered cumulatively considerable. If there are some major projects in the vicinity that could have relatively large emissions, then the proposed project emissions and nearby projects would be considered cumulatively considerable and potentially cumulatively significant.
- 3. If emissions of attainment pollutants from the proposed project are less than the significance thresholds, the emissions are not considered cumulatively considerable unless there are a number of nearby projects that could cause the combination of emissions to exceed the significance thresholds.

7.1.1 Future Projects

Table 7-1 provides a list of anticipated future projects in the proposed project area. Several of the nearby future development projects involve construction associated with

expansion of existing business or building of new housing units in accordance with the adopted City of Anaheim General Plan. The emissions during construction from these development projects and the proposed project are primarily from fugitive dust emissions and construction equipment exhaust. Considering the temporary, highly variable, and localized nature of construction emissions, the proposed project emissions and potential emissions from other construction projects are not considered cumulatively significant.

		Potential Cumulative						
Name	Project Description	Impacts						
CITY OF ANAHEIM								
	The Platinum Triangle							
The Platinum	Location: southeastern section of the City	Air Quality						
Triangle Project	Site Size: 820 acres	Traffic						
	General Summary: expand the PTMU	i i unio						
	Overlay Zone and increase permitted							
	development intensities.							
	Status: Draft Subsequent EIR to be							
	circulated and public nearings to be neid in							
Stadium Lafta	Summer/Fail 2010.	Nono:						
Staulum Lons	Sito Sizo: 6.3 acros	dovelopment is						
	General Summary: 390 condominium units	complete						
	7 839 square foot restaurant and 2 820							
	square feet of retail. 61.9-units/acre.							
	Status: Completed in January 2007.							
Archstone	Location: 2150 South State College	None;						
Gateway	Boulevard	development is						
	Site Size: 8.44 acres	complete.						
	General Summary: 884 apartments on 20.81							
	acres; of which 352 units are on 8.44 acres							
	in Anaheim and 532 units on 12.37 acres in							
	the City of Orange.							
Ctadium Tawara	Status: Leasing/partially occupied.	Nanai						
Stadium Towers	Site Size: 2.02 seres	dovelopment is						
nelali Genilei	General Summary: 1/ 185 square foot retail	complete						
	center	complete.						
	Status: Completed in December 2006.							
Stadium Park	Location: 1551 East Wright Circle	Air Quality						
Apartments	Site Size: 4.25 acres							
	General Summary: 250 apartments							
	Status: Redesign to increase the number of							
	units approved.							

Table 7-1Possible Future Projects Near the Proposed Project

Nome	Dreiget Description	Potential Cumulative
Name	Project Description	Impacts
1818	Location: 1818 South State College	None;
(Former Element	Boulevard	development is
Pt)	Site Size: 3.35 acres	complete.
	General Summary: 265 apartments	
	Status: Completed.	
Park Viridian	Location: 1515 East Katella Avenue	None;
	Site Size: 3.37 acres	development is
	General Summary: 320 apartments.	complete.
	Status: Completed.	
Stadium Club	Location: 1761 and 1781 South Campton	Air Quality
Condos	Avenue	Treff's
	Site Size: 3.21 acres	• Trainc
	General Summary: 196 condominiums.	
	Status: Redesign to increase the number of	
	units pending.	
Anavia	Location: 2045 South State College	None:
	Boulevard	development is
	Site Size: 3 85 acres	complete
	General Summary: 250 condominiums	completer
	Status: Completed	
Platinum Triangle	Location: 1331 East Katella Avenue	None:
Condominium	Site Size: 4 45 acres	development is
Development	General Summary: 336 condominiums and	complete
Development	one 1 248 square foot retail tenant space	compiete.
	Status: Completed	
Avalon Angel	Location: 2100 East Katella Avenue	None:
Stadium (Formorly	Sito Sizo: 3.5 acros	dovolonmont is
Anaboim Stadium)	General Summary: 251 apartments and	
	11 907 square feet of rotail and rostaurant	complete.
	USES. Status: Completed	
	Status, Completeu.	
Lennars A-Town	Site Size: 40 6 perce	• All Quality
Metro	Sile Size. 40.0 acres	Traffic
	General Summary: A Master Sile Plan that	
	will include two public parks, 2,681	
	residential units and up to 229,800 square	
	Lieet of commercial/retail use.	
	Status: The Final Master Tract Map has	
	been recorded and various off-site and on-	
	site improvements, including backbone	
	streets, have been completed. A Final Site	
	Plan for Development Area C has also been	
	approved. Project is currently on hold.	

		Potential
Name	Project Description	Impacts
The Experience At	Location: 1969 South State College	Air Quality
Gene Autry Way	Boulevard Site Size: 17.58 acres General Summary: A Master Site Plan for 1,208 residential units, 50,000 square feet of commercial space, 100,000 square feet of	Traffic
	office space and a 1.7-acre public park. Status: Approved by City Council on August 21, 2007. Demolition of existing buildings completed. Redesign of site configuration pending.	
Lennar's A-Town	Location: 2115, 2125, 2025 East	Air Quality
Stadium	Orangewood Avenue and 2050 South State College Boulevard Site Size: 12.48 acres General Summary: 878 condominiums. Status: City Council approval on December 11, 2007. Construction schedule to be determined	Traffic
Orangewood	Location: 2211 East Orangewood Avenue	Air Quality
Condominiums	Site Size: 3.8 acres General Summary: 370 condominiums. Status: City Council approval on June 5, 2007. Construction schedule to be determined.	Traffic
Platinum Tower	Location: 2210-2220 East Orangewood Avenue and 2231 and 2130 East Dupont Drive Site Size: 3.83 acres General Summary: 20-story building containing 590,000 square feet of office area, 10,000 square feet of commercial area and a 2,001 space parking structure. Status: City Council approval on August 21, 2007. Construction pending.	Air QualityTraffic
Platinum Vista	Location: 1015 and 1105 East Katella Avenue Site Size: 4.6 acres General Summary: 327 residential units and 9,500 square feet of commercial space. Status: Approved by City Council December 18, 2007.	Air QualityTraffic

		Potential
Namo	Project Description	Cumulative
Platinum Gateway	Location: 915 East Katella Avenue	Air Quality
T latinum Gateway	Site Size: 8.7 acres	
	General Summary: 320 residential units, an	I rattic
	11-story office building (192,000 square feet)	
	and a 130-room hotel with a 7-story parking	
	structure.	
	Status: Approved by City Council June 10, 2008.	
Fire Station No. 12	Location: 1050 Stanford Court	Air Quality
	Site Size: 1.03 acres	Traffic
	General Summary: 15,000 square feet.	
	The Anabeim Besort	
Amendment to the	Location: Area that surrounds the Disnevland	Air Quality
Anaheim Resort	Resort and Anaheim GardenWalk and	• Troffie
Specific Plan	includes the Anaheim Convention Center.	
	Site Size: 581 acres	
	General Summary: Modifications to the	
	Anaheim Resort Specific Plan to update the	
	document and associated Master EIR and	
	allow for expansion of the Ananeim	
	Status: Draft Supplemental FIB to be	
	circulated and public hearings to be held in	
	Fall/Winter 2010.	
Anaheim	Location: 321 West Katella Avenue	Air Quality
Gardenwalk	Site Size: 29.1 acres	Traffic
	General Summary: The project includes:	
	569,750 square feet of retail, restaurants,	
	and entertainment uses; 1,628 notel rooms	
	Status: Grand opening of retail concourse in	
	May 2008. Hotel and timeshare construction	
	ongoing.	
Trendwest Resorts	Location: 201 West Katella Avenue	None;
Timeshare	Site Size: 2.06 acres	development is
	General Summary: 14-story, 247-unit	complete.
	timeshare resort.	
	Status: Completed in August 2008.	

		Potential
		Cumulative
Name	Project Description	Impacts
Anaheim Convention Contor	Location: 800 West Katella Avenue	Air Quality
Expansion	Sile Size. 4 acres General Summary: A public/private	Traffic
	partnership to expand the Anaheim	
	Convention Center and provide an	
	opportunity for additional hotels and	
	recreation uses.	
	Status: Ongoing.	
Grand Californian	Location: 1600 South Disneyland Drive	None:
Hotel Expansion	Site Size: 2.50 acres	development is
•	General Summary: Add 280 hotel rooms	complete.
	including 25 2-bedroom timeshare units.	
	Status: Completed in Winter 2009/2010.	
Doubletree Hotel	Location: 2065 South Harbor Boulevard	None;
(Phase 1)	Site Size: 2,500 square-foot restaurant,	development is
	3,760 square-foot meeting/banquet facilities	complete.
	and 4,189 square-foot retail area.	
	General Summary: A two-phase hotel	
	project. Phase I includes a 252-room notel	
	and Phase II includes a 292-room notel.	
Coringbill Suites	Status: Completed In March 2007.	
Springrill Suites	Site Size: 5 50 seres	• Air Quality
Marnott	General Summary: A 120-unit hotel in	Traffic
	addition to an existing Holiday Inn	
	Status: Ongoing	
Hermosa Village	Location: Southwest corner Walnut St. and	None:
Phase IV	Cerritos Ave.	development is
	Site Size: 5 acres	complete.
	General Summary: Comprehensive	
	neighborhood revitalization of an existing	
	apartment complex to add 36 low income	
	units.	
	Status: Completed in January 2008.	
Lake Hotel	Location: 1820 South Harbor Boulevard	Air Quality
Development	General Summary: A 252-room hotel with	Traffic
	retail and restaurant space.	
	Status: Approved by City Council on March	
Duth Chris Stock	31, 2009.	Nono
House	Constal Summary: An 8 517 square feet	dovelopment is
TIOUSE	restaurant	complete
	Status: Completed in April 2007	compiete.
Morton's Steak	Location: 1855 South Harbor Boulevard	None:
House	General Summary: An 8.000 square-foot	development is
	restaurant.	complete.
	Status: Completed in March 2007.	

		Potential
Name	Project Description	Impacts
Battle of the Dance	Location: 2230 South Harbor Boulevard	Air Quality
(Development	General Summary: A 42,360 square-foot	Traffic
Case #: DEV2009-	dinner/dance theater.	
0083)	Status: Ongoing	
	Other Anaheim Projects	
SR-57 Northbound	I his project will widen the northbound side of	Air Quality
Widening between	SR-57 from 0.31 mile south of Katella	Traffic
natella Avenue	Avenue to 0.31 mile north of Lincoln Avenue.	
Relocation of a	MWD proposes to enter into a mutual	None
Portion of the	agreement with Extron Electronics to	
Orange County	relocate a portion of the Orange County	
Feeder	Feeder, within the City. The agreement will	
SCH #:	include funds for final design, materials	
2009108081	procurement, inspection, pipeline	
	construction and relocation, and	
	documentation for the new easement.	
Anaheim Public	This project will include constructing a pre-	None.
Utilities Pilot Storm	treatment system for stormwater runoff,	
Water Infiltration	installing an infiltration well down-gradient of	
	the pre-treatment system, installing	
2000088220	gradiant of the infiltration system, and	
2009000239	installing lysimeters to collect soil pore water	
	below the infiltration system	
	CITY OF ORANGE	
City of Orange	The Orange City Council adopted the 2010	None.
General Plan	General Plan on March 9, 2010. The General	
Update	Plan provides the City of Orange with a	
	multi-disciplinary strategy for achieving the	
	vision in the context of the land use,	
	circulation and mobility, housing, open	
	space, conservation, public safety, noise,	
	cultural resources and historic preservation,	
	growth management, economic	
	development, intrastructure and urban	
	aesign elements.	

		Potential
Name	Project Description	Impacts
Orange Transportation Center Parking Structures	A proposal to construct two parking structures wrapped with liner (commercial/residential) uses- one structure is proposed on the "West Chapman lot" and one on the "Lemon Street lot". The West Chapman lot is located immediately west of the Orange Transportation Center (between Palm Avenue and Chapman Avenue). 509 parking spaces (406 in the proposed structure and 103 surface parking spaces) and 7,500 square feet of restaurant/retail uses are proposed on this lot. The Lemon Street lot is located on West Chapman Avenue and Lemon Street. 679 parking spaces in the proposed structure, 27 residential units and 23,000 square feet of commercial/retail uses are proposed on this lot. This project is in the planning and design phase.	 Air Quality Traffic
Main Street Widening Project	A proposal to widen Main Street between Chapman Avenue and Culver Avenue to add a NB and SB through lane, and restriping between Culver and La Veta Avenue to add a NB through lane. This project is approved and construction is scheduled for Spring 2011.	Air Quality
The Block Expansion Project	20 The City Blvd. West. (Reference Application Nos. MJSP No. 558-09, CUP No. 2725-08 & DRC No. 4370-08) Proposed expansion to The Block consisting of 105,000 sq ft. Phase I would entail of the construction of the proposed 35,000 square foot major tenant building. Modifications would be made to the existing parking area and landscaping surrounding the proposed 35,000 square foot building, to adjust traffic flow. Phase I would also entail the creation of a new parking area on the out-parcels on the southeastern corner of the project site. A portion of this new parking area would be used for valet parking. Phase II would involve the construction of the remaining 70,000 square feet of building space and reconfiguration of parking spaces and drop- off areas near the new buildings. This project is approved.	• Air Quality

		Potential Cumulative
Name	Project Description	Impacts
Orange Gateway	Located at the southeast corner of West Chapman Avenue & I-5. (Reference Application Nos. ENV 1804-08, ZC 1251-08, CUP -2724-08, MJSP 0557-08, DRC 4368- 08.) A proposal to develop a new commercial center with a Jack in the Box drive thru restaurant, and two commercial buildings with various retail services. 75,652 sq ft. subject parcel is currently un-zoned and also needs a General Plan designation. Applicant also proposes to utilize and obtain two remnant properties owned by the City of Orange. This project is approved and is in the building plan check process.	• Air Quality
Coca-Cola Warehouse Expansion	700 West Grove Avenue. (Reference Application Nos. ENV 1817-09, MJSP No 0594-09, DRC No. 4412-09) Proposal to add 51, 045 sq. ft to the west elevation of an existing Coca-Cola distribution warehouse facility. This project is approved and awaiting building plancheck submittals.	• Air Quality
Main Medical Plaza	396 South Main Street. (Reference Application No. MNSP 535-07). Request to construct a 7,981 SF medical office building with 38 parking spaces. This project is approved and awaiting building plancheck submittals.	Air Quality

		Potential
		Cumulative
Name	Project Description	Impacts
CHOC Hospital	455 South Main Street. (Reference	Air Quality
Expansion-	Application Nos. ZC No. 1252-08, MJSP No.	
	0504-07, CUP No. 2726-08, DRC No. 4209-	
	07, TM No. 0024-08 (TPM 2008-162) & ENV	
	No. 1805-08.) A proposal to expand the	
	existing hospital facilities and associated	
	medical offices through multi-phased	
	demolition, remodeling, and new	
	construction. Project milestones are	
	scheduled for 2012, 2015 and 2020. The	
	primary focus of the project is to increase the	
	number of nospital beds from 202 to 404,	
	and remodel of 54,250 aguare feet of the	
	bospital towers. The existing 91,000 square	
	foot modical offices and related parking	
	structure at the northwest corper of La Veta	
	and Pepper would be demolished	
	Approximately 85 600 square feet of general	
	office space would be converted into medical	
	offices in the existing building at the	
	southeast corner of Main and La Veta. A new	
	175,000 square foot, with accompanying	
	875-space parking structure, is proposed at	
	the northeast corner of Main and SR-22. This	
	project is approved and under construction.	
Pro	jects Within the Western Area of the City of Ora	nge
City of Orange	The Housing Element contains policies and	None.
2006-2014	actions to accommodate the City's Regional	
Housing Element	Housing Needs Assessment (RHNA) growth	
SCH #:	needs through vacant land and the General	
2010011009	Plan mixed-use land use designations. The	
	quantified objective summary for the 2006-	
	2014 planning period includes 5,079 new	
	construction units, 260 rehabilitation units,	
	and / 5 conservation and/or preservation	
	l units.	

		Potential Cumulative
Name	Project Description	Impacts
Five Coves Bypass Pipeline Project SCH #: 2009121067	This proposed project involves the construction and operation of a 62-inch diameter bypass pipeline that will extend through Upper Five Coves Basin, Lower Five Coves Basin, and into the northern end of Burris Basin. The bypass pipeline will allow the individual isolation of Upper Five Coves Basin, Lower Five Coves Basin and Lincoln Basin while maintaining flow to the rest of the system. The project will increase storm water capture, improve groundwater recharge capability of the basins and provide greater operational flexibility of OCWD groundwater management system.	None.
Application to Appropriate Santa Ana River Water Recirculated Draft Program Environmental Impact Report SCH #: 2002081024	OCWD seeks to divert 505,000 acre-feet per annum of water from the Santa Ana River after it is released from Prado Dam by the USACE. OCWD will use the water to replenish the Basin through 26 recharge facilities. The recharge facilities were originally constructed for the purpose of flood control by USACE and the OCWD. OCWD proposes to collect the water to store year- round for the purpose of irrigation, domestic, recreation, municipal, industrial, fish and wildlife preservation and/or enhancement uses. The proposed project is an addendum to the Program Final EIR amending the program- level location of where a future surface water recharge basin could be constructed.	None.

		Potential
Namo	Project Description	
Santa Eo Dopot	The proposed Santa Eo Dopot Specific Plan	Nono
Specific Plan	Update (SFDSPU) project area is 101.6	None.
Update	acres. 21.8 acres of the project area are	
SCH #:	currently within the existing Santa Fe Depot	
2009101033	Specific Plan boundary. The SFDSPU will	
	expand the boundary of the existing Santa	
	Fe Depot Specific, which is centered on the	
	Santa Fe Depot and the block in the	
	majority of the SEDSPU area is developed	
	with a mixture of residential, commercial.	
	industrial and institutional uses. Build-out of	
	the SFDSPU area under the current zoning	
	will yield up to 770,510 square feet of	
	development and a total of 448 residential	
	units. Under the proposed SFDSPU, the	
	740 234 square feet of development and 506	
	residential units.	
City of Orange Focus	s Areas	
West Katella	The proposed West Katella Avenue Corridor	None.
Avenue Corridor	is immediately west of ARTIC, across the	
	Santa Ana River. Implementation of West	
	Katella Avenue Corridor Will result in the	
	residential asteway to the City of Orange. It	
	will feature high-density residential uses that	
	capitalize on development of expanded	
	entertainment uses and housing across the	
	Santa Ana River in the City; enhance retail	
	options and convenience throughout west	
	Orange; and maintain Katella Avenue's	
	commercial character with heighborhood-	
	into adjacent residential areas	
	Implementation of the West Katella Avenue	
	Corridor urban mixed use corridor will	
	increase the number of dwelling units per	
	acre from 30 to 60, with a maximum floor	
	area ratio of 3.0.	

		Potential
Name	Project Description	Impacts
Eckhoff	The Eckhoff Street/Collins Avenue focus	None.
Street/Collins	area encompasses the area north of	
Avenue	Orangewood Avenue and south of Collins	
	largely consists of professional offices	
	commercial uses, warehouses, and	
	distribution centers. It has historically been	
	planned and zoned for industrial use.	
	Properties have been allowed to develop as	
	offices, and areas adjacent to the offices	
	have been allowed to develop as industrial	
	in this area has been strong, and the City of	
	Orange seeks to provide options for lower-	
	scale office uses and business-park oriented	
	light industrial uses, as well as warehouse	
	and distribution uses.	
Industrial Area	The Industrial focus area is located	None.
	Immediately west of the Ecknoff Street focus	
	The area's land use is currently designated	
	as industrial, and the General Plan	
	discourages professional office uses in favor	
	of true industrial uses within this area located	
	west of Batavia Street and generally south of	
	Grove Avenue. The General Plan	
	businesses and infill of vacant properties by	
	increasing the maximum allowed	
	development intensity.	
	Primary uses permitted within the Industrial	
	designation generally involve the	
	manufacture, processing and distribution of	
	goods. Wholesale activities, as well as small-	
	offices may be established. Over time	
	market forces may create a demand for more	
	office space, a category that is also	
	permitted in this land use.	
	Implementation of projects in the industrial	
	Tocus area will result in higher traffic	
	merchandise and workers	
OTHER TRANSIT PROJECTS		

		Potential Cumulative
Name	Project Description	Impacts
Anaheim Rapid	The project is envisioned to operate as a	 Air Quality
Connection	high-capacity system, providing convenient and efficient transfers to/from Metrolink, Amtrak, BRT, local bus, and future high- speed train services connecting at ARTIC.	Traffic
California High-	A high-speed train service for travel between	Air Quality
Speed Rail	major metropolitan areas in California. A program-level EIS/EIR was completed in 2005, which studied the environmental impacts of a proposed state-wide high-speed rail system connecting the San Francisco Bay Area and Sacramento in the north, through the Central Valley, to Los Angeles and San Diego in the south. CHSRA anticipates releasing a Draft EIR/EIS for the Los Angeles-Anaheim section in 2010.	• Traffic
CNSST	CNSST is a proposal to connect southern California with southern Nevada. Recently this project did not receive stimulus funds and lost support for earmark funds from the 2005 transportation bill for Maglev.	None.
Desert Express	The Desert Express is a privately funded high-speed rail project and is in the final stages of the EIR/EIS process. Construction could begin this year and begin operations in 2014. Expansion to Anaheim will be through Los Angeles County with an anticipated connection to the California High Speed Rail system. No date has been stated for the expansion.	None.
7.1.2 Future Traffic

An improved transportation center and other nearby development projects will result in increased traffic within the area. Development of a transportation center that will increase the availability of mass transit alternatives will help reduce the number of vehicles on the road regionally, which is consistent with the 2007 AQMP, the 2006 Regional Transportation Improvement Program, and other regional plan strategies. A CO hotspot analysis performed for the intersection most affected by the proposed project (i.e., Douglass Rd. and Katella Ave.) using the City of Anaheim's traffic analysis model to predict traffic impacts from future development projects. The results showed that increased traffic levels in 2013 (with ARTIC) and in 2030 will not result in CO impacts above the State and Federal ambient air quality standards. The year 2013 and 2030 traffic analysis includes potential traffic from the nearby future projects. In addition, more stringent regulation of vehicle emissions will help to mitigate the air quality issues associated with additional development projects to some extent. The regional cumulative impact of the proposed project and nearby development projects is not considered cumulatively considerable.

7.1.3 Cumulative Greenhouse Gas Emissions

SCAQMD has released an interim significance threshold of 10,000 MT/yr, which was used as a point of comparison for the proposed project (see Table 4-4). ARTIC's location relative to major event and destination centers within the Platinum Triangle creates availability of current and future mass transit systems to occupants and visitors. The result is less motor vehicle traffic on local roadways and freeways and a general reduction in motor vehicle travel throughout the region. Since motor vehicle traffic is the primary source of air pollution in the region, plans to reduce traffic, and thus GHG emissions, are consistent with the intent of the AQMP. Potential GHG emissions are not considered cumulatively considerable.

8.1 MITIGATION MEASURES REQUIRED BY REGULATION AND VOLUNTARILY CONDUCTED BY ARTIC

Any significant environmental impact of a proposed project must be identified and mitigated. The analysis of significant effects must include both direct project impacts and indirect impacts that may exceed significance thresholds or may potentially result in violations of ambient air quality standards. Construction activities from the proposed project (Table 4-2) will yield criteria pollutant emissions that will be less than the significance thresholds, with the exception of NO_x. Operational emissions, both for criteria pollutants (Table 4-3) and TACS, are below significance thresholds. Since emissions of NO_x during construction exceed the significance thresholds, there is a possibility that the construction activities could result in an exceedance of the ambient air quality standards on a local, temporary basis.

8.1.1 Construction Phase Mitigation Measures

Mitigation of NO_x emissions can occur through considerations of schedule and the addition of controls. Several of the road improvement stages will not occur simultaneously. The worst case emissions for the construction of the intermodal terminal occurs during the excavation activities. Excavation of the building basement and lowering of Douglass Road will be occurring along with the installation of the building piles and foundation. Work will also be occurring on the Douglass Road bridge and the stub-end track. Construction activities to widen Douglass Road, add the sidewalk, and add the turn lane to Katella Avenue will occur following this sequence.

Greater mitigation can be achieved by the addition of diesel oxidation catalysts to large construction equipment. Diesel oxidation catalysts can achieve 20 percent reduction or more in NO_x emissions when applied to mobile equipment greater than 150 brake horsepower, such as dozers, loaders, and water trucks. Table 8-1 shows that when mitigation measures of schedule and NO_x controls are implemented, NO_x emissions from the proposed construction project are less than the significance threshold.

 Table 8-1

 Proposed Project Construction Daily Emissions with NO_x Mitigation

Construction Activity	NO _x (lb/day)	ROG (lb/day)	CO (lb/day)	SO _x (lb/day)	PM ₁₀ (Ib/day)	PM _{2.5} (Ib/day)	CO ₂ (Ib/day)
Intermodal Terminal	73.6	9.7	57.0	0.1	45.0	12.0	12,977.8
Stub-end Track	8.4	1.4	7.6	<1	2.6	1.0	1,258.3
Douglass Road Bridge	16.1	2.4	10.7	<1	1.9	1.1	2,284.0
Total Proposed Project	98.1	13.5	75.3	<1	49.5	14.1	16,520.7
Significance Thresholds	100	75	550	150	150	55	-
Significant?	No	No	No	No	No	No	No

Mitigation Measures: Consideration of scheduled construction sequences and addition of diesel oxidation catalyst with 20% NO_x reduction.

In order to ensure NO_x mitigation as described above, mitigation measures will be implemented to reduce NO_x emissions below the level of significance. Mitigation measures are presented below:

- AQ1 Excavation of the soil for the Intermodal Terminal shall precede excavation of Douglass Road under the bridge, and both activities shall occur in sequence. The sequencing of grading/excavation activities shall be noted on the grading plans submitted to the Anaheim Public Works Department for review and approval and in the contractor's specifications.
- AQ2 Exporting of soil during the excavation stage of the project shall be limited to 25 on-road truck trips per day during excavation and grading. An export plan showing quantities and identified haul route shall be shown on grading plans submitted to the Anaheim Public Works Department for review and approval and in the contractor's specifications.
- AQ3 Road widening and sidewalk improvement projects shall occur following the completion of the excavating activities. Street improvement plans submitted to the Anaheim Public Works Department for review and approval shall indicate sequencing of the street improvements.
- AQ4 Construction off-road equipment with engines greater than or equal to 150 brake horsepower shall meet or exceed USEPA Tier 2 engine standards and shall be required to have diesel oxidation catalysts installed that meet or exceed 20 percent reduction in NOx. A complete list of construction equipment to be used at the project site shall be submitted to the contractor to confirm compliance with USEPA Tier 2 standards.
- AQ5 Diesel or gasoline power generators shall be limited to less than two hours of use per day. This restriction shall be clearly noted on the

grading/excavation and building plans submitted to the Anaheim Public Works Department and Building Division for review and approval. This information shall also be included in the contractor's specifications.

BMPs will be implemented during construction activities to further minimize potential NO_x emissions and potential ambient air quality impacts. BMPs:

AQBMP1	Prohibit all diesel trucks from idling in excess of five minutes, both onsite and offsite.
AQBMP2	Configure construction parking to minimize traffic interference.
AQBMP3	Provide temporary traffic controls such as a flag person, during all sequences of construction to maintain smooth traffic flow.
AQBMP4	Provide dedicated turn lanes for movement of construction trucks and equipment on and offsite.
AQBMP5	Schedule construction activities that affect traffic flow on the arterial system to off-peak hour to the extent practicable.
AQBMP6	Reroute construction trucks away from congested streets or sensitive receptor areas.
AQBMP7 AQBMP8	Improve traffic flow by signal synchronization. Ensure that all vehicles and equipment will be properly tuned and maintained according to manufacturers' specifications.

Although potential fugitive emissions during construction do not exceed SCAQMD significance thresholds, SCAQMD Rule 403 specifies BMPs to control dust during the construction portion of the project.

AQBMP9	No visible dust emissions beyond the property line.
AQBMP10	No dust emissions exceeding 20 percent opacity anywhere on the property.
AQBMP11	No offsite increase in ambient PM_{10} concentrations greater than 50 μ g/m3.
AQBMP12	No track-out exceeding 25 feet from the property.
AQBMP13	Implement wheel washing or paving to eliminate track out.
AQBMP14	Employment of a dust control supervisor who has the authority to expeditiously employ sufficient dust mitigation measures to ensure compliance.
AQBMP15	Use of watering to maintain soil moisture at 12 percent on haul roads and other active unpaved surfaces that are not chemically stabilized.
AQBMP16	Use of watering to prevent visible dust more than 100 feet from any earth moving activity.

- AQBMP17 Use of watering, dust suppressants, covering with larger aggregate, and re-vegetation of inactive disturbed areas to prevent wind driven dust.
- AQBMP18 Implement daily watering and 15 mph speed limit on unpaved roads.
- AQBMP19 Use chemical stabilization, watering, covering, and enclosing methods for storage piles.
- AQBMP20 Cover, wet, and or maintain at least two free of freeboard on trucks hauling dirt, sand, soil, or other loose materials off-site.
- AQBMP21 Sweep streets hourly if visible soil material has been carried onto adjacent public paved roads (reclaim water shall be used if available).
- AQBMP22 Water active areas at least twice daily.
- AQBMP23 Cease grading activities that result in dust generation second stage smog alerts and periods of high winds (i.e., greater than 25 miles per hour [mph]) if dust is being transported to offsite locations and cannot be controlled by watering.
- 8.1.2 Operational Phase Mitigation Measures

The facility will be designed to minimize emissions of all pollutants, including greenhouse gases as much as feasible. ARTIC's location relative to major event and destination centers within the Platinum Triangle creates availability of current and future mass transit systems to occupants and visitors. The result will be less motor vehicle traffic on local roadways and freeways, and a general reduction in motor vehicle travel throughout the region. Since motor vehicle traffic is the primary source of air pollution in the region, plans to reduce traffic will result in lower emissions. No mitigation measures are required.

8.2 EFFECT OF MITIGATION MEASURES

The required mitigation measures during construction will reduce potential emissions during construction below the level of significance. The planned operational mitigation measures will reduce emissions.

If the proposed project is not constructed, there will be increased traffic congestion in the area (since mass transit will be less available), and other planned future projects will continue to be built. The potential ambient air quality impact of the No Project Alternative is greater than the proposed project.

10.1 CONSTRUCTION EMISSIONS OF THE PROPOSED PROJECT ALONE

With all sequences of construction considered, only NO_x emissions potentially exceed the thresholds. With mitigation measures, which include schedule and equipment controls, construction emissions from ARTIC will be less than significant.

10.2 OPERATIONAL EMISSIONS OF THE PROPOSED PROJECT ALONE

None of the emissions from the proposed project exceed SCAQMD emission thresholds and thus the operational emissions are less than significant.

10.3 AMBIENT AIR QUALITY STANDARDS, TOXIC AIR CONTAMINANTS, AND ODOR IMPACTS OF THE PROPOSED PROJECT ALONE

Since the operational emissions of the proposed project are less than the SCAQMD emissions thresholds, it is not likely that the proposed project will cause or contribute to an exceedance of the ambient air quality standards. After the required mitigation measures are implemented, construction emissions will not cause or contribute to a localized exceedance of the ambient air quality standards for NO_x and regionally for ozone (as NO_x contributes to ozone formation). The remaining construction emissions are less than about 30 percent of the significance thresholds. Since construction activities are highly variable and there are a number of mitigation measures required, construction emissions for the other pollutants are not expected to cause an exceedance of an ambient air quality standard.

Future traffic from the proposed project will not result in significant impacts of CO at the intersection most affected by the proposed project (i.e., Douglass Rd. and Katella Ave.) as shown in a CO Hotspots analysis.

The proposed project will not create meaningful emissions of TACs other than diesel exhaust particulate. Other than during construction, there are no meaningful increases in emissions of diesel exhaust particulate (i.e., the diesel-fueled buses and trains already come into the area and the proposed project will not cause a meaningful increase in the number of buses and trains). Construction emissions of diesel exhaust particulate are of a relatively short term nature (few years) and would not contribute to a

significant health risk since such risks occur only over relatively long term exposures (forty to seventy years). Potential TAC impacts are not significant.

Potential odors from operations will not be distinguishable from the current uses of the areas surrounding the project location. Potential odors from construction activities would include vehicle exhaust, asphalt paving, and architectural coating. Nuisance odors from these activities would be confined to the immediate vicinity of the activity itself. Receptors immediately off-site may occasionally smell diesel exhaust from construction equipment. Any odors outside of the immediate area would be sufficiently diluted well below any objectionable levels. In either case, such exposure may result in brief periods of noticeable, yet not objectionable, odor from a minimal number of people. Therefore potential odor impacts are not considered significant.

10.4 CUMULATIVE IMPACTS OF THE PROPOSED PROJECT AND OTHER FUTURE PROJECTS

There are no future projects that alone would have meaningfully large emissions such that when combined with the operational emissions of the proposed project would likely cause or contribute to an exceedance of the ambient air quality standards. The proposed project operational emissions are below the SCAQMD significance thresholds. The emissions from the future proposed projects in the area would be similarly small or much smaller than the proposed project. Emissions are not considered cumulatively significant. Since construction emissions are highly variable, are of a short term nature, and do not occur at the same time as other projects, the construction emissions are not considered cumulatively significant.

10.5 GREENHOUSE GASES

SCAQMD interim significance threshold of 10,000 MT/yr was used as a point of comparison for the proposed project. GHG emissions for the proposed project are the result of the use of electricity, natural gas combustion, and increased vehicle exhaust. The operational emissions from ARTIC (2030) were determined to be 5,531 MT/yr CO₂e, which is about 55 percent of SCAQMD GHG significance threshold.

The location of ARTIC relative to major event and destination centers within the Platinum Triangle creates availability of current and future mass transit systems to occupants and visitors. The result will be less motor vehicle traffic on local roadways

and freeways, and a general reduction in motor vehicle travel throughout the region. Since motor vehicle traffic is the primary source of air pollution in the region, plans to reduce traffic will result in lower GHG emissions regionally. GHG emissions from the project would not have a significant impact on the environment.

11.0 REFERENCES

California Air Resources Board, <u>EMFAC2007 Computer Model</u>, Version 2.3, November 2006.

Linscott, Law and Greenspan Engineers, <u>Traffic Impact Analysis Report ARTIC</u>, April 2010 (updated 4/29).

Sacramento Metropolitan Air Quality Management District, <u>Road Construction Emissions Model</u> (<u>RCEM</u>), Version 6.3.2, July 2009.

South Coast Air Quality Management District, <u>Draft 2007 Air Quality Management Plan</u>, November 2006.

South Coast Air Quality Management District, <u>SCAQMD CEQA Air Quality Handbook</u>, April 1993.

South Coast Air Quality Management District, <u>Rules and Regulations</u>, March 2010.

South Coast Air Quality Management District, <u>Urban Emissions Model (URBEMIS) Computer</u> <u>Model</u>, version 9.2.4, June 2007

USEPA, CAL3QHC Computer Model, MCB#6, September 2004.

University of California, Davis, Transportation <u>Project-Level Carbon Monoxide Protocol</u>, December 1997.

APPENDIX A Construction Emissions of Criteria Pollutants

A-1: Construction Emissions Summary

A-2: Road Construction Emission Model – Douglas Road Bridge Reconstruction

A-3: Road Construction Emission Model – Douglas Road 800 ft Sidewalk

A-4: Road Construction Emission Model – Widen Douglas Road

A-5: Road Construction Emission Model – Katella Avenue Right Turn Lane

A-6: Road Construction Emission Model – Stub End Track

A-7: Combined Summer Emission Report

A-8: Combined Winter Emission Report

A-1: Construction Emission Summary

ARTIC Construction Emissions Summary - No Mitigation

	ROG (lbs/day)	CO (Ibs/day)	NOx (Ibs/day)	SO2 (Ibs/day)	Total PM10 (Ibs/day)	Exhaust PM10 (Ibs/day)	Fugitive Dust PM10 (Ibs/day)	Total PM2.5 (Ibs/day)	Exhaust PM2.5 (Ibs/day)	Fugitive Dust PM2.5 (Ibs/day)	CO2 (Ibs/day)
2011											
Urbemis Site & Building Construction	7.64	31.74	70.72	0.02	44.40	3.02	41.38	11.43	2.78	8.65	8,741.73
Stub-End Track (multiple stages)	-	-	-	-	-	-	-	-	-	-	-
Douglass Road Sidewalk	-	-	-	-	-	-	-	-	-	-	-
Douglass Road Bridge	2.4	10.7	19.9	-	1.9	0.9	1.0	1.1	0.9	0.2	2,284.00
Douglass Road Widening (S. of Katella)	-	-	-	-	-	-	-	-	-	-	-
Katella Road Widening (Rt. Turn Lane)	-	-	-	-	-	-	-	-	-	-	-
2011 Total	10.04	42.44	90.62	0.02	46.30	3.92	42.38	12.53	3.68	8.85	11,025.73
2012											
Urbemis Site & Building Construction	9.69	57.1	86.5	0.08	44.98	3.59	41.63	11.95	3.3	8.74	12,977.76
Stub-End Track (multiple stages)	1.4	7.6	10.5	-	2.6	0.6	2.0	1	0.6	0.4	1,258.30
Douglass Road Sidewalk	0.4	2.1	1.4	-	0.6	0.1	0.5	0.2	0.1	0.1	251.50
Douglass Road Bridge	2.4	10.7	19.9	-	1.9	0.9	1.0	1.1	0.9	0.2	2,284.00
Douglass Road Widening (S. of Katella)	2.5	11.7	17.5	-	3	1.1	2	1.3	1	0.4	2,012.50
Katella Road Widening (Rt. Turn Lane)	-	-	-	-	-	-	-	-	-	-	-
2012 Total	16.39	89.2	135.8	0.08	53.08	6.29	47.13	15.55	5.9	9.84	18,784.06
2013											
Urbemis Site & Building Construction	51.76	47.88	47.51	0.05	43.78	2.50	41.49	10.79	2.29	8.69	9,212.30
Stub-End Track (multiple stages)	1.4	7.6	10.5	-	2.6	0.6	2.0	1	0.6	0.4	1,258.30
Douglass Road Sidewalk	-	-	-	-	-	-	-	-	-	-	-
Douglass Road Bridge	-	-	-	-	-	-	-	-	-	-	-
Douglass Road Widening (S. of Katella)	-	-	-	-	-	-	-	-	-	-	-
Katella Road Widening (Rt. Turn Lane)	1.8	7.8	15.2	-	1.6	0.9	1	0.8	0.8	0.2	1,541.60
2013 Total	54.96	63.28	73.21	0.05	47.98	4.00	44.49	12.59	3.69	9.29	12,012.20
Total "Worst Case", by Pollutant by Year	54.96	89.20	135.80	0.08	53.08	6.29	47.13	15.55	5.90	9.84	18,784.06
Significance Threshold	75	550	100	150	150	-	-	55	-	-	See Note.

Greenhouse Gas Emissions Summary

	CO ₂ e	CO ₂ e	CO ₂ e
Construction Year	(lb/day)	(MT/yr)	(MT/30-yrs)
2011	11,025.73	1,560.37	-
2012	18,784.06	2,658.34	-
2013	12,012.20	1,699.98	-
Total	41,821.99	5,918.68	197.29

Note: The SCAQMD in December 2008 published an "interim" threshold for GHG significance for stationary sources for which SCAQMD is the lead agency (only) of 10,000 metric tonnes (MT) of CO_2 30-yr average CO_2e (MT/30-yrs): (41,822.0 lb CO_2/day) x (312 days/yr) / (2000 lb/ton) / (1.1023 ton/MT) / (30 yrs) = 197.3 MT/yr CO2e for construction

A-2: Road Construction Emission Model – Douglas Road Bridge Reconstruction

Road Construction Emissions M	odel	Version 6.3.2	
Data Entry Worksheet			SACRAMENTO METROPOLITAN
Note: Required data input sections have a yellow ba	ckground.		
Optional data input sections have a blue background	. Only areas with a		
yellow or blue background can be modified. Program	defaults have a white backgr	ALP OHALITY	
The user is required to enter information in cells C10	through C25.	MANAGEMENT DISTRICT	
Input Type			
Project Name	- Douglass Rd Bridge R	econstruction	
Construction Start Year	2012	Enter a Year between 2005 and 2025 (inclusive)	
Project Type		1 New Road Construction	
·	3	2 Road Widening	To begin a new project, click this button to clear
		3 Bridge/Overpass Construction	data previously entered. This button will only work
Project Construction Time	9.0	months	If you opted not to disable macros when loading this spreadsheet
Predominant Soil/Site Type: Enter 1, 2, or 3		1. Sand Gravel	
	1	2. Weathered Rock-Earth	
		3. Blasted Rock	
Project Length	0.019	miles	
Total Project Area	0.3	acres	
Maximum Area Disturbed/Day	0.1	acres	
Water Trucks Used?	1	1. Yes 2. No	
Soil Imported		yd³/day	
Soil Exported	10.0	yd³/day	
Average Truck Capacity	20.0	yd ³ (assume 20 if unknown)	

Emission Estimates for ->	ARTIC - Douglass	Rd Bridge Reconst	truction	Total	Exhaust	Fugitive Dust	Total	Exhaust	Fugitive Dust	
Project Phases (English Units)	ROG (lbs/day)	CO (lbs/day)	NOx (lbs/day)	PM10 (Ibs/day)	PM10 (lbs/day)	PM10 (Ibs/day)	PM2.5 (lbs/day)	PM2.5 (lbs/day)	PM2.5 (Ibs/day)	CO2 (lbs/day)
Grubbing/Land Clearing	2.2	10.3	19.8	1.8	0.8	1.0	1.0	0.7	0.2	2,015.4
Grading/Excavation	2.4	10.7	19.9	1.9	0.9	1.0	1.1	0.9	0.2	2,284.0
Drainage/Utilities/Sub-Grade	2.2	9.0	14.5	1.9	0.9	1.0	1.0	0.8	0.2	1,586.0
Paving	-			-	-				-	
Maximum (pounds/day)	2.4	10.7	19.9	1.9	0.9	1.0	1.1	0.9	0.2	2,284.0
Total (tons/construction project)	0.2	1.0	1.8	0.2	0.1	0.1	0.1	0.1	0.0	207.4
Notes: Project Start Year ->	2012									
Project Length (months) ->	9									I
Total Project Area (acres) ->	0									I
Maximum Area Disturbed/Day (acres) ->	0									ļ
Total Soil Imported/Exported (yd ³ /day)->	0									I
PM10 and PM2.5 estimates assume 50% control of	f fugitive dust from	m watering and a	associated dust (control measures	if a minimum nu	umber of water tru	ucks are specifier	d.		I
Emission Estimates for ->	ARTIC - Douglass	Rd Bridge Recons	truction	Total	Exhaust	Fugitive Dust	Total	Exhaust	Fugitive Dust	
Project Phases (Metric Units)	ROG (kgs/day)	CO (kgs/day)	NOx (kgs/day)	PM10 (kgs/day)	PM10 (kgs/day)	PM10 (kgs/day)	PM2.5 (kgs/day)	PM2.5 (kgs/day)	PM2.5 (kgs/day)	CO2 (kgs/day)
Grubbing/Land Clearing	1.0	4.7	9.0	0.8	0.4	0.5	0.4	0.3	0.1	916.1
Grading/Excavation	1.1	4.9	9.0	0.9	0.4	0.5	0.5	0.4	0.1	1,038.2
Drainage/Utilities/Sub-Grade	1.0	4.1	6.6	0.9	0.4	0.5	0.5	0.4	0.1	720.9
Paving										-
Maximum (kilograms/day)	1.1	4.9	9.0	0.9	0.4	0.5	0.5	0.4	0.1	1,038.2
Total (megagrams/construction project)	0.2	0.9	1.7	0.2	0.1	0.1	0.1	0.1	0.0	188.1
Notes: Project Start Year ->	2012									
Project Length (months) ->	9									
Total Project Area (hectares) ->	0									
Maximum Area Disturbed/Day (hectares) ->	0									
Total Soil Imported/Exported (meters ³ /day)->	0									
PM10 and PM2.5 estimates assume 50% control of	i fugitive dust fror	m watering and a	associated dust (control measures	if a minimum nu	umber of water tru	ucks are specified	d.		
Total PM10 emissions shown in column F are the su	um of exhaust ar	nd fugitive dust e	missions shown	in columns H an [,]	d I. Total PM2.5	emissions showr	n in Column J are	He sume of exh	aust and fugitive	dust

With NOx Mitigation

Emission Estimates for ->	ARTIC - Douglass	Rd Bridge Reconst	ruction	Total	Exhaust	Fugitive Dust	Total	Exhaust	Fugitive Dust	
Project Phases (English Units)	ROG (lbs/day)	CO (lbs/day)	NOx (lbs/day)	PM10 (lbs/day)	PM10 (lbs/day)	PM10 (Ibs/day)	PM2.5 (Ibs/day)	PM2.5 (lbs/day)	PM2.5 (lbs/day)	CO2 (lbs/day)
Grubbing/Land Clearing			16.1							
Grading/Excavation			16.1							
Drainage/Utilities/Sub-Grade			12.0							
Paving										
Maximum (pounds/day)			16.1							
Total (tons/construction project)			1.5							
Notes: Project Start Year ->	2012									
Project Length (months) ->	9									
Total Project Area (acres) ->	0									
Maximum Area Disturbed/Day (acres) ->	. 0									
Total Soil Imported/Exported (yd ³ /day)->	0									
PM10 and PM2.5 estimates assume 50% control of	fugitive dust from	n watering and a	ssociated dust cor	ntrol measures if a	minimum number	of water trucks are s	specified.			
Emission Estimates for ->	ARTIC - Douglass	Rd Bridge Reconst	truction	Total	Exhaust	Fugitive Dust	Total	Exhaust	Fugitive Dust	
Project Phases (Metric Units)	ROG (kgs/day)	CO (kgs/day)	NOx (kgs/day)	PM10 (kgs/day)	PM10 (kgs/day)	PM10 (kgs/day)	PM2.5 (kgs/day)	PM2.5 (kgs/day)	PM2.5 (kgs/day)	CO2 (kgs/day)
Grubbing/Land Clearing	-	-	7.3	-	-	-	-	-	-	-
Grading/Excavation	-	-	7.3	-	-	-	-	-	-	-
Drainage/Utilities/Sub-Grade	-	-	5.5	-	-	-	-	-	-	-
Paving	-	-	-	-	-	-	-	-	-	-
Maximum (kilograms/day)		-	7.3	-			-	-	<u> </u>	-
Total (megagrams/construction project)	-	-	1.4	-	-	-	-	-		-
Notes: Project Start Year ->	2012									
Project Length (months) ->	9									
Total Project Area (hectares) ->	0									
Maximum Area Disturbed/Day (hectares) ->	0									
Total Soil Imported/Exported (meters ³ /day)->	0									
PM10 and PM2.5 estimates assume 50% control of	fugitive dust from	۱ watering and as	ssociated dust cor	trol measures if a	minimum number	of water trucks are s	specified.			
Total PM10 emissions shown in column F are the su	um of exhaust an	d fugitive dust er	missions shown in	columns H and I.	Total PM2.5 emiss	sions shown in Colur	mn J are the sume of	exhaust and fugitive	dust emissions show	/n in columns K
		0						0		

A-3: Road Construction Emission Model – Douglas Road 800 ft Sidewalk

Road Construction Emissions M	lodel	Version 6.3.2	
Data Entry Worksheet			SACRAMENTO METROPOLITAN
Note: Required data input sections have a yellow b	ackground.		
Optional data input sections have a blue backgroun	 Only areas with a 		
yellow or blue background can be modified. Program	m defaults have a white backgro	ALR QUALITY	
The user is required to enter information in cells C1	0 through C25.	MANAGEMENT DISTRICT	
Input Type			
Project Name	RTIC - Doug Rd. 800 ft S	<mark>idewa</mark> lk	
Construction Start Year	2012	Enter a Year between 2005 and 2025 (inclusive)	
Project Type		1 New Road Construction	
	1	2 Road Widening	To begin a new project, click this button to clear
		3 Bridge/Overpass Construction	data previously entered. This button will only work
Project Construction Time	2.0	months	this spreadsheet.
Predominant Soil/Site Type: Enter 1, 2, or 3		1. Sand Gravel	
	2	2. Weathered Rock-Earth	
		3. Blasted Rock	
Project Length	0.15	miles	
Total Project Area	0.1	acres	
Maximum Area Disturbed/Day	0.1	acres	
Water Trucks Used?	1	1. Yes 2. No	
Soil Imported		yd ³ /day	
Soil Exported		yd³/day	
Average Truck Capacity	20.0	yd ³ (assume 20 if unknown)	

Emission Estimates for ->	ARTIC - Doug Rd.	800 ft Sidewalk		Total	Exhaust	Fugitive Dust	Total	Exhaust	Fugitive Dust	
Project Phases (English Units)	ROG (lbs/day)	CO (lbs/day)	NOx (lbs/day)	PM10 (lbs/day)	PM10 (lbs/day)	PM10 (Ibs/day)	PM2.5 (lbs/day)	PM2.5 (lbs/day)	PM2.5 (lbs/day)	CO2 (lbs/day)
Grubbing/Land Clearing	-	-	-	-	-	-			-	
Grading/Excavation	0.4	2.1	1.4	0.6	0.1	0.5	0.2	0.1	0.1	251.5
Drainage/Utilities/Sub-Grade	0.1	1.1	0.4	0.5	0.0	0.5	0.1	0.0	0.1	164.3
Paving	-	-	-	-	-	-	-	-	-	
Maximum (pounds/day)	0.4	2.1	1.4	0.6	0.1	0.5	0.2	0.1	0.1	251.5
Total (tons/construction project)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.6
Notes: Project Start Year ->	2012									
Project Length (months) ->	2									,
Total Project Area (acres) ->	0									,
Maximum Area Disturbed/Day (acres) ->	0									,
Total Soil Imported/Exported (yd ³ /day)->	0									I
PM10 and PM2.5 estimates assume 50% control o'	f fuaitive dust fror	m watering and a	associated dust (control measures	if a minimum nu	mber of water tru	ucks are specified	d.		I
Emission Estimates for ->	ARTIC - Doug Rd.	800 ft Sidewalk		Total	Exhaust	Fugitive Dust	Total	Exhaust	Fugitive Dust	
Project Phases (Metric Units)	ROG (kgs/day)	CO (kgs/day)	NOx (kgs/day)	PM10 (kgs/day)	PM10 (kgs/day)	PM10 (kgs/day)	PM2.5 (kgs/day)	PM2.5 (kgs/day)	PM2.5 (kgs/day)	CO2 (kgs/day)
Grubbing/Land Clearing	-	-	-	-	-	-	-	-	-	-
Grading/Excavation	0.2	0.9	0.6	0.3	0.0	0.2	0.1	0.0	0.0	114.3
Drainage/Utilities/Sub-Grade	0.1	0.5	0.2	0.2	0.0	0.2	0.1	0.0	0.0	74.7
Paving	-									-
Maximum (kilograms/day)	0.2	0.9	0.6	0.3	0.0	0.2	0.1	0.0	0.0	114.3
Total (megagrams/construction project)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.1
Notes: Project Start Year ->	2012									
Project Length (months) ->	2									
Total Project Area (hectares) ->	0									
Maximum Area Disturbed/Day (hectares) ->	0									
Total Soil Imported/Exported (meters ³ /day)->	0									
PM10 and PM2.5 estimates assume 50% control of	f fugitive dust fror	m watering and a	associated dust c	control measures	if a minimum nu	mber of water tru	ucks are specified	d.		
Total PM10 emissions shown in column F are the s emissions shown in columns K and L.	um of exhaust ar	nd fugitive dust e	missions shown	in columns H an	d I. Total PM2.5	emissions showr	ו in Column J are	the sume of exh	naust and fugitive	dust

With NOx Mitigation

Emission Estimates for	-> ARTIC - Doug Rd.	800 ft Sidewalk		Total	Exhaust	Fugitive Dust	Total	Exhaust	Fugitive Dust	
Project Phases (<mark>English Units</mark>)	ROG (lbs/day)	CO (lbs/day)	NOx (lbs/day)	PM10 (Ibs/day)	PM10 (Ibs/day)	PM10 (Ibs/day)	PM2.5 (Ibs/day)	PM2.5 (Ibs/day)	PM2.5 (Ibs/day)	CO2 (Ibs/day)
Grubbing/Land Clearing	-	-	-	-	-	-	-	-	-	-
Grading/Excavation			1.1							
Drainage/Utilities/Sub-Grade			0.4							
Paving			-							
Maximum (pounds/day)			1.1							
Total (tons/construction project)			0.0							
Notes: Project Start Yea	r-> 2012									
Project Length (months)-> 2									
Total Project Area (acres) -> 0									
Maximum Area Disturbed/Day (acres) -> 0									
Total Soil Imported/Exported (yd ³ /day	y)-> 0									
PM10 and PM2.5 estimates assume 50% contro	I of fugitive dust from	watering and as	ssociated dust con	trol measures if a r	ninimum number of	water trucks are sp	ecified.			
Total PM10 emissions shown in column F are th L.	e sum of exhaust and	d fugitive dust en	Tissions snown in			ns shown in Column	I J are the sum of exr	haust and fugitive due	st emissions snown i	n columns k and
Total PM10 emissions shown in column F are th L. Emission Estimates for	e sum of exhaust and	800 ft Sidewalk		Total	Exhaust	Fugitive Dust	Total	Exhaust	Fugitive Dust	n columns K and
Total PM10 emissions shown in column F are th L. Emission Estimates for Project Phases (Metric Units)	 Sum of exhaust and ARTIC - Doug Rd. 3 ROG (kgs/day) 	800 ft Sidewalk CO (kgs/day)	NOx (kgs/day)	Total PM10 (kgs/day)	Exhaust PM10 (kgs/day)	Fugitive Dust PM10 (kgs/day)	Total PM2.5 (kgs/day)	Exhaust and fugitive dus Exhaust PM2.5 (kgs/day)	Fugitive Dust PM2.5 (kgs/day)	CO2 (kgs/day)
Total PM10 emissions shown in column F are th L. Emission Estimates for Project Phases (Metric Units) Grubbing/Land Clearing	 Sum of exhaust and ARTIC - Doug Rd. (ROG (kgs/day) 	d fugitive dust en 800 ft Sidewalk CO (kgs/day) -	NOx (kgs/day)	Total PM10 (kgs/day)	Exhaust PM10 (kgs/day)	Fugitive Dust PM10 (kgs/day) -	Total PM2.5 (kgs/day)	Exhaust and fugitive dus Exhaust PM2.5 (kgs/day) -	Fugitive Dust PM2.5 (kgs/day)	CO2 (kgs/day)
Total PM10 emissions shown in column F are th L. Emission Estimates for Project Phases (Metric Units) Grubbing/Land Clearing Grading/Excavation	 Sum of exhaust and ARTIC - Doug Rd.: ROG (kgs/day) 	d fugitive dust en 800 ft Sidewalk CO (kgs/day) - -	NOx (kgs/day) - 0.5	Total PM10 (kgs/day) - -	Exhaust PM10 (kgs/day) - -	Fugitive Dust PM10 (kgs/day) - -	Total PM2.5 (kgs/day) - -	Exhaust and fugitive dus Exhaust PM2.5 (kgs/day) - -	Fugitive Dust PM2.5 (kgs/day) - -	CO2 (kgs/day)
Total PM10 emissions shown in column F are th L. Emission Estimates for Project Phases (Metric Units) Grubbing/Land Clearing Grading/Excavation Drainage/Utilities/Sub-Grade	 Sum of exhaust and ARTIC - Doug Rd. (ROG (kgs/day) - -<td>d fugitive dust en 800 ft Sidewalk CO (kgs/day) - - -</td><td>NOx (kgs/day) - 0.5 0.2</td><td>Total PM10 (kgs/day) - - -</td><td>Exhaust PM10 (kgs/day) - - -</td><td>Fugitive Dust PM10 (kgs/day) - - -</td><td>Total PM2.5 (kgs/day) - - -</td><td>Exhaust and fugitive dus Exhaust PM2.5 (kgs/day) - - -</td><td>Fugitive Dust PM2.5 (kgs/day) - - -</td><td>CO2 (kgs/day) - - -</td>	d fugitive dust en 800 ft Sidewalk CO (kgs/day) - - -	NOx (kgs/day) - 0.5 0.2	Total PM10 (kgs/day) - - -	Exhaust PM10 (kgs/day) - - -	Fugitive Dust PM10 (kgs/day) - - -	Total PM2.5 (kgs/day) - - -	Exhaust and fugitive dus Exhaust PM2.5 (kgs/day) - - -	Fugitive Dust PM2.5 (kgs/day) - - -	CO2 (kgs/day) - - -
Total PM10 emissions shown in column F are th L. Emission Estimates for Project Phases (Metric Units) Grubbing/Land Clearing Grading/Excavation Drainage/Utilities/Sub-Grade Paving	e sum of exhaust and -> ARTIC - Doug Rd. ROG (kgs/day)	d fugitive dust en 800 ft Sidewalk CO (kgs/day) - - - - -	NOx (kgs/day) - 0.5 0.2 -	Total PM10 (kgs/day) - - - -	Exhaust PM10 (kgs/day) - - - -	Fugitive Dust PM10 (kgs/day) - - - -	Total PM2.5 (kgs/day) - - - -	Exhaust PM2.5 (kgs/day) - - - -	Fugitive Dust PM2.5 (kgs/day)	CO2 (kgs/day) - - -
Total PM10 emissions shown in column F are th L. Emission Estimates for Project Phases (Metric Units) Grubbing/Land Clearing Grading/Excavation Drainage/Utilities/Sub-Grade Paving Maximum (kilograms/day)	e sum of exhaust and -> ARTIC - Doug Rd. ROG (kgs/day)	d fugitive dust en 800 ft Sidewalk CO (kgs/day)	NOx (kgs/day) - 0.5 0.2 - 0.5	Total PM10 (kgs/day) - - - - -	Exhaust PM10 (kgs/day) - - - - -	Fugitive Dust PM10 (kgs/day) - - - - -	Total PM2.5 (kgs/day) - - - - -	Exhaust Exhaust PM2.5 (kgs/day) - - - - - - - -	Fugitive Dust PM2.5 (kgs/day)	CO2 (kgs/day) - - - - -
Total PM10 emissions shown in column F are th L. Emission Estimates for Project Phases (Metric Units) Grubbing/Land Clearing Grading/Excavation Drainage/Utilities/Sub-Grade Paving Maximum (kilograms/day) Total (megagrams/construction project)	e sum of exhaust and -> ARTIC - Doug Rd. ROG (kgs/day)	d fugitive dust en 800 ft Sidewalk CO (kgs/day) - - - - - - - - - - - -	NOx (kgs/day) - 0.5 0.2 - 0.5 0.0	Total PM10 (kgs/day) - - - - - - - - - - - - -	Exhaust PM10 (kgs/day) - - - - - - - - - - - - - - - - - - -	Fugitive Dust PM10 (kgs/day) - - - - - - - - - - - -	Total PM2.5 (kgs/day) - - - - - - -	Exhaust and fugitive dus Exhaust PM2.5 (kgs/day)	Fugitive Dust PM2.5 (kgs/day)	CO2 (kgs/day) - - - - - - -
Total PM10 emissions shown in column F are th L. Emission Estimates for Project Phases (Metric Units) Grubbing/Land Clearing Grading/Excavation Drainage/Utilities/Sub-Grade Paving Maximum (kilograms/day) Total (megagrams/construction project) Notes: Project Start Yea	e sum of exhaust and -> ARTIC - Doug Rd. ROG (kgs/day)	d fugitive dust en 800 ft Sidewalk CO (kgs/day) - - - - - - - - - -	NOx (kgs/day) - 0.5 0.2 - 0.5 0.5 0.0	Total PM10 (kgs/day) - - - - - - - - - -	Exhaust PM10 (kgs/day) - - - - - - - - - - -	Fugitive Dust PM10 (kgs/day) - - - - - - - - - -	Total PM2.5 (kgs/day) - - - - - - -	Exhaust PM2.5 (kgs/day) - - - - - - - -	Fugitive Dust PM2.5 (kgs/day) - - - - - - - - - - - - - - - - - - -	CO2 (kgs/day) - - - - - - - - - -
Total PM10 emissions shown in column F are th L. Emission Estimates for Project Phases (Metric Units) Grubbing/Land Clearing Grading/Excavation Drainage/Utilities/Sub-Grade Paving Maximum (kilograms/day) Total (megagrams/construction project) Notes: Project Start Yea Project Length (months	e sum of exhaust and -> ARTIC - Doug Rd. ROG (kgs/day)	d fugitive dust en 800 ft Sidewalk CO (kgs/day) - - - - - - - -	NOx (kgs/day) - 0.5 0.2 - 0.5 0.5 0.0	Total PM10 (kgs/day) - - - - - - - - - - -	Exhaust PM10 (kgs/day) - - - - - - - - - - -	Fugitive Dust PM10 (kgs/day) - - - - - - - - - - -	Total PM2.5 (kgs/day) - - - - - - - -	Exhaust PM2.5 (kgs/day) - - - - - - - - -	Fugitive Dust PM2.5 (kgs/day)	CO2 (kgs/day) - - - - - - - -
Total PM10 emissions shown in column F are th L. Emission Estimates for Project Phases (Metric Units) Grubbing/Land Clearing Grading/Excavation Drainage/Utilities/Sub-Grade Paving Maximum (kilograms/day) Total (megagrams/construction project) Notes: Project Start Yea Project Length (months Total Project Area (hectares	e sum of exhaust and -> ARTIC - Doug Rd. ROG (kgs/day)	d fugitive dust en 800 ft Sidewalk CO (kgs/day) - - - - - - - - - -	NOx (kgs/day) - 0.5 0.2 - 0.5 0.5 0.0	Total PM10 (kgs/day) - - - - - - - - - -	Exhaust PM10 (kgs/day) - - - - - - - - - -	Fugitive Dust PM10 (kgs/day)	Total PM2.5 (kgs/day) - - - - - - -	Exhaust PM2.5 (kgs/day) - - - - - - - - -	Fugitive Dust PM2.5 (kgs/day)	CO2 (kgs/day) - - - - - - - -
Total PM10 emissions shown in column F are th L. Emission Estimates for Project Phases (Metric Units) Grubbing/Land Clearing Grading/Excavation Drainage/Utilities/Sub-Grade Paving Maximum (kilograms/day) Total (megagrams/construction project) Notes: Project Start Yea Project Length (months Total Project Area (hectares Maximum Area Disturbed/Day (hectares	e sum of exhaust and -> ARTIC - Doug Rd. ROG (kgs/day)	800 ft Sidewalk CO (kgs/day) - - - - - - - -	NOx (kgs/day) - 0.5 0.2 - 0.5 0.0	Total PM10 (kgs/day) - - - - - - - - - -	Exhaust PM10 (kgs/day) - - - - - - - - -	Fugitive Dust PM10 (kgs/day)	Total PM2.5 (kgs/day) - - - - - - -	Exhaust PM2.5 (kgs/day) - - - - - - - - -	Fugitive Dust PM2.5 (kgs/day)	CO2 (kgs/day) - - - - - - -
Total PM10 emissions shown in column F are th L. Emission Estimates for Project Phases (Metric Units) Grubbing/Land Clearing Grading/Excavation Drainage/Utilities/Sub-Grade Paving Maximum (kilograms/day) Total (megagrams/construction project) Notes: Project Start Yea Project Length (months Total Project Area (hectares Maximum Area Disturbed/Day (hectares Total Soil Imported/Exported (meters ³ /day	e sum of exhaust and -> ARTIC - Doug Rd. ROG (kgs/day)	800 ft Sidewalk CO (kgs/day) - - - - - - - -	NOx (kgs/day) - 0.5 0.2 - 0.5 0.0	Total PM10 (kgs/day) - - - - - - -	Exhaust PM10 (kgs/day) - - - - - - - - - -	Fugitive Dust PM10 (kgs/day)	Total PM2.5 (kgs/day) - - - - - - - -	Exhaust PM2.5 (kgs/day) - - - - - - - -	Fugitive Dust PM2.5 (kgs/day)	CO2 (kgs/day) - - - - - - -
Total PM10 emissions shown in column F are th L. Emission Estimates for Project Phases (Metric Units) Grubbing/Land Clearing Grading/Excavation Drainage/Utilities/Sub-Grade Paving Maximum (kilograms/day) Total (megagrams/construction project) Notes: Project Start Yea Project Length (months Total Project Area (hectares Maximum Area Disturbed/Day (hectares Total Soil Imported/Exported (meters ³ /day PM10 and PM2.5 estimates assume 50% control	e sum of exhaust and -> ARTIC - Doug Rd. ROG (kgs/day)	800 ft Sidewalk CO (kgs/day) - - - - - - - - - - - - - - - - - - -	NOx (kgs/day) - 0.5 0.2 - 0.5 0.0 3sociated dust con	Total PM10 (kgs/day)	Exhaust PM10 (kgs/day) - - - - - - - - - - - - - - - - - - -	Fugitive Dust PM10 (kgs/day) - - - - - - - - -	Total PM2.5 (kgs/day) - - - - - - - -	Exhaust PM2.5 (kgs/day) - - - - - - - - -	Fugitive Dust PM2.5 (kgs/day)	CO2 (kgs/day) - - - - - - -

A-4: Road Construction Emission Model – Widen Douglas Road

Road Construction Emissions M	lodel	Version 6.3.2	
Data Entry Worksheet			SACRAMENTO METROPOLITAN
Note: Required data input sections have a yellow ba	ackground.		
Optional data input sections have a blue background	d. Only areas with a		
yellow or blue background can be modified. Program	n defaults have a white backgr	ALP QUALITY	
The user is required to enter information in cells C10) through C25.	MANAGEMENT DISTRICT	
Input Type			
Project Name	- Widen Douglass Road	(S. of Katella)	
Construction Start Year	2012	Enter a Year between 2005 and 2025 (inclusive)	
Project Type		1 New Road Construction	
	2	2 Road Widening	To begin a new project, click this button to clear
		3 Bridge/Overpass Construction	data previously entered. This button will only work
Project Construction Time	2.0	months	this spreadsheet.
Predominant Soil/Site Type: Enter 1, 2, or 3		1. Sand Gravel	
	2	2. Weathered Rock-Earth	
		3. Blasted Rock	
Project Length	0.34	miles	
Total Project Area	2.2	acres	
Maximum Area Disturbed/Day	0.2	acres	
Water Trucks Used?	1	1. Yes 2. No	
Soil Imported		yd³/day	
Soil Exported		yd³/day	
Average Truck Capacity	20.0	yd ³ (assume 20 if unknown)	

Emission Estimates for ->	ARTIC - Widen Do	uglass Road (S. of	Katella)	Total	Exhaust	Fugitive Dust	Total	Exhaust	Fugitive Dust	
Project Phases (English Units)	ROG (lbs/day)	CO (lbs/day)	NOx (lbs/day)	PM10 (lbs/day)	PM10 (lbs/day)	PM10 (lbs/day)	PM2.5 (Ibs/day)	PM2.5 (Ibs/day)	PM2.5 (lbs/day)	CO2 (lbs/day)
Grubbing/Land Clearing		-	-	-	-	-	-	-	-	-
Grading/Excavation	2.5	11.7	17.5	3.0	1.0	2.0	1.3	0.9	0.4	2,012.5
Drainage/Utilities/Sub-Grade	2.1	8.9	13.4	2.9	0.9	2.0	1.2	0.8	0.4	1,441.6
Paving	2.3	8.9	12.9	1.1	1.1	-	1.0	1.0	-	1,240.2
Maximum (pounds/day)	2.5	11.7	17.5	3.0	1.1	2.0	1.3	1.0	0.4	2,012.5
Total (tons/construction project)	0.1	0.2	0.3	0.1	0.0	0.0	0.0	0.0	0.0	37.1
Notes: Project Start Year ->	2012									
Project Length (months) ->	2									ļ
Total Project Area (acres) ->	2									ļ
Maximum Area Disturbed/Day (acres) ->	0									ļ
Total Soil Imported/Exported (yd 3/day)->	0									
PM10 and PM2.5 estimates assume 50% control of	f fugitive dust from	m watering and a	associated dust of	control measures	if a minimum nu	mber of water tru	icks are specified	ł.		ļ
Emission Estimates for ->	ARTIC - Widen Do	uglass Road (S. of	Katella)	Total	Exhaust	Fugitive Dust	Total	Exhaust	Fugitive Dust	
Project Phases (Metric Units)	ROG (kgs/day)	CO (kgs/day)	NOx (kgs/day)	PM10 (kgs/day)	PM10 (kgs/day)	PM10 (kgs/day)	PM2.5 (kgs/day)	PM2.5 (kgs/day)	PM2.5 (kgs/day)	CO2 (kgs/day)
Grubbing/Land Clearing	-	-	-	-	-	-	-	-	-	-
Grading/Excavation	1.1	5.3	7.9	1.4	0.4	0.9	0.6	0.4	0.2	914.8
Drainage/Utilities/Sub-Grade	1.0	4.0	6.1	1.3	0.4	0.9	0.5	0.4	0.2	655.3
Paving	1.1	4.0	5.9	0.5	0.5	-	0.5	0.5	-	563.7
Maximum (kilograms/day)	1.1	5.3	7.9	1.4	0.5	0.9	0.6	0.5	0.2	914.8
Total (megagrams/construction project)	0.0	0.2	0.3	0.0	0.0	0.0	0.0	0.0	0.0	33.7
Notes: Project Start Year ->	2012									
Project Length (months) ->	2									
Total Project Area (hectares) ->	1									
Maximum Area Disturbed/Day (hectares) ->	0									
Total Soil Imported/Exported (meters ³ /day)->	0									
PM10 and PM2.5 estimates assume 50% control of	f fugitive dust from	m watering and a	associated dust of	control measures	if a minimum nu	mber of water tru	icks are specified	1.		
Total PM10 emissions shown in column F are the se emissions shown in columns K and L.	um of exhaust ar	nd fugitive dust e	missions shown	in columns H and	d I. Total PM2.5	emissions showr	n in Column J are	the sume of exh	aust and fugitive	dust

With NOx Mitigation

	ARTIC - Widen Do	uglass Road (S. of	Katella)	Total	Exhaust	Fugitive Dust	Total	Exhaust	Fugitive Dust	
Project Phases (English Units)	ROG (Ibs/day)	CO (lbs/day)	NOx (lbs/day)	PM10 (lbs/day)	PM10 (lbs/day)	PM10 (lbs/day)	PM2.5 (lbs/day)	PM2.5 (lbs/day)	PM2.5 (lbs/day)	CO2 (Ibs/day)
Grubbing/Land Clearing	-	-	-	-	-	-	-	-	-	-
Grading/Excavation			14.2							
Drainage/Utilities/Sub-Grade			11.7							
Paving			12.9							
Maximum (pounds/day)			14.2							
Total (tons/construction project)			0.3							
Notes: Project Start Year ->	2012									
Project Length (months) ->	2									
Total Project Area (acres) ->	2									
Maximum Area Disturbed/Day (acres) ->	0									
Total Soil Imported/Exported (yd ³ /day)->	0									
PM10 and PM2.5 estimates assume 50% control of	fugitive dust from	watering and as	sociated dust cont	rol measures if a m	ninimum number of	water trucks are s	pecified.			
Emission Estimates for ->	ARTIC - Widen Do	uglass Road (S. of	Katella)	Total	Exhaust	Fugitive Dust	Total	Exhaust	Fugitive Dust	
Project Phases (Metric Units)	ROG (kgs/day)	CO (kgs/day)	NOx (kgs/day)	PM10 (kgs/day)	PM10 (kgs/day)	PM10 (kgs/day)	PM2.5 (kgs/day)	PM2.5 (kgs/day)	PM2.5 (kgs/day)	CO2 (kgs/day)
Grubbing/Land Clearing	-	-	-	-	-	-	-	-	-	-
Grading/Excavation	-	-	6.5	-	-	-	-			
Drainage/Utilities/Sub-Grade								-	-	-
Stanlage, ethnice, eas ethat	-	-	5.3	-	-	-	-	-	-	-
Paving	-	-	5.3 5.9	-	-	-	-	-	-	- -
Paving Maximum (kilograms/day)	-		5.3 5.9 6.5	-	-		-	-	-	- - -
Paving Maximum (kilograms/day) Total (megagrams/construction project)	-	-	5.3 5.9 6.5 0.3		- - - -	- - - -	- - - -			
Paving Maximum (kilograms/day) Total (megagrams/construction project) Notes: Project Start Year ->	- - - 2012	-	5.3 5.9 6.5 0.3	- - - -	-	- - - -		-	-	- - - -
Paving Maximum (kilograms/day) Total (megagrams/construction project) Notes: Project Start Year -> Project Length (months) ->	- - - 2012 2	-	5.3 5.9 6.5 0.3				- - -	- - - - -		- - - -
Paving Maximum (kilograms/day) Total (megagrams/construction project) Notes: Project Start Year -> Project Length (months) -> Total Project Area (hectares) ->	- - - 2012 2 1	-	5.3 5.9 6.5 0.3		-		- - -	-	-	- - - -
Paving Maximum (kilograms/day) Total (megagrams/construction project) Notes: Project Start Year -> Project Length (months) -> Total Project Area (hectares) -> Maximum Area Disturbed/Day (hectares) ->	- - - 2012 2 1 0	-	5.3 5.9 6.5 0.3		- - -	- - -			-	- - - -
Paving Maximum (kilograms/day) Total (megagrams/construction project) Notes: Project Start Year -> Project Length (months) -> Total Project Area (hectares) -> Maximum Area Disturbed/Day (hectares) -> Total Soil Imported/Exported (meters ³ /day)->	- - - 2012 2 1 0 0	-	5.3 5.9 6.5 0.3	-	- - -	- - -	-		-	- - - - -
Paving Maximum (kilograms/day) Total (megagrams/construction project) Notes: Project Start Year -> Project Length (months) -> Total Project Area (hectares) -> Maximum Area Disturbed/Day (hectares) -> Total Soil Imported/Exported (meters ³ /day)-> PM10 and PM2.5 estimates assume 50% control of	- - - 2012 2 1 0 0 fugitive dust from	- - - watering and as	5.3 5.9 6.5 0.3 sociated dust cont	- - - rol measures if a m	- - - -	- - - water trucks are s	- - - pecified.		-	- - - - -

A-5: Road Construction Emission Model – Katella Avenue Right Turn Lane

Road Construction Emissions M	lodel	Version 6.3.2	
Data Entry Worksheet			SACRAMENTO METROPOLITAN
Note: Required data input sections have a yellow ba	ackground.		
Optional data input sections have a blue background	d. Only areas with a		
yellow or blue background can be modified. Program	n defaults have a white backgr	ound.	ALP QUALITY
The user is required to enter information in cells C10) through C25.		MANAGEMENT DISTRICT
Input Type			
Project Name	RTIC - Katella Ave Right T	Furn Lane	
Construction Start Year	2012	Enter a Year between 2005 and 2025 (inclusive)	
Project Type		1 New Road Construction	
	2	2 Road Widening	To begin a new project, click this button to clear
		3 Bridge/Overpass Construction	data previously entered. This button will only work
Project Construction Time	1.0	month	this spreadsheet.
Predominant Soil/Site Type: Enter 1, 2, or 3		1. Sand Gravel	
	2	2. Weathered Rock-Earth	
		3. Blasted Rock	
Project Length	0.019	miles	
Total Project Area	0.1	acres	
Maximum Area Disturbed/Day	0.1	acres	
Water Trucks Used?	1	1. Yes 2. No	
Soil Imported		yd ³ /day	
Soil Exported		yd³/day	
Average Truck Capacity	20.0	yd ³ (assume 20 if unknown)	

Emission Estimates for ->	ARTIC - Katella Av	/e Right Turn Lane		Total	Exhaust	Fugitive Dust	Total	Exhaust	Fugitive Dust	
Project Phases (<mark>English Units</mark>)	ROG (lbs/day)	CO (lbs/day)	NOx (lbs/day)	PM10 (Ibs/day)	PM10 (lbs/day)	PM10 (lbs/day)	PM2.5 (lbs/day)	PM2.5 (Ibs/day)	PM2.5 (lbs/day)	CO2 (Ibs/day)
Grubbing/Land Clearing	1.8	7.8	15.2	1.6	0.6	1.0	0.8	0.6	0.2	1,541.6
Grading/Excavation	1.5	7.6	10.9	1.6	0.6	1.0	0.8	0.6	0.2	1,260.7
Drainage/Utilities/Sub-Grade	-	-	-	0.0	0.0	-	-	-	-	_ !
Paving	1.6	6.4	9.6	0.9	0.9		0.8	0.8	-	936.6
Maximum (pounds/day)	1.8	7.8	15.2	1.6	0.9	1.0	0.8	0.8	0.2	1,541.6
Total (tons/construction project)	0.0	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	13.6
Notes: Project Start Year ->	2012									
Project Length (months) ->	1									ŗ
Total Project Area (acres) ->	0									ļ
Maximum Area Disturbed/Day (acres) ->	0									ļ
Total Soil Imported/Exported (yd ³ /day)->	0									ļ
PM10 and PM2.5 estimates assume 50% control of	f fugitive dust fror	m watering and	associated dust	control measures	if a minimum ກເ	umber of water tr	ucks are specifie	d.		ļ
Emission Estimates for ->	ARTIC - Katella Av	ve Right Turn Lane		Total	Exhaust	Fugitive Dust	Total	Exhaust	Fugitive Dust	
Project Phases (Metric Units)	ROG (kgs/day)	CO (kgs/day)	NOx (kgs/day)	PM10 (kgs/day)	PM10 (kgs/day)	PM10 (kgs/day)	PM2.5 (kgs/day)	PM2.5 (kgs/day)	PM2.5 (kgs/day)	CO2 (kgs/day)
Grubbing/Land Clearing	0.8	3.6	6.9	0.7	0.3	0.5	0.4	0.3	0.1	700.7
Grading/Excavation	0.7	3.5	5.0	0.7	0.3	0.5	0.4	0.3	0.1	573.0
Drainage/Utilities/Sub-Grade	-	-	-	0.0	0.0	-	-	-	-	-
Paving	0.7	2.9	4.4	0.4	0.4		0.4	0.4		425.7
Maximum (kilograms/day)	0.8	3.6	6.9	0.7	0.4	0.5	0.4	0.4	0.1	700.7
Total (megagrams/construction project)	0.0	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	12.3
Notes: Project Start Year ->	2012									
Project Length (months) ->	1									
Total Project Area (hectares) ->	0									
Maximum Area Disturbed/Day (hectares) ->	0									
Total Soil Imported/Exported (meters ³ /day)->	0									
PM10 and PM2.5 estimates assume 50% control of	f fugitive dust fror	m watering and a	associated dust (control measures	if a minimum nư	umber of water tr	ucks are specifier	d.		
Total PM10 emissions shown in column F are the s	um of exhaust ar	nd fugitive dust e	missions shown	in columns H an	d I. Total PM2.5	emissions show	∩ in Column J ar∉	e the sume of ext	naust and fugitive	dust

A-6: Road Construction Emission Model – Stub End Track

Road Construction Emissions	lodel	Version 6.3.2	
Data Entry Worksheet			SACRAMENTO METROPOLITAN
Note: Required data input sections have a yellow b	background.		
Optional data input sections have a blue backgrour	nd. Only areas with a		
yellow or blue background can be modified. Progra	m defaults have a white background		ALP QUALITY
The user is required to enter information in cells C1	0 through C25.		MANAGEMENT DISTRICT
Input Type			
Project Name	ARTIC - Stub End Track		
Construction Start Year	2012	Enter a Year between 2005 and 2025 (inclusive)	
Project Type		1 New Road Construction	
, ,,	1	2 Road Widening	To begin a new project, click this button to clear
		3 Bridge/Overpass Construction	data previously entered. This button will only work
Project Construction Time	13.0	months	this spreadsheet.
Predominant Soil/Site Type: Enter 1, 2, or 3		1. Sand Gravel	
	2	2. Weathered Rock-Earth	
		3. Blasted Rock	
Project Length	0.4735	miles	
Total Project Area	1.1	acres	
Maximum Area Disturbed/Day	0.2	acres	
Water Trucks Used?	1	1. Yes 2. No	
Soil Imported	0.0	yd³/day	
Soil Exported	0.0	yd³/day	
Average Truck Capacity	20.0	yd ³ (assume 20 if unknown)	

Emission Estimates for ->	ARTIC - Stub End	Track		Total	Exhaust	Fugitive Dust	Total	Exhaust	Fugitive Dust	
Project Phases (<mark>English Units</mark>)	ROG (lbs/day)	CO (lbs/day)	NOx (lbs/day)	PM10 (lbs/day)	PM10 (lbs/day)	PM10 (Ibs/day)	PM2.5 (lbs/day)	PM2.5 (lbs/day)	PM2.5 (Ibs/day)	CO2 (lbs/day)
Grubbing/Land Clearing	-	-	-	-	-	-		-	-	
Grading/Excavation	1.4	7.6	10.5	2.6	0.6	2.0	1.0	0.6	0.4	1,258.3
Drainage/Utilities/Sub-Grade	1.3	5.5	8.5	2.5	0.5	2.0	0.9	0.5	0.4	1,054.6
Paving	-	-	-	-	-	-	-	-	-	
Maximum (pounds/day)	1.4	7.6	10.5	2.6	0.6	2.0	1.0	0.6	0.4	1,258.3
Total (tons/construction project)	0.2	1.0	1.4	0.3	0.1	0.2	0.1	0.1	0.0	166.5
Notes: Project Start Year ->	2012									
Project Length (months) ->	13									I
Total Project Area (acres) ->	1									I
Maximum Area Disturbed/Day (acres) ->	0									I
Total Soil Imported/Exported (yd ³ /day)->	0									I
PM10 and PM2.5 estimates assume 50% control of	f fugitive dust from	m watering and a	associated dust (control measures	if a minimum nu	umber of water tru	ucks are specifier	d.		I
Emission Estimates for ->	ARTIC - Stub End	Track		Total	Exhaust	Fugitive Dust	Total	Exhaust	Fugitive Dust	
Project Phases (Metric Units)	ROG (kgs/day)	CO (kgs/day)	NOx (kgs/day)	PM10 (kgs/day)	PM10 (kgs/day)	PM10 (kgs/day)	PM2.5 (kgs/day)	PM2.5 (kgs/day)	PM2.5 (kgs/day)	CO2 (kgs/day)
Grubbing/Land Clearing	-	-	-	-	-	-	-		-	-
Grading/Excavation	0.7	3.5	4.8	1.2	0.3	0.9	0.4	0.3	0.2	572.0
Drainage/Utilities/Sub-Grade	0.6	2.5	3.9	1.1	0.2	0.9	0.4	0.2	0.2	479.4
Paving										-
Maximum (kilograms/day)	0.7	3.5	4.8	1.2	0.3	0.9	0.4	0.3	0.2	572.0
Total (megagrams/construction project)	0.2	0.9	1.2	0.3	0.1	0.2	0.1	0.1	0.0	151.0
Notes: Project Start Year ->	2012									
Project Length (months) ->	13									
Total Project Area (hectares) ->	0									
Maximum Area Disturbed/Day (hectares) ->	0									
Total Soil Imported/Exported (meters ³ /day)->	0									
PM10 and PM2.5 estimates assume 50% control of	f fugitive dust fror	m watering and a	associated dust c	control measures	if a minimum nu	mber of water tru	ucks are specified	J.		
Total PM10 emissions shown in column F are the s										

With NOx Mitigation

Project Phases (English Units) Grubbing/Land Clearing Grading/Excavation Drainage/Utilities/Sub-Grade Paving	ROG (Ibs/day) -	CO (Ibs/day)				Fugitive Dust	TOTAL	Exhaust	Fugitive Dust	
Grubbing/Land Clearing Grading/Excavation Drainage/Utilities/Sub-Grade Paving	-		NOx (lbs/day)	PM10 (Ibs/day)	PM10 (lbs/day)	PM10 (Ibs/day)	PM2.5 (Ibs/day)	PM2.5 (lbs/day)	PM2.5 (Ibs/day)	CO2 (Ibs/day)
Grading/Excavation Drainage/Utilities/Sub-Grade Paving		-	-	-	-	-	-	-	-	-
Drainage/Utilities/Sub-Grade Paving			8.4							
Paving			7.6							
			-							
Maximum (pounds/day)			8.4							
Total (tons/construction project)			1.1							
Notes: Project Start Year ->	2012									
Project Length (months) ->	13									
Total Project Area (acres) ->	1									
Maximum Area Disturbed/Day (acres) ->	0									
Total Soil Imported/Exported (yd ³ /day)->	0									
PM10 and PM2.5 estimates assume 50% control of	fuaitive dust from	watering and as	sociated dust con	trol measures if a r	ninimum number of	water trucks are sp	ecified.			
Emission Estimates for ->	ARTIC - Stub End	Track		Total	Exhaust	Fundation Devel	T = (= 1			
Project Phases (Metric Units)	ROG (kgs/dav)					Fugitive Dust	Iotai	Exhaust	Fugitive Dust	
	Ree (Rgs/ddy)	CO (kgs/day)	NOx (kgs/day)	PM10 (kgs/day)	PM10 (kgs/day)	PM10 (kgs/day)	PM2.5 (kgs/day)	Exhaust PM2.5 (kgs/day)	Fugitive Dust PM2.5 (kgs/day)	CO2 (kgs/day)
Grubbing/Land Clearing	-	CO (kgs/day)	NOx (kgs/day) -	PM10 (kgs/day) -	PM10 (kgs/day) -	PM10 (kgs/day)	PM2.5 (kgs/day) -	Exhaust PM2.5 (kgs/day) -	Fugitive Dust PM2.5 (kgs/day) -	CO2 (kgs/day) -
Grubbing/Land Clearing Grading/Excavation	-	- -	NOx (kgs/day) - 3.8	PM10 (kgs/day) - -	PM10 (kgs/day) - -	PM10 (kgs/day) - -	PM2.5 (kgs/day) -	Exhaust PM2.5 (kgs/day) - -	Fugitive Dust PM2.5 (kgs/day) - -	CO2 (kgs/day) - -
Grubbing/Land Clearing Grading/Excavation Drainage/Utilities/Sub-Grade		- - -	NOx (kgs/day) - 3.8 3.4	PM10 (kgs/day) - - -	PM10 (kgs/day) - - -	PM10 (kgs/day) - - -	i otai PM2.5 (kgs/day) - - -	Exhaust PM2.5 (kgs/day) - - -	Fugitive Dust PM2.5 (kgs/day) - - -	CO2 (kgs/day) - - -
Grubbing/Land Clearing Grading/Excavation Drainage/Utilities/Sub-Grade Paving	- - - -		NOx (kgs/day) - 3.8 3.4 	PM10 (kgs/day) - - - -	PM10 (kgs/day) - - - -	PM10 (kgs/day) - - - -	I otal PM2.5 (kgs/day) - - - -	Exhaust PM2.5 (kgs/day) - - - -	Fugitive Dust PM2.5 (kgs/day) - - - -	CO2 (kgs/day) - - -
Grubbing/Land Clearing Grading/Excavation Drainage/Utilities/Sub-Grade Paving Maximum (kilograms/day)			NOx (kgs/day) - 3.8 3.4 - 3.8	PM10 (kgs/day) - - - - -	PM10 (kgs/day) - - - - - -	PM10 (kgs/day) PM10 (kgs/day) - - - - -	I otal PM2.5 (kgs/day) - - - - - -	Exhaust PM2.5 (kgs/day) - - - - -	Fugitive Dust PM2.5 (kgs/day) - - - - -	CO2 (kgs/day) - - - - -
Grubbing/Land Clearing Grading/Excavation Drainage/Utilities/Sub-Grade Paving Maximum (kilograms/day) Total (megagrams/construction project)			NOx (kgs/day) - 3.8 3.4 - 3.8 1.0	PM10 (kgs/day) - - - - - - -	PM10 (kgs/day) - - - - - - - -	PM10 (kgs/day) - - - - - - -	I otal PM2.5 (kgs/day) - - - - - - - -	Exhaust PM2.5 (kgs/day) - - - - - - - -	Fugitive Dust PM2.5 (kgs/day) - - - - - - -	CO2 (kgs/day) - - - - - -
Grubbing/Land Clearing Grading/Excavation Drainage/Utilities/Sub-Grade Paving Maximum (kilograms/day) Total (megagrams/construction project) Notes: Project Start Year ->	2012		NOx (kgs/day) - 3.8 3.4 - 3.8 3.8 1.0	PM10 (kgs/day) - - - - - - - -	PM10 (kgs/day) - - - - - - - -	PM10 (kgs/day) - - - - - - - -	I otal PM2.5 (kgs/day) - - - - - - -	Exhaust PM2.5 (kgs/day) - - - - - - -	Fugitive Dust PM2.5 (kgs/day) - - - - - - - - -	CO2 (kgs/day) - - - - - - -
Grubbing/Land Clearing Grading/Excavation Drainage/Utilities/Sub-Grade Paving Maximum (kilograms/day) Total (megagrams/construction project) Notes: Project Start Year -> Project Length (months) ->	2012 13		NOx (kgs/day) - 3.8 3.4 - 3.8 1.0	PM10 (kgs/day) - - - - - - -	PM10 (kgs/day) - - - - - - - -	PM10 (kgs/day) - - - - - - - -	I otal PM2.5 (kgs/day) - - - - - - -	Exhaust PM2.5 (kgs/day) - - - - - - -	Fugitive Dust PM2.5 (kgs/day) - - - - - - - -	CO2 (kgs/day) - - - - - - -
Grubbing/Land Clearing Grading/Excavation Drainage/Utilities/Sub-Grade Paving Maximum (kilograms/day) Total (megagrams/construction project) Notes: Project Start Year -> Project Length (months) -> Total Project Area (hectares) ->			NOx (kgs/day) - 3.8 3.4 - 3.8 1.0	PM10 (kgs/day) - - - - - - -	PM10 (kgs/day) - - - - - - - -	PM10 (kgs/day) - - - - - - - -	I otal PM2.5 (kgs/day) - - - - - - -	Exhaust PM2.5 (kgs/day) - - - - - - - -	Fugitive Dust PM2.5 (kgs/day) - - - - - - - -	CO2 (kgs/day) - - - - - - -
Grubbing/Land Clearing Grading/Excavation Drainage/Utilities/Sub-Grade Paving Maximum (kilograms/day) Total (megagrams/construction project) Notes: Project Start Year -> Project Length (months) -> Total Project Area (hectares) -> Maximum Area Disturbed/Day (hectares) ->			NOx (kgs/day) - 3.8 3.4 - 3.8 1.0	PM10 (kgs/day) - - - - - - -	PM10 (kgs/day) - - - - - - - -	PM10 (kgs/day) - - - - - - - -	I otal PM2.5 (kgs/day) - - - - - - -	Exhaust PM2.5 (kgs/day) - - - - - - -	Fugitive Dust PM2.5 (kgs/day) - - - - - - - -	CO2 (kgs/day) - - - - - -
Grubbing/Land Clearing Grading/Excavation Drainage/Utilities/Sub-Grade Paving Maximum (kilograms/day) Total (megagrams/construction project) Notes: Project Start Year -> Project Length (months) -> Total Project Area (hectares) -> Maximum Area Disturbed/Day (hectares) -> Total Soil Imported/Exported (meters ³ /day)->			NOx (kgs/day) - 3.8 3.4 - 3.8 1.0	PM10 (kgs/day) - - - - - - -	PM10 (kgs/day) - - - - - - - -	PM10 (kgs/day) - - - - - - - -	I otal PM2.5 (kgs/day) - - - - - - -	Exhaust PM2.5 (kgs/day) - - - - - - -	Fugitive Dust PM2.5 (kgs/day) - - - - - - - -	CO2 (kgs/day) - - - - - -

A-7: Combined Summer Emission Report

Page: 1

7/9/2010 12:13:28 PM

Urbemis 2007 Version 9.2.4

Combined Summer Emissions Reports (Pounds/Day)

File Name: C:\Documents and Settings\jdill\My Documents\Projects\ARTIC\June 2010 Docs\ARTIC Building_R15_mitigation.urb924

Project Name: ARTIC Building

Project Location: South Coast AQMD

On-Road Vehicle Emissions Based on: Version : Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

Page: 2

7/9/2010 12:13:28 PM

Summary Report:											
CONSTRUCTION EMISSION ESTIMATES											
	ROG	<u>NOx</u>	<u>CO</u>	<u>SO2</u>	PM10 Dust PM	/110 Exhaust	<u>PM10</u>	PM2.5 Dust	PM2.5 Exhaust	<u>PM2.5</u>	<u>CO2</u>
2011 TOTALS (lbs/day unmitigated)	7.64	70.72	31.74	0.02	41.38	3.02	44.40	8.65	2.78	11.43	8,741.73
2011 TOTALS (lbs/day mitigated)	7.64	61.37	31.74	0.02	10.99	3.02	14.01	2.30	2.78	5.08	8,741.73
2012 TOTALS (lbs/day unmitigated)	9.69	86.50	57.10	0.08	41.63	3.59	44.98	8.74	3.30	11.95	12,977.76
2012 TOTALS (lbs/day mitigated)	9.69	73.55	57.10	0.08	23.68	3.59	26.83	4.99	3.30	7.88	12,977.76
2013 TOTALS (lbs/day unmitigated)	51.76	47.51	47.88	0.05	41.49	2.50	43.78	8.69	2.29	10.79	9,212.30
2013 TOTALS (lbs/day mitigated)	47.25	40.45	47.88	0.05	21.58	2.50	23.88	4.54	2.29	6.64	9,212.30
AREA SOURCE EMISSION ESTIMATES											
		ROG	<u>NOx</u>	<u>CO</u>	<u>SO2</u>	<u>PM10</u>	<u>PM2.5</u>	<u>CO2</u>			
TOTALS (lbs/day, unmitigated)		1.25	2.75	9.96	0.00	0.03	0.03	3,192.84			
OPERATIONAL (VEHICLE) EMISSION EST	IMATES										
		ROG	<u>NOx</u>	<u>CO</u>	<u>SO2</u>	<u>PM10</u>	<u>PM2.5</u>	<u>CO2</u>			
TOTALS (lbs/day, unmitigated)		27.43	38.65	337.98	0.44	3.96	2.54	43,574.05			
SUM OF AREA SOURCE AND OPERATION	IAL EMISSION E	STIMATES									
		ROG	<u>NOx</u>	<u>CO</u>	<u>SO2</u>	<u>PM10</u>	<u>PM2.5</u>	<u>CO2</u>			
TOTALS (lbs/day, unmitigated)		28.68	41.40	347.94	0.44	3.99	2.57	46,766.89			

Construction Unmitigated Detail Report:

Page: 3

7/9/2010 12:13:28 PM

CONSTRUCTION EMISSION ESTIMATES Summer Pounds Per Day, Unmitigated

	ROG	<u>NOx</u>	<u>CO</u>	<u>SO2</u>	PM10 Dust	PM10 Exhaust	<u>PM10</u>	PM2.5 Dust	PM2.5 Exhaust	<u>PM2.5</u>	<u>CO2</u>
Time Slice 5/2/2011-5/10/2011 Active Days: 8	3.99	34.21	16.80	0.01	8.62	1.66	10.28	1.80	1.52	3.32	4,149.82
Demolition 05/01/2011- 08/31/2011	3.99	34.21	16.80	0.01	8.62	1.66	10.28	1.80	1.52	3.32	4,149.82
Fugitive Dust	0.00	0.00	0.00	0.00	8.59	0.00	8.59	1.79	0.00	1.79	0.00
Demo Off Road Diesel	3.52	28.82	13.29	0.00	0.00	1.44	1.44	0.00	1.32	1.32	3,160.93
Demo On Road Diesel	0.42	5.31	2.04	0.01	0.03	0.21	0.24	0.01	0.20	0.20	802.34
Demo Worker Trips	0.05	0.08	1.46	0.00	0.01	0.01	0.01	0.00	0.00	0.01	186.55
Time Slice 5/11/2011-8/31/2011 Active Days: 97	5.07	41.52	22.37	0.01	8.68	2.21	10.89	1.81	2.03	3.84	4,979.20
Demolition 05/01/2011- 08/31/2011	3.99	34.21	16.80	0.01	8.62	1.66	10.28	1.80	1.52	3.32	4,149.82
Fugitive Dust	0.00	0.00	0.00	0.00	8.59	0.00	8.59	1.79	0.00	1.79	0.00
Demo Off Road Diesel	3.52	28.82	13.29	0.00	0.00	1.44	1.44	0.00	1.32	1.32	3,160.93
Demo On Road Diesel	0.42	5.31	2.04	0.01	0.03	0.21	0.24	0.01	0.20	0.20	802.34
Demo Worker Trips	0.05	0.08	1.46	0.00	0.01	0.01	0.01	0.00	0.00	0.01	186.55
Demolition 05/11/2011- 08/31/2011	1.09	7.31	5.57	0.00	0.06	0.55	0.61	0.01	0.51	0.52	829.38
Fugitive Dust	0.00	0.00	0.00	0.00	0.05	0.00	0.05	0.01	0.00	0.01	0.00
Demo Off Road Diesel	1.05	7.22	4.58	0.00	0.00	0.55	0.55	0.00	0.50	0.50	700.30
Demo On Road Diesel	0.00	0.03	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.71
Demo Worker Trips	0.03	0.06	0.98	0.00	0.01	0.00	0.01	0.00	0.00	0.00	124.37
Time Slice 11/1/2011-12/31/2011 Active Days: 53	<u>7.64</u>	<u>70.72</u>	<u>31.74</u>	<u>0.02</u>	<u>41.38</u>	<u>3.02</u>	<u>44.40</u>	<u>8.65</u>	<u>2.78</u>	<u>11.43</u>	<u>8,741.73</u>
--	-------------	--------------	--------------	-------------	--------------	-------------	--------------	-------------	-------------	--------------	-----------------
Mass Grading 11/01/2011- 01/31/2012	7.64	70.72	31.74	0.02	41.38	3.02	44.40	8.65	2.78	11.43	8,741.73
Mass Grading Dust	0.00	0.00	0.00	0.00	41.30	0.00	41.30	8.63	0.00	8.63	0.00
Mass Grading Off Road Diesel	6.48	56.59	24.40	0.00	0.00	2.45	2.45	0.00	2.25	2.25	6,373.79
Mass Grading On Road Diesel	1.10	14.01	5.39	0.02	0.07	0.56	0.63	0.02	0.52	0.54	2,119.20
Mass Grading Worker Trips	0.06	0.11	1.95	0.00	0.01	0.01	0.02	0.00	0.01	0.01	248.74
Time Slice 1/2/2012-1/31/2012 Active Days: 26	<u>9.69</u>	<u>86.50</u>	40.87	0.02	41.39	<u>3.59</u>	<u>44.98</u>	8.66	<u>3.30</u>	<u>11.95</u>	12,254.58
Mass Grading 11/01/2011- 01/31/2012	7.24	65.04	30.03	0.02	41.38	2.71	44.09	8.65	2.49	11.14	8,741.68
Mass Grading Dust	0.00	0.00	0.00	0.00	41.30	0.00	41.30	8.63	0.00	8.63	0.00
Mass Grading Off Road Diesel	6.17	52.45	23.40	0.00	0.00	2.21	2.21	0.00	2.03	2.03	6,373.79
Mass Grading On Road Diesel	1.01	12.48	4.82	0.02	0.07	0.49	0.56	0.02	0.45	0.48	2,119.20
Mass Grading Worker Trips	0.05	0.10	1.82	0.00	0.01	0.01	0.02	0.00	0.01	0.01	248.69
Trenching 01/01/2012-03/31/2012	2.45	21.46	10.83	0.00	0.01	0.88	0.88	0.00	0.81	0.81	3,512.89
Trenching Off Road Diesel	2.41	21.38	9.47	0.00	0.00	0.87	0.87	0.00	0.80	0.80	3,326.37
Trenching Worker Trips	0.04	0.08	1.36	0.00	0.01	0.01	0.01	0.00	0.00	0.01	186.52

Time Slice 2/1/2012-3/31/2012 Active Days: 52	6.31	61.80	29.16	0.04	41.45	2.55	44.01	8.68	2.35	11.02	9,379.70
Fine Grading 02/01/2012- 06/30/2012	3.86	40.35	18.33	0.04	41.45	1.68	43.12	8.67	1.54	10.22	5,866.81
Fine Grading Dust	0.00	0.00	0.00	0.00	41.30	0.00	41.30	8.63	0.00	8.63	0.00
Fine Grading Off Road Diesel	1.83	15.34	8.01	0.00	0.00	0.69	0.69	0.00	0.63	0.63	1,535.15
Fine Grading On Road Diesel	2.01	24.96	9.64	0.04	0.14	0.98	1.13	0.05	0.91	0.95	4,238.40
Fine Grading Worker Trips	0.02	0.04	0.68	0.00	0.00	0.00	0.01	0.00	0.00	0.00	93.26
Trenching 01/01/2012-03/31/2012	2.45	21.46	10.83	0.00	0.01	0.88	0.88	0.00	0.81	0.81	3,512.89
Trenching Off Road Diesel	2.41	21.38	9.47	0.00	0.00	0.87	0.87	0.00	0.80	0.80	3,326.37
Trenching Worker Trips	0.04	0.08	1.36	0.00	0.01	0.01	0.01	0.00	0.00	0.01	186.52
Time Slice 4/2/2012-6/30/2012 Active Days: 78	8.40	71.63	<u>57.10</u>	<u>0.08</u>	<u>41.63</u>	3.15	44.78	<u>8.74</u>	2.89	11.63	<u>12,977.76</u>
Building 04/01/2012-07/31/2013	4.54	31.28	38.77	0.04	0.18	1.47	1.65	0.06	1.35	1.41	7,110.95
Building Off Road Diesel	3.51	26.58	12.21	0.00	0.00	1.25	1.25	0.00	1.15	1.15	3,081.27
Building Vendor Trips	0.31	3.35	2.94	0.01	0.03	0.14	0.17	0.01	0.13	0.14	792.90
Building Worker Trips	0.71	1.35	23.62	0.03	0.15	0.09	0.24	0.06	0.07	0.13	3,236.78
Fine Grading 02/01/2012- 06/30/2012	3.86	40.35	18.33	0.04	41.45	1.68	43.12	8.67	1.54	10.22	5,866.81
Fine Grading Dust	0.00	0.00	0.00	0.00	41.30	0.00	41.30	8.63	0.00	8.63	0.00
Fine Grading Off Road Diesel	1.83	15.34	8.01	0.00	0.00	0.69	0.69	0.00	0.63	0.63	1,535.15
Fine Grading On Road Diesel	2.01	24.96	9.64	0.04	0.14	0.98	1.13	0.05	0.91	0.95	4,238.40
Fine Grading Worker Trips	0.02	0.04	0.68	0.00	0.00	0.00	0.01	0.00	0.00	0.00	93.26

Time Slice 7/2/2012-10/31/2012 Active Days: 105	4.54	31.28	38.77	0.04	0.18	1.47	1.65	0.06	1.35	1.41	7,110.95
Building 04/01/2012-07/31/2013	4.54	31.28	38.77	0.04	0.18	1.47	1.65	0.06	1.35	1.41	7,110.95
Building Off Road Diesel	3.51	26.58	12.21	0.00	0.00	1.25	1.25	0.00	1.15	1.15	3,081.27
Building Vendor Trips	0.31	3.35	2.94	0.01	0.03	0.14	0.17	0.01	0.13	0.14	792.90
Building Worker Trips	0.71	1.35	23.62	0.03	0.15	0.09	0.24	0.06	0.07	0.13	3,236.78
Time Slice 11/1/2012-12/31/2012 Active Days: 52	6.89	50.11	48.12	0.04	0.19	2.33	2.52	0.07	2.13	2.20	9,522.40
Building 04/01/2012-07/31/2013	4.54	31.28	38.77	0.04	0.18	1.47	1.65	0.06	1.35	1.41	7,110.95
Building Off Road Diesel	3.51	26.58	12.21	0.00	0.00	1.25	1.25	0.00	1.15	1.15	3,081.27
Building Vendor Trips	0.31	3.35	2.94	0.01	0.03	0.14	0.17	0.01	0.13	0.14	792.90
Building Worker Trips	0.71	1.35	23.62	0.03	0.15	0.09	0.24	0.06	0.07	0.13	3,236.78
Trenching 11/01/2012-12/31/2012	2.36	18.82	9.35	0.00	0.01	0.85	0.86	0.00	0.79	0.79	2,411.45
Trenching Off Road Diesel	2.32	18.76	8.22	0.00	0.00	0.85	0.85	0.00	0.78	0.78	2,256.02
Trenching Worker Trips	0.03	0.06	1.13	0.00	0.01	0.00	0.01	0.00	0.00	0.01	155.43
Time Slice 1/1/2013-2/28/2013 Active Days: 51	6.58	<u>47.51</u>	<u>47.88</u>	0.04	<u>41.49</u>	2.29	<u>43.78</u>	<u>8.69</u>	2.10	<u>10.79</u>	<u>9,212.30</u>
Building 04/01/2012-07/31/2013	4.23	28.91	36.56	0.04	0.18	1.37	1.55	0.06	1.25	1.32	7,110.60
Building Off Road Diesel	3.30	24.72	11.90	0.00	0.00	1.16	1.16	0.00	1.07	1.07	3,081.27
Building Vendor Trips	0.28	2.96	2.71	0.01	0.03	0.12	0.15	0.01	0.11	0.12	792.93
Building Worker Trips	0.65	1.23	21.96	0.03	0.15	0.09	0.24	0.06	0.07	0.13	3,236.39
Fine Grading 01/01/2013- 02/28/2013	2.35	18.60	11.32	0.00	41.31	0.92	42.23	8.63	0.85	9.48	2,101.70
Fine Grading Dust	0.00	0.00	0.00	0.00	41.30	0.00	41.30	8.63	0.00	8.63	0.00
Fine Grading Off Road Diesel	2.33	18.56	10.48	0.00	0.00	0.92	0.92	0.00	0.85	0.85	1,977.37
Fine Grading On Road Diesel	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fine Grading Worker Trips	0.02	0.05	0.84	0.00	0.01	0.00	0.01	0.00	0.00	0.00	124.33

Time Slice 3/1/2013-3/30/2013 Active Days: 26	4.23	28.91	36.56	0.04	0.18	1.37	1.55	0.06	1.25	1.32	7,110.60
Building 04/01/2012-07/31/2013	4.23	28.91	36.56	0.04	0.18	1.37	1.55	0.06	1.25	1.32	7,110.60
Building Off Road Diesel	3.30	24.72	11.90	0.00	0.00	1.16	1.16	0.00	1.07	1.07	3,081.27
Building Vendor Trips	0.28	2.96	2.71	0.01	0.03	0.12	0.15	0.01	0.11	0.12	792.93
Building Worker Trips	0.65	1.23	21.96	0.03	0.15	0.09	0.24	0.06	0.07	0.13	3,236.39
Time Slice 4/1/2013-5/31/2013 Active Days: 53	49.30	28.94	37.01	0.04	0.18	1.37	1.56	0.07	1.25	1.32	7,175.97
Building 04/01/2012-07/31/2013	4.23	28.91	36.56	0.04	0.18	1.37	1.55	0.06	1.25	1.32	7,110.60
Building Off Road Diesel	3.30	24.72	11.90	0.00	0.00	1.16	1.16	0.00	1.07	1.07	3,081.27
Building Vendor Trips	0.28	2.96	2.71	0.01	0.03	0.12	0.15	0.01	0.11	0.12	792.93
Building Worker Trips	0.65	1.23	21.96	0.03	0.15	0.09	0.24	0.06	0.07	0.13	3,236.39
Coating 04/01/2013-10/31/2013	45.07	0.02	0.44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	65.38
Architectural Coating	45.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Coating Worker Trips	0.01	0.02	0.44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	65.38

Time Slice 6/1/2013-7/31/2013 Active Days: 52	<u>51.76</u>	42.61	47.01	<u>0.05</u>	0.20	<u>2.50</u>	2.70	0.07	<u>2.29</u>	2.36	8,699.07
Asphalt 06/01/2013-08/31/2013	2.46	13.67	10.00	0.00	0.02	1.13	1.14	0.01	1.04	1.04	1,523.09
Paving Off-Gas	0.25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Paving Off Road Diesel	2.10	12.84	8.03	0.00	0.00	1.09	1.09	0.00	1.00	1.00	1,131.92
Paving On Road Diesel	0.06	0.74	0.29	0.00	0.00	0.03	0.03	0.00	0.03	0.03	142.52
Paving Worker Trips	0.05	0.09	1.69	0.00	0.01	0.01	0.02	0.00	0.01	0.01	248.66
Building 04/01/2012-07/31/2013	4.23	28.91	36.56	0.04	0.18	1.37	1.55	0.06	1.25	1.32	7,110.60
Building Off Road Diesel	3.30	24.72	11.90	0.00	0.00	1.16	1.16	0.00	1.07	1.07	3,081.27
Building Vendor Trips	0.28	2.96	2.71	0.01	0.03	0.12	0.15	0.01	0.11	0.12	792.93
Building Worker Trips	0.65	1.23	21.96	0.03	0.15	0.09	0.24	0.06	0.07	0.13	3,236.39
Coating 04/01/2013-10/31/2013	45.07	0.02	0.44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	65.38
Architectural Coating	45.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Coating Worker Trips	0.01	0.02	0.44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	65.38
Time Slice 8/1/2013-8/31/2013 Active Days: 27	47.52	13.69	10.45	0.00	0.02	1.13	1.15	0.01	1.04	1.04	1,588.47
Asphalt 06/01/2013-08/31/2013	2.46	13.67	10.00	0.00	0.02	1.13	1.14	0.01	1.04	1.04	1,523.09
Paving Off-Gas	0.25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Paving Off Road Diesel	2.10	12.84	8.03	0.00	0.00	1.09	1.09	0.00	1.00	1.00	1,131.92
Paving On Road Diesel	0.06	0.74	0.29	0.00	0.00	0.03	0.03	0.00	0.03	0.03	142.52
Paving Worker Trips	0.05	0.09	1.69	0.00	0.01	0.01	0.02	0.00	0.01	0.01	248.66
Coating 04/01/2013-10/31/2013	45.07	0.02	0.44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	65.38
Architectural Coating	45.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Coating Worker Trips	0.01	0.02	0.44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	65.38

7/9/2010 12:13:28 PM

Time Slice 9/2/2013-10/31/2013 Active Days: 52	45.07	0.02	0.44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	65.38
Coating 04/01/2013-10/31/2013	45.07	0.02	0.44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	65.38
Architectural Coating	45.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Coating Worker Trips	0.01	0.02	0.44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	65.38

Phase Assumptions

Phase: Demolition 5/1/2011 - 8/31/2011 - Demo Buildings

Building Volume Total (cubic feet): 932000

Building Volume Daily (cubic feet): 20444.76

On Road Truck Travel (VMT): 189.3

Off-Road Equipment:

1 Concrete/Industrial Saws (10 hp) operating at a 0.73 load factor for 8 hours per day

1 Off Highway Trucks (479 hp) operating at a 0.57 load factor for 8 hours per day

1 Rubber Tired Dozers (357 hp) operating at a 0.59 load factor for 4 hours per day

2 Tractors/Loaders/Backhoes (108 hp) operating at a 0.55 load factor for 8 hours per day

1 Water Trucks (189 hp) operating at a 0.5 load factor for 4 hours per day

Phase: Demolition 5/11/2011 - 8/31/2011 - Demo Parking Lot

Building Volume Total (cubic feet): 159000

Building Volume Daily (cubic feet): 120

On Road Truck Travel (VMT): 1.11

Off-Road Equipment:

1 Concrete/Industrial Saws (10 hp) operating at a 0.73 load factor for 8 hours per day

1 Rubber Tired Dozers (357 hp) operating at a 0.59 load factor for 1 hours per day

2 Tractors/Loaders/Backhoes (108 hp) operating at a 0.55 load factor for 6 hours per day

Phase: Fine Grading 2/1/2012 - 6/30/2012 - Fine Site Grading (Construction Zone) Total Acres Disturbed: 13.8 Page: 10
7/9/2010 12:13:28 PM
Maximum Daily Acreage Disturbed: 4.13
Fugitive Dust Level of Detail: Default

10 lbs per acre-day

On Road Truck Travel (VMT): 1000
Off-Road Equipment:

1 Graders (174 hp) operating at a 0.61 load factor for 6 hours per day
1 Rubber Tired Dozers (357 hp) operating at a 0.59 load factor for 5 hours per day
1 Water Trucks (189 hp) operating at a 0.5 load factor for 4 hours per day

Phase: Fine Grading 1/1/2013 - 2/28/2013 - Fine Parking Lot Grading

Total Acres Disturbed: 2.2

Maximum Daily Acreage Disturbed: 4.13

Fugitive Dust Level of Detail: Default

10 lbs per acre-day

On Road Truck Travel (VMT): 0

Off-Road Equipment:

1 Graders (174 hp) operating at a 0.61 load factor for 6 hours per day

1 Rubber Tired Dozers (357 hp) operating at a 0.59 load factor for 6 hours per day

1 Tractors/Loaders/Backhoes (108 hp) operating at a 0.55 load factor for 7 hours per day

1 Water Trucks (189 hp) operating at a 0.5 load factor for 4 hours per day

Phase: Mass Grading 11/1/2011 - 1/31/2012 - Mass Site Grading & Excavation Activity Total Acres Disturbed: 16 Maximum Daily Acreage Disturbed: 4.13 Fugitive Dust Level of Detail: Default 10 lbs per acre-day On Road Truck Travel (VMT): 500 Off-Road Equipment: 1 Excavators (168 hp) operating at a 0.57 load factor for 8 hours per day 1 Generator Sets (335 hp) operating at a 0.74 load factor for 2 hours per day

7/9/2010 12:13:28 PM

Graders (174 hp) operating at a 0.61 load factor for 6 hours per day
 Off Highway Trucks (479 hp) operating at a 0.57 load factor for 8 hours per day
 Rubber Tired Dozers (357 hp) operating at a 0.59 load factor for 6 hours per day
 Tractors/Loaders/Backhoes (108 hp) operating at a 0.55 load factor for 7 hours per day
 Water Trucks (189 hp) operating at a 0.5 load factor for 8 hours per day

Phase: Trenching 1/1/2012 - 3/31/2012 - Trenching (Foundation, Piles) Off-Road Equipment:

1 Bore/Drill Rigs (291 hp) operating at a 0.75 load factor for 8 hours per day

1 Excavators (168 hp) operating at a 0.57 load factor for 8 hours per day

1 Off Highway Trucks (479 hp) operating at a 0.57 load factor for 2 hours per day

1 Other General Industrial Equipment (238 hp) operating at a 0.51 load factor for 8 hours per day

- 1 Plate Compactors (50 hp) operating at a 0.43 load factor for 4 hours per day
- 1 Tractors/Loaders/Backhoes (108 hp) operating at a 0.55 load factor for 2 hours per day

Phase: Trenching 11/1/2012 - 12/31/2012 - Trenching (Utilities, Pipelines)

Off-Road Equipment:

- 1 Excavators (168 hp) operating at a 0.57 load factor for 6 hours per day
- 1 Off Highway Trucks (479 hp) operating at a 0.57 load factor for 5 hours per day
- 1 Other General Industrial Equipment (238 hp) operating at a 0.51 load factor for 8 hours per day
- 1 Tractors/Loaders/Backhoes (108 hp) operating at a 0.55 load factor for 5 hours per day
- 1 Welders (45 hp) operating at a 0.45 load factor for 4 hours per day

Phase: Paving 6/1/2013 - 8/31/2013 - Parking Lot Area Paving

Acres to be Paved: 7.4

Off-Road Equipment:

- 4 Cement and Mortar Mixers (10 hp) operating at a 0.56 load factor for 6 hours per day
- 1 Pavers (100 hp) operating at a 0.62 load factor for 7 hours per day
- 2 Paving Equipment (104 hp) operating at a 0.53 load factor for 6 hours per day
- 1 Rollers (95 hp) operating at a 0.56 load factor for 7 hours per day

Page: 12 7/9/2010 12:13:28 PM

Phase: Building Construction 4/1/2012 - 7/31/2013 - Construct Building (Terminal, Passenger Area)
Off-Road Equipment:
1 Air Compressors (20 hp) operating at a 0.48 load factor for 8 hours per day
1 Cranes (200 hp) operating at a 0.43 load factor for 6 hours per day
1 Crawler Tractors (200 hp) operating at a 0.64 load factor for 6 hours per day
1 Excavators (168 hp) operating at a 0.57 load factor for 6 hours per day
1 Forklifts (145 hp) operating at a 0.3 load factor for 4 hours per day
1 Generator Sets (335 hp) operating at a 0.74 load factor for 2 hours per day
1 Off Highway Trucks (479 hp) operating at a 0.57 load factor for 4 hours per day
1 Plate Compactors (50 hp) operating at a 0.43 load factor for 4 hours per day
3 Welders (50 hp) operating at a 0.45 load factor for 4 hours per day

Phase: Architectural Coating 4/1/2013 - 10/31/2013 - Architectural Coating - Building Paint Rule: Residential Interior Coatings begins 1/1/2005 ends 6/30/2008 specifies a VOC of 100 Rule: Residential Interior Coatings begins 7/1/2008 ends 12/31/2040 specifies a VOC of 50 Rule: Residential Exterior Coatings begins 1/1/2005 ends 6/30/2008 specifies a VOC of 250 Rule: Residential Exterior Coatings begins 7/1/2008 ends 12/31/2040 specifies a VOC of 100 Rule: Nonresidential Interior Coatings begins 1/1/2005 ends 12/31/2040 specifies a VOC of 250 Rule: Nonresidential Interior Coatings begins 1/1/2005 ends 12/31/2040 specifies a VOC of 250

Construction Mitigated Detail Report:

CONSTRUCTION EMISSION ESTIMATES Summer Pounds Per Day, Mitigated

	ROG	<u>NOx</u>	<u>CO</u>	<u>SO2</u>	<u>PM10 Dust</u>	PM10 Exhaust	<u>PM10</u>	<u>PM2.5 Dust</u>	PM2.5 Exhaust	<u>PM2.5</u>	<u>CO2</u>
--	-----	------------	-----------	------------	------------------	--------------	-------------	-------------------	---------------	--------------	------------

Time Slice 5/2/2011-5/10/2011 Active Days: 8	3.99	28.53	16.80	0.01	8.62	1.66	10.28	1.80	1.52	3.32	4,149.82
Demolition 05/01/2011- 08/31/2011	3.99	28.53	16.80	0.01	8.62	1.66	10.28	1.80	1.52	3.32	4,149.82
Fugitive Dust	0.00	0.00	0.00	0.00	8.59	0.00	8.59	1.79	0.00	1.79	0.00
Demo Off Road Diesel	3.52	23.14	13.29	0.00	0.00	1.44	1.44	0.00	1.32	1.32	3,160.93
Demo On Road Diesel	0.42	5.31	2.04	0.01	0.03	0.21	0.24	0.01	0.20	0.20	802.34
Demo Worker Trips	0.05	0.08	1.46	0.00	0.01	0.01	0.01	0.00	0.00	0.01	186.55
Time Slice 5/11/2011-8/31/2011 Active Days: 97	5.07	34.48	22.37	0.01	8.68	2.21	10.89	1.81	2.03	3.84	4,979.20
Demolition 05/01/2011- 08/31/2011	3.99	28.53	16.80	0.01	8.62	1.66	10.28	1.80	1.52	3.32	4,149.82
Fugitive Dust	0.00	0.00	0.00	0.00	8.59	0.00	8.59	1.79	0.00	1.79	0.00
Demo Off Road Diesel	3.52	23.14	13.29	0.00	0.00	1.44	1.44	0.00	1.32	1.32	3,160.93
Demo On Road Diesel	0.42	5.31	2.04	0.01	0.03	0.21	0.24	0.01	0.20	0.20	802.34
Demo Worker Trips	0.05	0.08	1.46	0.00	0.01	0.01	0.01	0.00	0.00	0.01	186.55
Demolition 05/11/2011- 08/31/2011	1.09	5.95	5.57	0.00	0.06	0.55	0.61	0.01	0.51	0.52	829.38
Fugitive Dust	0.00	0.00	0.00	0.00	0.05	0.00	0.05	0.01	0.00	0.01	0.00
Demo Off Road Diesel	1.05	5.86	4.58	0.00	0.00	0.55	0.55	0.00	0.50	0.50	700.30
Demo On Road Diesel	0.00	0.03	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.71
Demo Worker Trips	0.03	0.06	0.98	0.00	0.01	0.00	0.01	0.00	0.00	0.00	124.37

Time Slice 11/1/2011-12/31/2011 Active Days: 53	<u>7.64</u>	<u>61.37</u>	<u>31.74</u>	<u>0.02</u>	<u>10.99</u>	<u>3.02</u>	<u>14.01</u>	<u>2.30</u>	<u>2.78</u>	<u>5.08</u>	<u>8,741.73</u>
Mass Grading 11/01/2011- 01/31/2012	7.64	61.37	31.74	0.02	10.99	3.02	14.01	2.30	2.78	5.08	8,741.73
Mass Grading Dust	0.00	0.00	0.00	0.00	10.90	0.00	10.90	2.28	0.00	2.28	0.00
Mass Grading Off Road Diesel	6.48	47.25	24.40	0.00	0.00	2.45	2.45	0.00	2.25	2.25	6,373.79
Mass Grading On Road Diesel	1.10	14.01	5.39	0.02	0.07	0.56	0.63	0.02	0.52	0.54	2,119.20
Mass Grading Worker Trips	0.06	0.11	1.95	0.00	0.01	0.01	0.02	0.00	0.01	0.01	248.74
Time Slice 1/2/2012-1/31/2012 Active Days: 26	<u>9.69</u>	<u>73.55</u>	40.87	0.02	11.00	<u>3.59</u>	14.58	2.31	<u>3.30</u>	5.61	12,254.58
Mass Grading 11/01/2011- 01/31/2012	7.24	56.36	30.03	0.02	10.99	2.71	13.70	2.30	2.49	4.80	8,741.68
Mass Grading Dust	0.00	0.00	0.00	0.00	10.90	0.00	10.90	2.28	0.00	2.28	0.00
Mass Grading Off Road Diesel	6.17	43.78	23.40	0.00	0.00	2.21	2.21	0.00	2.03	2.03	6,373.79
Mass Grading On Road Diesel	1.01	12.48	4.82	0.02	0.07	0.49	0.56	0.02	0.45	0.48	2,119.20
Mass Grading Worker Trips	0.05	0.10	1.82	0.00	0.01	0.01	0.02	0.00	0.01	0.01	248.69
Trenching 01/01/2012-03/31/2012	2.45	17.18	10.83	0.00	0.01	0.88	0.88	0.00	0.81	0.81	3,512.89
Trenching Off Road Diesel	2.41	17.10	9.47	0.00	0.00	0.87	0.87	0.00	0.80	0.80	3,326.37
Trenching Worker Trips	0.04	0.08	1.36	0.00	0.01	0.01	0.01	0.00	0.00	0.01	186.52

Time Slice 2/1/2012-3/31/2012 Active Days: 52	6.31	54.46	29.16	0.04	23.51	2.55	26.06	4.93	2.35	7.28	9,379.70
Fine Grading 02/01/2012- 06/30/2012	3.86	37.28	18.33	0.04	23.50	1.68	25.18	4.93	1.54	6.47	5,866.81
Fine Grading Dust	0.00	0.00	0.00	0.00	23.36	0.00	23.36	4.88	0.00	4.88	0.00
Fine Grading Off Road Diesel	1.83	12.27	8.01	0.00	0.00	0.69	0.69	0.00	0.63	0.63	1,535.15
Fine Grading On Road Diesel	2.01	24.96	9.64	0.04	0.14	0.98	1.13	0.05	0.91	0.95	4,238.40
Fine Grading Worker Trips	0.02	0.04	0.68	0.00	0.00	0.00	0.01	0.00	0.00	0.00	93.26
Trenching 01/01/2012-03/31/2012	2.45	17.18	10.83	0.00	0.01	0.88	0.88	0.00	0.81	0.81	3,512.89
Trenching Off Road Diesel	2.41	17.10	9.47	0.00	0.00	0.87	0.87	0.00	0.80	0.80	3,326.37
Trenching Worker Trips	0.04	0.08	1.36	0.00	0.01	0.01	0.01	0.00	0.00	0.01	186.52
Time Slice 4/2/2012-6/30/2012 Active Days: 78	8.40	64.94	<u>57.10</u>	<u>0.08</u>	<u>23.68</u>	3.15	<u>26.83</u>	<u>4.99</u>	2.89	<u>7.88</u>	<u>12,977.76</u>
Building 04/01/2012-07/31/2013	4.54	27.67	38.77	0.04	0.18	1.47	1.65	0.06	1.35	1.41	7,110.95
Building Off Road Diesel	3.51	22.97	12.21	0.00	0.00	1.25	1.25	0.00	1.15	1.15	3,081.27
Building Vendor Trips	0.31	3.35	2.94	0.01	0.03	0.14	0.17	0.01	0.13	0.14	792.90
Building Worker Trips	0.71	1.35	23.62	0.03	0.15	0.09	0.24	0.06	0.07	0.13	3,236.78
Fine Grading 02/01/2012- 06/30/2012	3.86	37.28	18.33	0.04	23.50	1.68	25.18	4.93	1.54	6.47	5,866.81
Fine Grading Dust	0.00	0.00	0.00	0.00	23.36	0.00	23.36	4.88	0.00	4.88	0.00
Fine Grading Off Road Diesel	1.83	12.27	8.01	0.00	0.00	0.69	0.69	0.00	0.63	0.63	1,535.15
Fine Grading On Road Diesel	2.01	24.96	9.64	0.04	0.14	0.98	1.13	0.05	0.91	0.95	4,238.40
Fine Grading Worker Trips	0.02	0.04	0.68	0.00	0.00	0.00	0.01	0.00	0.00	0.00	93.26

Time Slice 7/2/2012-10/31/2012 Active Days: 105	4.54	27.67	38.77	0.04	0.18	1.47	1.65	0.06	1.35	1.41	7,110.95
Building 04/01/2012-07/31/2013	4.54	27.67	38.77	0.04	0.18	1.47	1.65	0.06	1.35	1.41	7,110.95
Building Off Road Diesel	3.51	22.97	12.21	0.00	0.00	1.25	1.25	0.00	1.15	1.15	3,081.27
Building Vendor Trips	0.31	3.35	2.94	0.01	0.03	0.14	0.17	0.01	0.13	0.14	792.90
Building Worker Trips	0.71	1.35	23.62	0.03	0.15	0.09	0.24	0.06	0.07	0.13	3,236.78
Time Slice 11/1/2012-12/31/2012 Active Days: 52	6.89	44.00	48.12	0.04	0.19	2.33	2.52	0.07	2.13	2.20	9,522.40
Building 04/01/2012-07/31/2013	4.54	27.67	38.77	0.04	0.18	1.47	1.65	0.06	1.35	1.41	7,110.95
Building Off Road Diesel	3.51	22.97	12.21	0.00	0.00	1.25	1.25	0.00	1.15	1.15	3,081.27
Building Vendor Trips	0.31	3.35	2.94	0.01	0.03	0.14	0.17	0.01	0.13	0.14	792.90
Building Worker Trips	0.71	1.35	23.62	0.03	0.15	0.09	0.24	0.06	0.07	0.13	3,236.78
Trenching 11/01/2012-12/31/2012	2.36	16.34	9.35	0.00	0.01	0.85	0.86	0.00	0.79	0.79	2,411.45
Trenching Off Road Diesel	2.32	16.27	8.22	0.00	0.00	0.85	0.85	0.00	0.78	0.78	2,256.02
Trenching Worker Trips	0.03	0.06	1.13	0.00	0.01	0.00	0.01	0.00	0.00	0.01	155.43
Time Slice 1/1/2013-2/28/2013 Active Days: 51	6.58	<u>40.45</u>	<u>47.88</u>	0.04	<u>21.58</u>	2.29	<u>23.88</u>	<u>4.54</u>	2.10	<u>6.64</u>	<u>9,212.30</u>
Building 04/01/2012-07/31/2013	4.23	25.56	36.56	0.04	0.18	1.37	1.55	0.06	1.25	1.32	7,110.60
Building Off Road Diesel	3.30	21.36	11.90	0.00	0.00	1.16	1.16	0.00	1.07	1.07	3,081.27
Building Vendor Trips	0.28	2.96	2.71	0.01	0.03	0.12	0.15	0.01	0.11	0.12	792.93
Building Worker Trips	0.65	1.23	21.96	0.03	0.15	0.09	0.24	0.06	0.07	0.13	3,236.39
Fine Grading 01/01/2013- 02/28/2013	2.35	14.89	11.32	0.00	21.40	0.92	22.33	4.47	0.85	5.32	2,101.70
Fine Grading Dust	0.00	0.00	0.00	0.00	21.40	0.00	21.40	4.47	0.00	4.47	0.00
Fine Grading Off Road Diesel	2.33	14.85	10.48	0.00	0.00	0.92	0.92	0.00	0.85	0.85	1,977.37
Fine Grading On Road Diesel	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fine Grading Worker Trips	0.02	0.05	0.84	0.00	0.01	0.00	0.01	0.00	0.00	0.00	124.33

Time Slice 3/1/2013-3/30/2013 Active Days: 26	4.23	25.56	36.56	0.04	0.18	1.37	1.55	0.06	1.25	1.32	7,110.60
Building 04/01/2012-07/31/2013	4.23	25.56	36.56	0.04	0.18	1.37	1.55	0.06	1.25	1.32	7,110.60
Building Off Road Diesel	3.30	21.36	11.90	0.00	0.00	1.16	1.16	0.00	1.07	1.07	3,081.27
Building Vendor Trips	0.28	2.96	2.71	0.01	0.03	0.12	0.15	0.01	0.11	0.12	792.93
Building Worker Trips	0.65	1.23	21.96	0.03	0.15	0.09	0.24	0.06	0.07	0.13	3,236.39
Time Slice 4/1/2013-5/31/2013 Active Days: 53	44.80	25.58	37.01	0.04	0.18	1.37	1.56	0.07	1.25	1.32	7,175.97
Building 04/01/2012-07/31/2013	4.23	25.56	36.56	0.04	0.18	1.37	1.55	0.06	1.25	1.32	7,110.60
Building Off Road Diesel	3.30	21.36	11.90	0.00	0.00	1.16	1.16	0.00	1.07	1.07	3,081.27
Building Vendor Trips	0.28	2.96	2.71	0.01	0.03	0.12	0.15	0.01	0.11	0.12	792.93
Building Worker Trips	0.65	1.23	21.96	0.03	0.15	0.09	0.24	0.06	0.07	0.13	3,236.39
Coating 04/01/2013-10/31/2013	40.56	0.02	0.44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	65.38
Architectural Coating	40.55	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Coating Worker Trips	0.01	0.02	0.44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	65.38

7/9/2010 12:13:28 PM

Time Slice 6/1/2013-7/31/2013 39.25 0.20 2.70 0.07 2.36 8,699.07 <u>47.25</u> 47.01 0.05 <u>2.50</u> <u>2.29</u> Active Days: 52 Asphalt 06/01/2013-08/31/2013 2.46 13.67 0.00 0.02 0.01 1,523.09 10.00 1.13 1.14 1.04 1.04 Paving Off-Gas 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1,131.92 Paving Off Road Diesel 2.10 12.84 8.03 0.00 1.09 1.09 0.00 1.00 1.00 Paving On Road Diesel 0.06 0.74 0.29 0.00 0.00 0.03 0.03 0.00 0.03 0.03 142.52 0.09 0.00 0.01 0.00 248.66 Paving Worker Trips 0.05 1.69 0.01 0.02 0.01 0.01 Building 04/01/2012-07/31/2013 4.23 25.56 36.56 0.04 0.18 1.37 1.55 0.06 1.25 1.32 7.110.60 Building Off Road Diesel 3.30 21.36 0.00 0.00 0.00 1.07 11.90 1.16 1.16 1.07 3,081.27 **Building Vendor Trips** 0.28 2.96 0.01 0.03 0.12 0.15 0.01 0.12 792.93 2.71 0.11 **Building Worker Trips** 0.65 1.23 21.96 0.03 0.15 0.09 0.24 0.06 0.07 0.13 3,236.39 65.38 0.02 0.00 0.00 0.00 0.00 0.00 0.00 Coating 04/01/2013-10/31/2013 40.56 0.44 0.00 Architectural Coating 40.55 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.00 65.38 Coating Worker Trips 0.44 0.00 0.00 Time Slice 8/1/2013-8/31/2013 43.02 13.69 10.45 0.00 0.02 1.13 1.15 0.01 1.04 1.04 1.588.47 Active Days: 27 Asphalt 06/01/2013-08/31/2013 2.46 13.67 10.00 0.00 0.02 1.13 1.14 0.01 1.04 1.04 1,523.09 Paving Off-Gas 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Paving Off Road Diesel 2.10 12.84 8.03 0.00 0.00 1.09 1.09 0.00 1.00 1.00 1,131.92 Paving On Road Diesel 0.06 0.74 0.29 0.00 0.00 0.03 0.03 0.00 0.03 0.03 142.52 Paving Worker Trips 0.05 0.09 1.69 0.00 0.01 0.01 0.02 0.00 0.01 0.01 248.66 Coating 04/01/2013-10/31/2013 40.56 0.02 0.44 0.00 0.00 0.00 0.00 0.00 0.00 0.00 65.38 Architectural Coating 0.00 0.00 0.00 0.00 0.00 0.00 40.55 0.00 0.00 0.00 0.00 Coating Worker Trips 0.01 0.02 0.44 0.00 0.00 0.00 0.00 0.00 0.00 0.00 65.38

7/9/2010 12:13:28 PM

Time Slice 9/2/2013-10/31/2013 Active Days: 52	40.56	0.02	0.44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	65.38
Coating 04/01/2013-10/31/2013	40.56	0.02	0.44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	65.38
Architectural Coating	40.55	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Coating Worker Trips	0.01	0.02	0.44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	65.38

Construction Related Mitigation Measures

The following mitigation measures apply to Phase: Demolition 5/1/2011 - 8/31/2011 - Demo Buildings

For Rubber Tired Dozers, the Diesel Oxidation Catalyst 20% mitigation reduces emissions by:

NOX: 20%

For Tractors/Loaders/Backhoes, the Diesel Oxidation Catalyst 20% mitigation reduces emissions by: NOX: 20%

For Off Highway Trucks, the Diesel Oxidation Catalyst 20% mitigation reduces emissions by:

NOX: 20%

For Water Trucks, the Diesel Oxidation Catalyst 20% mitigation reduces emissions by:

NOX: 20%

The following mitigation measures apply to Phase: Demolition 5/11/2011 - 8/31/2011 - Demo Parking Lot

For Rubber Tired Dozers, the Diesel Oxidation Catalyst 20% mitigation reduces emissions by:

NOX: 20%

For Tractors/Loaders/Backhoes, the Diesel Oxidation Catalyst 20% mitigation reduces emissions by:

NOX: 20%

The following mitigation measures apply to Phase: Fine Grading 2/1/2012 - 6/30/2012 - Fine Site Grading (Construction Zone)

For Soil Stablizing Measures, the Water exposed surfaces 2x daily watering mitigation reduces emissions by:

PM10: 55% PM25: 55%

For Graders, the Diesel Oxidation Catalyst 20% mitigation reduces emissions by:

NOX: 20%

For Rubber Tired Dozers, the Diesel Oxidation Catalyst 20% mitigation reduces emissions by:

NOX: 20%

For Water Trucks, the Diesel Oxidation Catalyst 20% mitigation reduces emissions by:

7/9/2010 12:13:28 PM NOX: 20% The following mitigation measures apply to Phase: Fine Grading 1/1/2013 - 2/28/2013 - Fine Parking Lot Grading For Soil Stablizing Measures, the Water exposed surfaces 3x daily watering mitigation reduces emissions by: PM10: 61% PM25: 61% For Graders, the Diesel Oxidation Catalyst 20% mitigation reduces emissions by: NOX: 20% For Rubber Tired Dozers, the Diesel Oxidation Catalyst 20% mitigation reduces emissions by: NOX: 20% For Tractors/Loaders/Backhoes, the Diesel Oxidation Catalyst 20% mitigation reduces emissions by: NOX: 20% For Water Trucks, the Diesel Oxidation Catalyst 20% mitigation reduces emissions by: NOX: 20% The following mitigation measures apply to Phase: Mass Grading 11/1/2011 - 1/31/2012 - Mass Site Grading & Excavation Activity For Soil Stablizing Measures, the Apply soil stabilizers to inactive areas mitigation reduces emissions by: PM10: 84% PM25: 84% For Soil Stablizing Measures, the Replace ground cover in disturbed areas quickly mitigation reduces emissions by: PM10: 5% PM25: 5% For Soil Stablizing Measures, the Water exposed surfaces 2x daily watering mitigation reduces emissions by: PM10: 55% PM25: 55% For Graders, the Diesel Oxidation Catalyst 20% mitigation reduces emissions by: NOX: 20% For Rubber Tired Dozers, the Diesel Oxidation Catalyst 20% mitigation reduces emissions by: NOX: 20% For Tractors/Loaders/Backhoes, the Diesel Oxidation Catalyst 20% mitigation reduces emissions by: NOX: 20% For Water Trucks, the Diesel Oxidation Catalyst 20% mitigation reduces emissions by: NOX: 20% For Excavators, the Diesel Oxidation Catalyst 20% mitigation reduces emissions by: NOX: 20% For Off Highway Trucks, the Diesel Oxidation Catalyst 15% mitigation reduces emissions by:

Page: 21 7/9/2010 12:13:28 PM NOX: 15% The following mitigation measures apply to Phase: Trenching 1/1/2012 - 3/31/2012 - Trenching (Foundation, Piles) For Excavators, the Diesel Oxidation Catalyst 20% mitigation reduces emissions by: NOX: 20% For Other General Industrial Equipment, the Diesel Oxidation Catalyst 20% mitigation reduces emissions by: NOX: 20% For Tractors/Loaders/Backhoes, the Diesel Oxidation Catalyst 20% mitigation reduces emissions by: NOX: 20% For Off Highway Trucks, the Diesel Oxidation Catalyst 20% mitigation reduces emissions by: NOX: 20% For Plate Compactors, the Diesel Oxidation Catalyst 20% mitigation reduces emissions by: NOX: 20% For Bore/Drill Rigs, the Diesel Oxidation Catalyst 20% mitigation reduces emissions by: NOX: 20% The following mitigation measures apply to Phase: Trenching 11/1/2012 - 12/31/2012 - Trenching (Utilities, Pipelines) For Excavators, the Diesel Oxidation Catalyst 20% mitigation reduces emissions by: NOX: 20% For Tractors/Loaders/Backhoes, the Diesel Oxidation Catalyst 20% mitigation reduces emissions by: NOX: 20% For Off Highway Trucks, the Diesel Oxidation Catalyst 20% mitigation reduces emissions by: NOX: 20% The following mitigation measures apply to Phase: Building Construction 4/1/2012 - 7/31/2013 - Construct Building (Terminal, Passenger Area) For Cranes, the Diesel Oxidation Catalyst 20% mitigation reduces emissions by: NOX: 20% For Crawler Tractors, the Diesel Oxidation Catalyst 20% mitigation reduces emissions by: NOX: 20% For Excavators, the Diesel Oxidation Catalyst 20% mitigation reduces emissions by: NOX: 20% For Off Highway Trucks, the Diesel Oxidation Catalyst 20% mitigation reduces emissions by: NOX: 20%

7/9/2010 12:13:28 PM

The following mitigation measures apply to Phase: Architectural Coating 4/1/2013 - 10/31/2013 - Architectural Coating - Building Paint

For Nonresidential Architectural Coating Measures, the Nonresidential Exterior: Use Low VOC Coatings mitigation reduces emissions by: ROG: 10%

For Nonresidential Architectural Coating Measures, the Nonresidential Interior: Use Low VOC Coatings mitigation reduces emissions by: ROG: 10%

A-8: Combined Winter Emission Report

7/9/2010 12:14:12 PM

Urbemis 2007 Version 9.2.4

Combined Winter Emissions Reports (Pounds/Day)

File Name: C:\Documents and Settings\jdill\My Documents\Projects\ARTIC\June 2010 Docs\ARTIC Building_R15_mitigation.urb924

Project Name: ARTIC Building

Project Location: South Coast AQMD

On-Road Vehicle Emissions Based on: Version : Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

7/9/2010 12:14:12 PM

Summary Report:											
CONSTRUCTION EMISSION ESTIMATES											
	ROG	<u>NOx</u>	<u>CO</u>	<u>SO2</u>	<u>PM10 Dust PI</u>	M10 Exhaust	<u>PM10</u>	PM2.5 Dust	PM2.5 Exhaust	<u>PM2.5</u>	<u>CO2</u>
2011 TOTALS (lbs/day unmitigated)	7.64	70.72	31.74	0.02	41.38	3.02	44.40	8.65	2.78	11.43	8,741.73
2011 TOTALS (lbs/day mitigated)	7.64	61.37	31.74	0.02	10.99	3.02	14.01	2.30	2.78	5.08	8,741.73
2012 TOTALS (lbs/day unmitigated)	9.69	86.50	57.10	0.08	41.63	3.59	44.98	8.74	3.30	11.95	12,977.76
2012 TOTALS (lbs/day mitigated)	9.69	73.55	57.10	0.08	23.68	3.59	26.83	4.99	3.30	7.88	12,977.76
2013 TOTALS (lbs/day unmitigated)	51.76	47.51	47.88	0.05	41.49	2.50	43.78	8.69	2.29	10.79	9,212.30
2013 TOTALS (lbs/day mitigated)	47.25	40.45	47.88	0.05	21.58	2.50	23.88	4.54	2.29	6.64	9,212.30
AREA SOURCE EMISSION ESTIMATES											
		<u>ROG</u>	<u>NOx</u>	<u>CO</u>	<u>SO2</u>	<u>PM10</u>	<u>PM2.5</u>	<u>CO2</u>			
TOTALS (lbs/day, unmitigated)		0.64	2.65	2.23	0.00	0.00	0.00	3,178.80			
OPERATIONAL (VEHICLE) EMISSION ESTIN	MATES										
		ROG	<u>NOx</u>	<u>CO</u>	<u>SO2</u>	<u>PM10</u>	<u>PM2.5</u>	<u>CO2</u>			
TOTALS (lbs/day, unmitigated)		29.69	46.43	323.78	0.37	3.96	2.54	39,434.75			
SUM OF AREA SOURCE AND OPERATIONA	L EMISSION E	STIMATES									
		ROG	<u>NOx</u>	<u>CO</u>	<u>SO2</u>	<u>PM10</u>	<u>PM2.5</u>	<u>CO2</u>			
TOTALS (lbs/day, unmitigated)		30.33	49.08	326.01	0.37	3.96	2.54	42,613.55			

Construction Unmitigated Detail Report:

7/9/2010 12:14:12 PM

CONSTRUCTION EMISSION ESTIMATES Winter Pounds Per Day, Unmitigated

	ROG	<u>NOx</u>	<u>CO</u>	<u>SO2</u>	PM10 Dust	PM10 Exhaust	<u>PM10</u>	PM2.5 Dust	PM2.5 Exhaust	<u>PM2.5</u>	<u>CO2</u>
Time Slice 5/2/2011-5/10/2011 Active Days: 8	3.99	34.21	16.80	0.01	8.62	1.66	10.28	1.80	1.52	3.32	4,149.82
Demolition 05/01/2011- 08/31/2011	3.99	34.21	16.80	0.01	8.62	1.66	10.28	1.80	1.52	3.32	4,149.82
Fugitive Dust	0.00	0.00	0.00	0.00	8.59	0.00	8.59	1.79	0.00	1.79	0.00
Demo Off Road Diesel	3.52	28.82	13.29	0.00	0.00	1.44	1.44	0.00	1.32	1.32	3,160.93
Demo On Road Diesel	0.42	5.31	2.04	0.01	0.03	0.21	0.24	0.01	0.20	0.20	802.34
Demo Worker Trips	0.05	0.08	1.46	0.00	0.01	0.01	0.01	0.00	0.00	0.01	186.55
Time Slice 5/11/2011-8/31/2011 Active Days: 97	5.07	41.52	22.37	0.01	8.68	2.21	10.89	1.81	2.03	3.84	4,979.20
Demolition 05/01/2011- 08/31/2011	3.99	34.21	16.80	0.01	8.62	1.66	10.28	1.80	1.52	3.32	4,149.82
Fugitive Dust	0.00	0.00	0.00	0.00	8.59	0.00	8.59	1.79	0.00	1.79	0.00
Demo Off Road Diesel	3.52	28.82	13.29	0.00	0.00	1.44	1.44	0.00	1.32	1.32	3,160.93
Demo On Road Diesel	0.42	5.31	2.04	0.01	0.03	0.21	0.24	0.01	0.20	0.20	802.34
Demo Worker Trips	0.05	0.08	1.46	0.00	0.01	0.01	0.01	0.00	0.00	0.01	186.55
Demolition 05/11/2011- 08/31/2011	1.09	7.31	5.57	0.00	0.06	0.55	0.61	0.01	0.51	0.52	829.38
Fugitive Dust	0.00	0.00	0.00	0.00	0.05	0.00	0.05	0.01	0.00	0.01	0.00
Demo Off Road Diesel	1.05	7.22	4.58	0.00	0.00	0.55	0.55	0.00	0.50	0.50	700.30
Demo On Road Diesel	0.00	0.03	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.71
Demo Worker Trips	0.03	0.06	0.98	0.00	0.01	0.00	0.01	0.00	0.00	0.00	124.37

Time Slice 11/1/2011-12/31/2011 Active Days: 53	<u>7.64</u>	<u>70.72</u>	<u>31.74</u>	<u>0.02</u>	<u>41.38</u>	<u>3.02</u>	<u>44.40</u>	<u>8.65</u>	<u>2.78</u>	<u>11.43</u>	<u>8,741.73</u>
Mass Grading 11/01/2011- 01/31/2012	7.64	70.72	31.74	0.02	41.38	3.02	44.40	8.65	2.78	11.43	8,741.73
Mass Grading Dust	0.00	0.00	0.00	0.00	41.30	0.00	41.30	8.63	0.00	8.63	0.00
Mass Grading Off Road Diesel	6.48	56.59	24.40	0.00	0.00	2.45	2.45	0.00	2.25	2.25	6,373.79
Mass Grading On Road Diesel	1.10	14.01	5.39	0.02	0.07	0.56	0.63	0.02	0.52	0.54	2,119.20
Mass Grading Worker Trips	0.06	0.11	1.95	0.00	0.01	0.01	0.02	0.00	0.01	0.01	248.74
Time Slice 1/2/2012-1/31/2012 Active Days: 26	<u>9.69</u>	<u>86.50</u>	40.87	0.02	41.39	<u>3.59</u>	<u>44.98</u>	8.66	<u>3.30</u>	<u>11.95</u>	12,254.58
Mass Grading 11/01/2011- 01/31/2012	7.24	65.04	30.03	0.02	41.38	2.71	44.09	8.65	2.49	11.14	8,741.68
Mass Grading Dust	0.00	0.00	0.00	0.00	41.30	0.00	41.30	8.63	0.00	8.63	0.00
Mass Grading Off Road Diesel	6.17	52.45	23.40	0.00	0.00	2.21	2.21	0.00	2.03	2.03	6,373.79
Mass Grading On Road Diesel	1.01	12.48	4.82	0.02	0.07	0.49	0.56	0.02	0.45	0.48	2,119.20
Mass Grading Worker Trips	0.05	0.10	1.82	0.00	0.01	0.01	0.02	0.00	0.01	0.01	248.69
Trenching 01/01/2012-03/31/2012	2.45	21.46	10.83	0.00	0.01	0.88	0.88	0.00	0.81	0.81	3,512.89
Trenching Off Road Diesel	2.41	21.38	9.47	0.00	0.00	0.87	0.87	0.00	0.80	0.80	3,326.37
Trenching Worker Trips	0.04	0.08	1.36	0.00	0.01	0.01	0.01	0.00	0.00	0.01	186.52

Time Slice 2/1/2012-3/31/2012 Active Days: 52	6.31	61.80	29.16	0.04	41.45	2.55	44.01	8.68	2.35	11.02	9,379.70
Fine Grading 02/01/2012- 06/30/2012	3.86	40.35	18.33	0.04	41.45	1.68	43.12	8.67	1.54	10.22	5,866.81
Fine Grading Dust	0.00	0.00	0.00	0.00	41.30	0.00	41.30	8.63	0.00	8.63	0.00
Fine Grading Off Road Diesel	1.83	15.34	8.01	0.00	0.00	0.69	0.69	0.00	0.63	0.63	1,535.15
Fine Grading On Road Diesel	2.01	24.96	9.64	0.04	0.14	0.98	1.13	0.05	0.91	0.95	4,238.40
Fine Grading Worker Trips	0.02	0.04	0.68	0.00	0.00	0.00	0.01	0.00	0.00	0.00	93.26
Trenching 01/01/2012-03/31/2012	2.45	21.46	10.83	0.00	0.01	0.88	0.88	0.00	0.81	0.81	3,512.89
Trenching Off Road Diesel	2.41	21.38	9.47	0.00	0.00	0.87	0.87	0.00	0.80	0.80	3,326.37
Trenching Worker Trips	0.04	0.08	1.36	0.00	0.01	0.01	0.01	0.00	0.00	0.01	186.52
Time Slice 4/2/2012-6/30/2012 Active Days: 78	8.40	71.63	<u>57.10</u>	<u>0.08</u>	<u>41.63</u>	3.15	44.78	<u>8.74</u>	2.89	11.63	<u>12,977.76</u>
Building 04/01/2012-07/31/2013	4.54	31.28	38.77	0.04	0.18	1.47	1.65	0.06	1.35	1.41	7,110.95
Building Off Road Diesel	3.51	26.58	12.21	0.00	0.00	1.25	1.25	0.00	1.15	1.15	3,081.27
Building Vendor Trips	0.31	3.35	2.94	0.01	0.03	0.14	0.17	0.01	0.13	0.14	792.90
Building Worker Trips	0.71	1.35	23.62	0.03	0.15	0.09	0.24	0.06	0.07	0.13	3,236.78
Fine Grading 02/01/2012- 06/30/2012	3.86	40.35	18.33	0.04	41.45	1.68	43.12	8.67	1.54	10.22	5,866.81
Fine Grading Dust	0.00	0.00	0.00	0.00	41.30	0.00	41.30	8.63	0.00	8.63	0.00
Fine Grading Off Road Diesel	1.83	15.34	8.01	0.00	0.00	0.69	0.69	0.00	0.63	0.63	1,535.15
Fine Grading On Road Diesel	2.01	24.96	9.64	0.04	0.14	0.98	1.13	0.05	0.91	0.95	4,238.40
Fine Grading Worker Trips	0.02	0.04	0.68	0.00	0.00	0.00	0.01	0.00	0.00	0.00	93.26

Time Slice 7/2/2012-10/31/2012 Active Days: 105	4.54	31.28	38.77	0.04	0.18	1.47	1.65	0.06	1.35	1.41	7,110.95
Building 04/01/2012-07/31/2013	4.54	31.28	38.77	0.04	0.18	1.47	1.65	0.06	1.35	1.41	7,110.95
Building Off Road Diesel	3.51	26.58	12.21	0.00	0.00	1.25	1.25	0.00	1.15	1.15	3,081.27
Building Vendor Trips	0.31	3.35	2.94	0.01	0.03	0.14	0.17	0.01	0.13	0.14	792.90
Building Worker Trips	0.71	1.35	23.62	0.03	0.15	0.09	0.24	0.06	0.07	0.13	3,236.78
Time Slice 11/1/2012-12/31/2012 Active Days: 52	6.89	50.11	48.12	0.04	0.19	2.33	2.52	0.07	2.13	2.20	9,522.40
Building 04/01/2012-07/31/2013	4.54	31.28	38.77	0.04	0.18	1.47	1.65	0.06	1.35	1.41	7,110.95
Building Off Road Diesel	3.51	26.58	12.21	0.00	0.00	1.25	1.25	0.00	1.15	1.15	3,081.27
Building Vendor Trips	0.31	3.35	2.94	0.01	0.03	0.14	0.17	0.01	0.13	0.14	792.90
Building Worker Trips	0.71	1.35	23.62	0.03	0.15	0.09	0.24	0.06	0.07	0.13	3,236.78
Trenching 11/01/2012-12/31/2012	2.36	18.82	9.35	0.00	0.01	0.85	0.86	0.00	0.79	0.79	2,411.45
Trenching Off Road Diesel	2.32	18.76	8.22	0.00	0.00	0.85	0.85	0.00	0.78	0.78	2,256.02
Trenching Worker Trips	0.03	0.06	1.13	0.00	0.01	0.00	0.01	0.00	0.00	0.01	155.43
Time Slice 1/1/2013-2/28/2013 Active Days: 51	6.58	<u>47.51</u>	<u>47.88</u>	0.04	<u>41.49</u>	2.29	<u>43.78</u>	<u>8.69</u>	2.10	<u>10.79</u>	<u>9,212.30</u>
Building 04/01/2012-07/31/2013	4.23	28.91	36.56	0.04	0.18	1.37	1.55	0.06	1.25	1.32	7,110.60
Building Off Road Diesel	3.30	24.72	11.90	0.00	0.00	1.16	1.16	0.00	1.07	1.07	3,081.27
Building Vendor Trips	0.28	2.96	2.71	0.01	0.03	0.12	0.15	0.01	0.11	0.12	792.93
Building Worker Trips	0.65	1.23	21.96	0.03	0.15	0.09	0.24	0.06	0.07	0.13	3,236.39
Fine Grading 01/01/2013- 02/28/2013	2.35	18.60	11.32	0.00	41.31	0.92	42.23	8.63	0.85	9.48	2,101.70
Fine Grading Dust	0.00	0.00	0.00	0.00	41.30	0.00	41.30	8.63	0.00	8.63	0.00
Fine Grading Off Road Diesel	2.33	18.56	10.48	0.00	0.00	0.92	0.92	0.00	0.85	0.85	1,977.37
Fine Grading On Road Diesel	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fine Grading Worker Trips	0.02	0.05	0.84	0.00	0.01	0.00	0.01	0.00	0.00	0.00	124.33

Time Slice 3/1/2013-3/30/2013 Active Days: 26	4.23	28.91	36.56	0.04	0.18	1.37	1.55	0.06	1.25	1.32	7,110.60
Building 04/01/2012-07/31/2013	4.23	28.91	36.56	0.04	0.18	1.37	1.55	0.06	1.25	1.32	7,110.60
Building Off Road Diesel	3.30	24.72	11.90	0.00	0.00	1.16	1.16	0.00	1.07	1.07	3,081.27
Building Vendor Trips	0.28	2.96	2.71	0.01	0.03	0.12	0.15	0.01	0.11	0.12	792.93
Building Worker Trips	0.65	1.23	21.96	0.03	0.15	0.09	0.24	0.06	0.07	0.13	3,236.39
Time Slice 4/1/2013-5/31/2013 Active Days: 53	49.30	28.94	37.01	0.04	0.18	1.37	1.56	0.07	1.25	1.32	7,175.97
Building 04/01/2012-07/31/2013	4.23	28.91	36.56	0.04	0.18	1.37	1.55	0.06	1.25	1.32	7,110.60
Building Off Road Diesel	3.30	24.72	11.90	0.00	0.00	1.16	1.16	0.00	1.07	1.07	3,081.27
Building Vendor Trips	0.28	2.96	2.71	0.01	0.03	0.12	0.15	0.01	0.11	0.12	792.93
Building Worker Trips	0.65	1.23	21.96	0.03	0.15	0.09	0.24	0.06	0.07	0.13	3,236.39
Coating 04/01/2013-10/31/2013	45.07	0.02	0.44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	65.38
Architectural Coating	45.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Coating Worker Trips	0.01	0.02	0.44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	65.38

Time Slice 6/1/2013-7/31/2013 Active Days: 52	<u>51.76</u>	42.61	47.01	<u>0.05</u>	0.20	<u>2.50</u>	2.70	0.07	<u>2.29</u>	2.36	8,699.07
Asphalt 06/01/2013-08/31/2013	2.46	13.67	10.00	0.00	0.02	1.13	1.14	0.01	1.04	1.04	1,523.09
Paving Off-Gas	0.25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Paving Off Road Diesel	2.10	12.84	8.03	0.00	0.00	1.09	1.09	0.00	1.00	1.00	1,131.92
Paving On Road Diesel	0.06	0.74	0.29	0.00	0.00	0.03	0.03	0.00	0.03	0.03	142.52
Paving Worker Trips	0.05	0.09	1.69	0.00	0.01	0.01	0.02	0.00	0.01	0.01	248.66
Building 04/01/2012-07/31/2013	4.23	28.91	36.56	0.04	0.18	1.37	1.55	0.06	1.25	1.32	7,110.60
Building Off Road Diesel	3.30	24.72	11.90	0.00	0.00	1.16	1.16	0.00	1.07	1.07	3,081.27
Building Vendor Trips	0.28	2.96	2.71	0.01	0.03	0.12	0.15	0.01	0.11	0.12	792.93
Building Worker Trips	0.65	1.23	21.96	0.03	0.15	0.09	0.24	0.06	0.07	0.13	3,236.39
Coating 04/01/2013-10/31/2013	45.07	0.02	0.44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	65.38
Architectural Coating	45.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Coating Worker Trips	0.01	0.02	0.44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	65.38
Time Slice 8/1/2013-8/31/2013 Active Days: 27	47.52	13.69	10.45	0.00	0.02	1.13	1.15	0.01	1.04	1.04	1,588.47
Asphalt 06/01/2013-08/31/2013	2.46	13.67	10.00	0.00	0.02	1.13	1.14	0.01	1.04	1.04	1,523.09
Paving Off-Gas	0.25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Paving Off Road Diesel	2.10	12.84	8.03	0.00	0.00	1.09	1.09	0.00	1.00	1.00	1,131.92
Paving On Road Diesel	0.06	0.74	0.29	0.00	0.00	0.03	0.03	0.00	0.03	0.03	142.52
Paving Worker Trips	0.05	0.09	1.69	0.00	0.01	0.01	0.02	0.00	0.01	0.01	248.66
Coating 04/01/2013-10/31/2013	45.07	0.02	0.44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	65.38
Architectural Coating	45.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Coating Worker Trips	0.01	0.02	0.44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	65.38

7/9/2010 12:14:12 PM

Time Slice 9/2/2013-10/31/2013 Active Days: 52	45.07	0.02	0.44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	65.38
Coating 04/01/2013-10/31/2013	45.07	0.02	0.44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	65.38
Architectural Coating	45.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Coating Worker Trips	0.01	0.02	0.44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	65.38

Phase Assumptions

Phase: Demolition 5/1/2011 - 8/31/2011 - Demo Buildings

Building Volume Total (cubic feet): 932000

Building Volume Daily (cubic feet): 20444.76

On Road Truck Travel (VMT): 189.3

Off-Road Equipment:

1 Concrete/Industrial Saws (10 hp) operating at a 0.73 load factor for 8 hours per day

1 Off Highway Trucks (479 hp) operating at a 0.57 load factor for 8 hours per day

1 Rubber Tired Dozers (357 hp) operating at a 0.59 load factor for 4 hours per day

2 Tractors/Loaders/Backhoes (108 hp) operating at a 0.55 load factor for 8 hours per day

1 Water Trucks (189 hp) operating at a 0.5 load factor for 4 hours per day

Phase: Demolition 5/11/2011 - 8/31/2011 - Demo Parking Lot

Building Volume Total (cubic feet): 159000

Building Volume Daily (cubic feet): 120

On Road Truck Travel (VMT): 1.11

Off-Road Equipment:

1 Concrete/Industrial Saws (10 hp) operating at a 0.73 load factor for 8 hours per day

1 Rubber Tired Dozers (357 hp) operating at a 0.59 load factor for 1 hours per day

2 Tractors/Loaders/Backhoes (108 hp) operating at a 0.55 load factor for 6 hours per day

Phase: Fine Grading 2/1/2012 - 6/30/2012 - Fine Site Grading (Construction Zone) Total Acres Disturbed: 13.8 Page: 10
7/9/2010 12:14:12 PM
Maximum Daily Acreage Disturbed: 4.13
Fugitive Dust Level of Detail: Default

10 lbs per acre-day

On Road Truck Travel (VMT): 1000
Off-Road Equipment:

1 Graders (174 hp) operating at a 0.61 load factor for 6 hours per day
1 Rubber Tired Dozers (357 hp) operating at a 0.59 load factor for 5 hours per day
1 Water Trucks (189 hp) operating at a 0.5 load factor for 4 hours per day

Phase: Fine Grading 1/1/2013 - 2/28/2013 - Fine Parking Lot Grading

Total Acres Disturbed: 2.2

Maximum Daily Acreage Disturbed: 4.13

Fugitive Dust Level of Detail: Default

10 lbs per acre-day

On Road Truck Travel (VMT): 0

Off-Road Equipment:

1 Graders (174 hp) operating at a 0.61 load factor for 6 hours per day

1 Rubber Tired Dozers (357 hp) operating at a 0.59 load factor for 6 hours per day

1 Tractors/Loaders/Backhoes (108 hp) operating at a 0.55 load factor for 7 hours per day

1 Water Trucks (189 hp) operating at a 0.5 load factor for 4 hours per day

Phase: Mass Grading 11/1/2011 - 1/31/2012 - Mass Site Grading & Excavation Activity Total Acres Disturbed: 16 Maximum Daily Acreage Disturbed: 4.13 Fugitive Dust Level of Detail: Default 10 lbs per acre-day On Road Truck Travel (VMT): 500 Off-Road Equipment: 1 Excavators (168 hp) operating at a 0.57 load factor for 8 hours per day 1 Generator Sets (335 hp) operating at a 0.74 load factor for 2 hours per day

7/9/2010 12:14:12 PM

Graders (174 hp) operating at a 0.61 load factor for 6 hours per day
 Off Highway Trucks (479 hp) operating at a 0.57 load factor for 8 hours per day
 Rubber Tired Dozers (357 hp) operating at a 0.59 load factor for 6 hours per day
 Tractors/Loaders/Backhoes (108 hp) operating at a 0.55 load factor for 7 hours per day
 Water Trucks (189 hp) operating at a 0.5 load factor for 8 hours per day

Phase: Trenching 1/1/2012 - 3/31/2012 - Trenching (Foundation, Piles) Off-Road Equipment:

1 Bore/Drill Rigs (291 hp) operating at a 0.75 load factor for 8 hours per day

1 Excavators (168 hp) operating at a 0.57 load factor for 8 hours per day

1 Off Highway Trucks (479 hp) operating at a 0.57 load factor for 2 hours per day

1 Other General Industrial Equipment (238 hp) operating at a 0.51 load factor for 8 hours per day

- 1 Plate Compactors (50 hp) operating at a 0.43 load factor for 4 hours per day
- 1 Tractors/Loaders/Backhoes (108 hp) operating at a 0.55 load factor for 2 hours per day

Phase: Trenching 11/1/2012 - 12/31/2012 - Trenching (Utilities, Pipelines)

Off-Road Equipment:

- 1 Excavators (168 hp) operating at a 0.57 load factor for 6 hours per day
- 1 Off Highway Trucks (479 hp) operating at a 0.57 load factor for 5 hours per day
- 1 Other General Industrial Equipment (238 hp) operating at a 0.51 load factor for 8 hours per day
- 1 Tractors/Loaders/Backhoes (108 hp) operating at a 0.55 load factor for 5 hours per day
- 1 Welders (45 hp) operating at a 0.45 load factor for 4 hours per day

Phase: Paving 6/1/2013 - 8/31/2013 - Parking Lot Area Paving

Acres to be Paved: 7.4

Off-Road Equipment:

- 4 Cement and Mortar Mixers (10 hp) operating at a 0.56 load factor for 6 hours per day
- 1 Pavers (100 hp) operating at a 0.62 load factor for 7 hours per day
- 2 Paving Equipment (104 hp) operating at a 0.53 load factor for 6 hours per day
- 1 Rollers (95 hp) operating at a 0.56 load factor for 7 hours per day

Page: 12 7/9/2010 12:14:13 PM

Phase: Building Construction 4/1/2012 - 7/31/2013 - Construct Building (Terminal, Passenger Area)
Off-Road Equipment:

Air Compressors (20 hp) operating at a 0.48 load factor for 8 hours per day
Cranes (200 hp) operating at a 0.43 load factor for 6 hours per day
Crawler Tractors (200 hp) operating at a 0.64 load factor for 6 hours per day
Excavators (168 hp) operating at a 0.57 load factor for 6 hours per day
Forklifts (145 hp) operating at a 0.3 load factor for 4 hours per day
Generator Sets (335 hp) operating at a 0.74 load factor for 2 hours per day
Off Highway Trucks (479 hp) operating at a 0.57 load factor for 4 hours per day
Plate Compactors (50 hp) operating at a 0.43 load factor for 4 hours per day
Welders (50 hp) operating at a 0.45 load factor for 4 hours per day

Phase: Architectural Coating 4/1/2013 - 10/31/2013 - Architectural Coating - Building Paint Rule: Residential Interior Coatings begins 1/1/2005 ends 6/30/2008 specifies a VOC of 100 Rule: Residential Interior Coatings begins 7/1/2008 ends 12/31/2040 specifies a VOC of 50 Rule: Residential Exterior Coatings begins 1/1/2005 ends 6/30/2008 specifies a VOC of 250 Rule: Residential Exterior Coatings begins 7/1/2008 ends 12/31/2040 specifies a VOC of 100 Rule: Nonresidential Interior Coatings begins 1/1/2005 ends 12/31/2040 specifies a VOC of 250 Rule: Nonresidential Interior Coatings begins 1/1/2005 ends 12/31/2040 specifies a VOC of 250

Construction Mitigated Detail Report:

CONSTRUCTION EMISSION ESTIMATES Winter Pounds Per Day, Mitigated

	<u>ROG</u>	<u>NOx</u>	<u>CO</u>	<u>SO2</u>	<u>PM10 Dust</u>	PM10 Exhaust	<u>PM10</u>	<u>PM2.5 Dust</u>	PM2.5 Exhaust	<u>PM2.5</u>	<u>CO2</u>
--	------------	------------	-----------	------------	------------------	--------------	-------------	-------------------	---------------	--------------	------------

Time Slice 5/2/2011-5/10/2011 Active Days: 8	3.99	28.53	16.80	0.01	8.62	1.66	10.28	1.80	1.52	3.32	4,149.82
Demolition 05/01/2011- 08/31/2011	3.99	28.53	16.80	0.01	8.62	1.66	10.28	1.80	1.52	3.32	4,149.82
Fugitive Dust	0.00	0.00	0.00	0.00	8.59	0.00	8.59	1.79	0.00	1.79	0.00
Demo Off Road Diesel	3.52	23.14	13.29	0.00	0.00	1.44	1.44	0.00	1.32	1.32	3,160.93
Demo On Road Diesel	0.42	5.31	2.04	0.01	0.03	0.21	0.24	0.01	0.20	0.20	802.34
Demo Worker Trips	0.05	0.08	1.46	0.00	0.01	0.01	0.01	0.00	0.00	0.01	186.55
Time Slice 5/11/2011-8/31/2011 Active Days: 97	5.07	34.48	22.37	0.01	8.68	2.21	10.89	1.81	2.03	3.84	4,979.20
Demolition 05/01/2011- 08/31/2011	3.99	28.53	16.80	0.01	8.62	1.66	10.28	1.80	1.52	3.32	4,149.82
Fugitive Dust	0.00	0.00	0.00	0.00	8.59	0.00	8.59	1.79	0.00	1.79	0.00
Demo Off Road Diesel	3.52	23.14	13.29	0.00	0.00	1.44	1.44	0.00	1.32	1.32	3,160.93
Demo On Road Diesel	0.42	5.31	2.04	0.01	0.03	0.21	0.24	0.01	0.20	0.20	802.34
Demo Worker Trips	0.05	0.08	1.46	0.00	0.01	0.01	0.01	0.00	0.00	0.01	186.55
Demolition 05/11/2011- 08/31/2011	1.09	5.95	5.57	0.00	0.06	0.55	0.61	0.01	0.51	0.52	829.38
Fugitive Dust	0.00	0.00	0.00	0.00	0.05	0.00	0.05	0.01	0.00	0.01	0.00
Demo Off Road Diesel	1.05	5.86	4.58	0.00	0.00	0.55	0.55	0.00	0.50	0.50	700.30
Demo On Road Diesel	0.00	0.03	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.71
Demo Worker Trips	0.03	0.06	0.98	0.00	0.01	0.00	0.01	0.00	0.00	0.00	124.37

Time Slice 11/1/2011-12/31/2011 Active Days: 53	<u>7.64</u>	<u>61.37</u>	<u>31.74</u>	0.02	<u>10.99</u>	<u>3.02</u>	<u>14.01</u>	<u>2.30</u>	<u>2.78</u>	<u>5.08</u>	<u>8,741.73</u>
Mass Grading 11/01/2011- 01/31/2012	7.64	61.37	31.74	0.02	10.99	3.02	14.01	2.30	2.78	5.08	8,741.73
Mass Grading Dust	0.00	0.00	0.00	0.00	10.90	0.00	10.90	2.28	0.00	2.28	0.00
Mass Grading Off Road Diesel	6.48	47.25	24.40	0.00	0.00	2.45	2.45	0.00	2.25	2.25	6,373.79
Mass Grading On Road Diesel	1.10	14.01	5.39	0.02	0.07	0.56	0.63	0.02	0.52	0.54	2,119.20
Mass Grading Worker Trips	0.06	0.11	1.95	0.00	0.01	0.01	0.02	0.00	0.01	0.01	248.74
Time Slice 1/2/2012-1/31/2012 Active Days: 26	<u>9.69</u>	<u>73.55</u>	40.87	0.02	11.00	<u>3.59</u>	14.58	2.31	<u>3.30</u>	5.61	12,254.58
Mass Grading 11/01/2011- 01/31/2012	7.24	56.36	30.03	0.02	10.99	2.71	13.70	2.30	2.49	4.80	8,741.68
Mass Grading Dust	0.00	0.00	0.00	0.00	10.90	0.00	10.90	2.28	0.00	2.28	0.00
Mass Grading Off Road Diesel	6.17	43.78	23.40	0.00	0.00	2.21	2.21	0.00	2.03	2.03	6,373.79
Mass Grading On Road Diesel	1.01	12.48	4.82	0.02	0.07	0.49	0.56	0.02	0.45	0.48	2,119.20
Mass Grading Worker Trips	0.05	0.10	1.82	0.00	0.01	0.01	0.02	0.00	0.01	0.01	248.69
Trenching 01/01/2012-03/31/2012	2.45	17.18	10.83	0.00	0.01	0.88	0.88	0.00	0.81	0.81	3,512.89
Trenching Off Road Diesel	2.41	17.10	9.47	0.00	0.00	0.87	0.87	0.00	0.80	0.80	3,326.37
Trenching Worker Trips	0.04	0.08	1.36	0.00	0.01	0.01	0.01	0.00	0.00	0.01	186.52

Time Slice 2/1/2012-3/31/2012 Active Days: 52	6.31	54.46	29.16	0.04	23.51	2.55	26.06	4.93	2.35	7.28	9,379.70
Fine Grading 02/01/2012- 06/30/2012	3.86	37.28	18.33	0.04	23.50	1.68	25.18	4.93	1.54	6.47	5,866.81
Fine Grading Dust	0.00	0.00	0.00	0.00	23.36	0.00	23.36	4.88	0.00	4.88	0.00
Fine Grading Off Road Diesel	1.83	12.27	8.01	0.00	0.00	0.69	0.69	0.00	0.63	0.63	1,535.15
Fine Grading On Road Diesel	2.01	24.96	9.64	0.04	0.14	0.98	1.13	0.05	0.91	0.95	4,238.40
Fine Grading Worker Trips	0.02	0.04	0.68	0.00	0.00	0.00	0.01	0.00	0.00	0.00	93.26
Trenching 01/01/2012-03/31/2012	2.45	17.18	10.83	0.00	0.01	0.88	0.88	0.00	0.81	0.81	3,512.89
Trenching Off Road Diesel	2.41	17.10	9.47	0.00	0.00	0.87	0.87	0.00	0.80	0.80	3,326.37
Trenching Worker Trips	0.04	0.08	1.36	0.00	0.01	0.01	0.01	0.00	0.00	0.01	186.52
Time Slice 4/2/2012-6/30/2012 Active Days: 78	8.40	64.94	<u>57.10</u>	<u>0.08</u>	<u>23.68</u>	3.15	<u>26.83</u>	<u>4.99</u>	2.89	<u>7.88</u>	<u>12,977.76</u>
Building 04/01/2012-07/31/2013	4.54	27.67	38.77	0.04	0.18	1.47	1.65	0.06	1.35	1.41	7,110.95
Building Off Road Diesel	3.51	22.97	12.21	0.00	0.00	1.25	1.25	0.00	1.15	1.15	3,081.27
Building Vendor Trips	0.31	3.35	2.94	0.01	0.03	0.14	0.17	0.01	0.13	0.14	792.90
Building Worker Trips	0.71	1.35	23.62	0.03	0.15	0.09	0.24	0.06	0.07	0.13	3,236.78
Fine Grading 02/01/2012- 06/30/2012	3.86	37.28	18.33	0.04	23.50	1.68	25.18	4.93	1.54	6.47	5,866.81
Fine Grading Dust	0.00	0.00	0.00	0.00	23.36	0.00	23.36	4.88	0.00	4.88	0.00
Fine Grading Off Road Diesel	1.83	12.27	8.01	0.00	0.00	0.69	0.69	0.00	0.63	0.63	1,535.15
Fine Grading On Road Diesel	2.01	24.96	9.64	0.04	0.14	0.98	1.13	0.05	0.91	0.95	4,238.40
Fine Grading Worker Trips	0.02	0.04	0.68	0.00	0.00	0.00	0.01	0.00	0.00	0.00	93.26

Time Slice 7/2/2012-10/31/2012 Active Days: 105	4.54	27.67	38.77	0.04	0.18	1.47	1.65	0.06	1.35	1.41	7,110.95
Building 04/01/2012-07/31/2013	4.54	27.67	38.77	0.04	0.18	1.47	1.65	0.06	1.35	1.41	7,110.95
Building Off Road Diesel	3.51	22.97	12.21	0.00	0.00	1.25	1.25	0.00	1.15	1.15	3,081.27
Building Vendor Trips	0.31	3.35	2.94	0.01	0.03	0.14	0.17	0.01	0.13	0.14	792.90
Building Worker Trips	0.71	1.35	23.62	0.03	0.15	0.09	0.24	0.06	0.07	0.13	3,236.78
Time Slice 11/1/2012-12/31/2012 Active Days: 52	6.89	44.00	48.12	0.04	0.19	2.33	2.52	0.07	2.13	2.20	9,522.40
Building 04/01/2012-07/31/2013	4.54	27.67	38.77	0.04	0.18	1.47	1.65	0.06	1.35	1.41	7,110.95
Building Off Road Diesel	3.51	22.97	12.21	0.00	0.00	1.25	1.25	0.00	1.15	1.15	3,081.27
Building Vendor Trips	0.31	3.35	2.94	0.01	0.03	0.14	0.17	0.01	0.13	0.14	792.90
Building Worker Trips	0.71	1.35	23.62	0.03	0.15	0.09	0.24	0.06	0.07	0.13	3,236.78
Trenching 11/01/2012-12/31/2012	2.36	16.34	9.35	0.00	0.01	0.85	0.86	0.00	0.79	0.79	2,411.45
Trenching Off Road Diesel	2.32	16.27	8.22	0.00	0.00	0.85	0.85	0.00	0.78	0.78	2,256.02
Trenching Worker Trips	0.03	0.06	1.13	0.00	0.01	0.00	0.01	0.00	0.00	0.01	155.43
Time Slice 1/1/2013-2/28/2013 Active Days: 51	6.58	<u>40.45</u>	<u>47.88</u>	0.04	<u>21.58</u>	2.29	<u>23.88</u>	<u>4.54</u>	2.10	<u>6.64</u>	<u>9,212.30</u>
Building 04/01/2012-07/31/2013	4.23	25.56	36.56	0.04	0.18	1.37	1.55	0.06	1.25	1.32	7,110.60
Building Off Road Diesel	3.30	21.36	11.90	0.00	0.00	1.16	1.16	0.00	1.07	1.07	3,081.27
Building Vendor Trips	0.28	2.96	2.71	0.01	0.03	0.12	0.15	0.01	0.11	0.12	792.93
Building Worker Trips	0.65	1.23	21.96	0.03	0.15	0.09	0.24	0.06	0.07	0.13	3,236.39
Fine Grading 01/01/2013- 02/28/2013	2.35	14.89	11.32	0.00	21.40	0.92	22.33	4.47	0.85	5.32	2,101.70
Fine Grading Dust	0.00	0.00	0.00	0.00	21.40	0.00	21.40	4.47	0.00	4.47	0.00
Fine Grading Off Road Diesel	2.33	14.85	10.48	0.00	0.00	0.92	0.92	0.00	0.85	0.85	1,977.37
Fine Grading On Road Diesel	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fine Grading Worker Trips	0.02	0.05	0.84	0.00	0.01	0.00	0.01	0.00	0.00	0.00	124.33
7/9/2010 12:14:13 PM

Time Slice 3/1/2013-3/30/2013 Active Days: 26	4.23	25.56	36.56	0.04	0.18	1.37	1.55	0.06	1.25	1.32	7,110.60
Building 04/01/2012-07/31/2013	4.23	25.56	36.56	0.04	0.18	1.37	1.55	0.06	1.25	1.32	7,110.60
Building Off Road Diesel	3.30	21.36	11.90	0.00	0.00	1.16	1.16	0.00	1.07	1.07	3,081.27
Building Vendor Trips	0.28	2.96	2.71	0.01	0.03	0.12	0.15	0.01	0.11	0.12	792.93
Building Worker Trips	0.65	1.23	21.96	0.03	0.15	0.09	0.24	0.06	0.07	0.13	3,236.39
Time Slice 4/1/2013-5/31/2013 Active Days: 53	44.80	25.58	37.01	0.04	0.18	1.37	1.56	0.07	1.25	1.32	7,175.97
Building 04/01/2012-07/31/2013	4.23	25.56	36.56	0.04	0.18	1.37	1.55	0.06	1.25	1.32	7,110.60
Building Off Road Diesel	3.30	21.36	11.90	0.00	0.00	1.16	1.16	0.00	1.07	1.07	3,081.27
Building Vendor Trips	0.28	2.96	2.71	0.01	0.03	0.12	0.15	0.01	0.11	0.12	792.93
Building Worker Trips	0.65	1.23	21.96	0.03	0.15	0.09	0.24	0.06	0.07	0.13	3,236.39
Coating 04/01/2013-10/31/2013	40.56	0.02	0.44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	65.38
Architectural Coating	40.55	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Coating Worker Trips	0.01	0.02	0.44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	65.38

7/9/2010 12:14:13 PM

Time Slice 6/1/2013-7/31/2013 39.25 0.20 2.70 0.07 2.36 8,699.07 <u>47.25</u> 47.01 0.05 <u>2.50</u> <u>2.29</u> Active Days: 52 Asphalt 06/01/2013-08/31/2013 2.46 13.67 0.00 0.02 0.01 1,523.09 10.00 1.13 1.14 1.04 1.04 Paving Off-Gas 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1,131.92 Paving Off Road Diesel 2.10 12.84 8.03 0.00 1.09 1.09 0.00 1.00 1.00 Paving On Road Diesel 0.06 0.74 0.29 0.00 0.00 0.03 0.03 0.00 0.03 0.03 142.52 0.09 0.00 0.01 0.00 248.66 Paving Worker Trips 0.05 1.69 0.01 0.02 0.01 0.01 Building 04/01/2012-07/31/2013 4.23 25.56 36.56 0.04 0.18 1.37 1.55 0.06 1.25 1.32 7.110.60 Building Off Road Diesel 3.30 21.36 0.00 0.00 0.00 1.07 11.90 1.16 1.16 1.07 3,081.27 **Building Vendor Trips** 0.28 2.96 0.01 0.03 0.12 0.15 0.01 0.12 792.93 2.71 0.11 **Building Worker Trips** 0.65 1.23 21.96 0.03 0.15 0.09 0.24 0.06 0.07 0.13 3,236.39 65.38 0.02 0.00 0.00 0.00 0.00 0.00 0.00 Coating 04/01/2013-10/31/2013 40.56 0.44 0.00 Architectural Coating 40.55 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.00 65.38 Coating Worker Trips 0.44 0.00 0.00 Time Slice 8/1/2013-8/31/2013 43.02 13.69 10.45 0.00 0.02 1.13 1.15 0.01 1.04 1.04 1.588.47 Active Days: 27 Asphalt 06/01/2013-08/31/2013 2.46 13.67 10.00 0.00 0.02 1.13 1.14 0.01 1.04 1.04 1,523.09 Paving Off-Gas 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Paving Off Road Diesel 2.10 12.84 8.03 0.00 0.00 1.09 1.09 0.00 1.00 1.00 1,131.92 Paving On Road Diesel 0.06 0.74 0.29 0.00 0.00 0.03 0.03 0.00 0.03 0.03 142.52 Paving Worker Trips 0.05 0.09 1.69 0.00 0.01 0.01 0.02 0.00 0.01 0.01 248.66 Coating 04/01/2013-10/31/2013 40.56 0.02 0.44 0.00 0.00 0.00 0.00 0.00 0.00 0.00 65.38 Architectural Coating 0.00 0.00 0.00 0.00 0.00 0.00 40.55 0.00 0.00 0.00 0.00 Coating Worker Trips 0.01 0.02 0.44 0.00 0.00 0.00 0.00 0.00 0.00 0.00 65.38

7/9/2010 12:14:13 PM

Time Slice 9/2/2013-10/31/2013 Active Days: 52	40.56	0.02	0.44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	65.38
Coating 04/01/2013-10/31/2013	40.56	0.02	0.44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	65.38
Architectural Coating	40.55	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Coating Worker Trips	0.01	0.02	0.44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	65.38

Construction Related Mitigation Measures

The following mitigation measures apply to Phase: Demolition 5/1/2011 - 8/31/2011 - Demo Buildings

For Rubber Tired Dozers, the Diesel Oxidation Catalyst 20% mitigation reduces emissions by:

NOX: 20%

For Tractors/Loaders/Backhoes, the Diesel Oxidation Catalyst 20% mitigation reduces emissions by: NOX: 20%

For Off Highway Trucks, the Diesel Oxidation Catalyst 20% mitigation reduces emissions by:

NOX: 20%

For Water Trucks, the Diesel Oxidation Catalyst 20% mitigation reduces emissions by:

NOX: 20%

The following mitigation measures apply to Phase: Demolition 5/11/2011 - 8/31/2011 - Demo Parking Lot

For Rubber Tired Dozers, the Diesel Oxidation Catalyst 20% mitigation reduces emissions by:

NOX: 20%

 $\label{eq:Formation} For \ Tractors/Loaders/Backhoes, the \ Diesel \ Oxidation \ Catalyst \ 20\% \ mitigation \ reduces \ emissions \ by:$

NOX: 20%

The following mitigation measures apply to Phase: Fine Grading 2/1/2012 - 6/30/2012 - Fine Site Grading (Construction Zone)

For Soil Stablizing Measures, the Water exposed surfaces 2x daily watering mitigation reduces emissions by:

PM10: 55% PM25: 55%

For Graders, the Diesel Oxidation Catalyst 20% mitigation reduces emissions by:

NOX: 20%

For Rubber Tired Dozers, the Diesel Oxidation Catalyst 20% mitigation reduces emissions by:

NOX: 20%

For Water Trucks, the Diesel Oxidation Catalyst 20% mitigation reduces emissions by:

7/9/2010 12:14:13 PM NOX: 20% The following mitigation measures apply to Phase: Fine Grading 1/1/2013 - 2/28/2013 - Fine Parking Lot Grading For Soil Stablizing Measures, the Water exposed surfaces 3x daily watering mitigation reduces emissions by: PM10: 61% PM25: 61% For Graders, the Diesel Oxidation Catalyst 20% mitigation reduces emissions by: NOX: 20% For Rubber Tired Dozers, the Diesel Oxidation Catalyst 20% mitigation reduces emissions by: NOX: 20% For Tractors/Loaders/Backhoes, the Diesel Oxidation Catalyst 20% mitigation reduces emissions by: NOX: 20% For Water Trucks, the Diesel Oxidation Catalyst 20% mitigation reduces emissions by: NOX: 20% The following mitigation measures apply to Phase: Mass Grading 11/1/2011 - 1/31/2012 - Mass Site Grading & Excavation Activity For Soil Stablizing Measures, the Apply soil stabilizers to inactive areas mitigation reduces emissions by: PM10: 84% PM25: 84% For Soil Stablizing Measures, the Replace ground cover in disturbed areas quickly mitigation reduces emissions by: PM10: 5% PM25: 5% For Soil Stablizing Measures, the Water exposed surfaces 2x daily watering mitigation reduces emissions by: PM10: 55% PM25: 55% For Graders, the Diesel Oxidation Catalyst 20% mitigation reduces emissions by: NOX: 20% For Rubber Tired Dozers, the Diesel Oxidation Catalyst 20% mitigation reduces emissions by: NOX: 20% For Tractors/Loaders/Backhoes, the Diesel Oxidation Catalyst 20% mitigation reduces emissions by: NOX: 20% For Water Trucks, the Diesel Oxidation Catalyst 20% mitigation reduces emissions by: NOX: 20% For Excavators, the Diesel Oxidation Catalyst 20% mitigation reduces emissions by: NOX: 20% For Off Highway Trucks, the Diesel Oxidation Catalyst 15% mitigation reduces emissions by:

Page: 21 7/9/2010 12:14:13 PM NOX: 15% The following mitigation measures apply to Phase: Trenching 1/1/2012 - 3/31/2012 - Trenching (Foundation, Piles) For Excavators, the Diesel Oxidation Catalyst 20% mitigation reduces emissions by: NOX: 20% For Other General Industrial Equipment, the Diesel Oxidation Catalyst 20% mitigation reduces emissions by: NOX: 20% For Tractors/Loaders/Backhoes, the Diesel Oxidation Catalyst 20% mitigation reduces emissions by: NOX: 20% For Off Highway Trucks, the Diesel Oxidation Catalyst 20% mitigation reduces emissions by: NOX: 20% For Plate Compactors, the Diesel Oxidation Catalyst 20% mitigation reduces emissions by: NOX: 20% For Bore/Drill Rigs, the Diesel Oxidation Catalyst 20% mitigation reduces emissions by: NOX: 20% The following mitigation measures apply to Phase: Trenching 11/1/2012 - 12/31/2012 - Trenching (Utilities, Pipelines) For Excavators, the Diesel Oxidation Catalyst 20% mitigation reduces emissions by: NOX: 20% For Tractors/Loaders/Backhoes, the Diesel Oxidation Catalyst 20% mitigation reduces emissions by: NOX: 20% For Off Highway Trucks, the Diesel Oxidation Catalyst 20% mitigation reduces emissions by: NOX: 20% The following mitigation measures apply to Phase: Building Construction 4/1/2012 - 7/31/2013 - Construct Building (Terminal, Passenger Area) For Cranes, the Diesel Oxidation Catalyst 20% mitigation reduces emissions by: NOX: 20% For Crawler Tractors, the Diesel Oxidation Catalyst 20% mitigation reduces emissions by: NOX: 20% For Excavators, the Diesel Oxidation Catalyst 20% mitigation reduces emissions by: NOX: 20% For Off Highway Trucks, the Diesel Oxidation Catalyst 20% mitigation reduces emissions by: NOX: 20%

7/9/2010 12:14:13 PM

The following mitigation measures apply to Phase: Architectural Coating 4/1/2013 - 10/31/2013 - Architectural Coating - Building Paint

For Nonresidential Architectural Coating Measures, the Nonresidential Exterior: Use Low VOC Coatings mitigation reduces emissions by: ROG: 10%

For Nonresidential Architectural Coating Measures, the Nonresidential Interior: Use Low VOC Coatings mitigation reduces emissions by: ROG: 10%

APPENDIX B

Proposed Project Operational Emissions of Criteria Pollutants

- **B-1: Operational Emissions Summary**
- **B-2: Combined Emissions Report Existing Operations**
- **B-3: Combined Emissions Report Operations**

B-1: Combined Winter Emission Report

ARTIC Operations - Pounds per Day

	ROG	NOx	CO	SO2	PM10	PM2.5	CO2	CO2e (MT/yr)
New ARTIC Building	0.64	2.65	2.23	0.00	0.00	0.00	3,178.80	526.29
New Emergency Generator	0.93	1.54	8.02	0.57	0.22	0.17	1,624.00	38.30
New Vehicle Traffic	29.69	46.43	323.78	0.37	3.96	2.54	39,434.75	6,528.87
Total ARTIC Operational	31.26	50.62	334.03	0.94	4.18	2.71	44,237.55	7,093.46
Existing Metrolink/AMTRAK Station	5.55	8.39	74.35	0.10	0.86	0.56	9,438.29	1,562.61
Delta (New - Existing)	25.71	42.23	259.68	0.84	3.32	2.15	34,799.26	5,530.84
			550	450	450			40.000 MT/
Significance i nreshold (lb/day)	55	55	550	150	150	55		10,000 MT/yr

Note: CEQA interim GHG Sig Threshold is 10,000 metric tonnes per year (MT/yr) of carbon dioxide equivalent (CO2e). CO2e calculation assumes 365 working days per year, except for emergency generator run once per week (i.e., 52 days/yr) Total: 5,530.84 MT/yr CO2e (Operational) + 197.3 MT/yr CO2e (Construction) = 5,728.14 MT/yr CO2e. (Less than Sig Level).

Rating:	1000 kW	hours:	1 hr/test
	1400 hp		

	VOC	NOx	CO	SO2	PM10	PM2.5	CO2
EF (g/bhp-hr)	0.3	0.5	2.6		0.07		
EF (lb/hp-hr)	0.000661	0.001102	0.005732	0.000405	0.000154	0.000122	1.16
Emissions (lb/day)	0.93	1.54	8.02	0.57	0.22	0.17	1624.00

Notes:

1. Emission Factor Source for SO2, PM2.5, & CO2: AP-42 5th Ed., Chapter 3.4 Tables 3.4-1 and 3.4-2, dated October 1996

2. Based on PM_{2.5} Emission Factor (AP-42 Section 3.4) = 4.78E-02 lb/MMBtu

Large Gen PM2.5 EF (lb/hp-hr) = PM2.5 EF (lb/MMBtu) / .000393 (hp-hr/Btu) / 1,000,000 (Btu/MMBtu) = 1.22E-04 (lb/hp-hr)

3. Emission factor for SOx = $0.00809 \times S$, where S = sulfur content of the fuel (% by weight) = 0.05 %

Large Gen SOx EF (lb/hp-hr) = 0.00809 * 0.05

4. Emission Factor Source for VOC (NMHC), NOx, CO, & PM10: CARB and USEPA Off-Road Compression-Ignition (Diesel) Engine Standards, Tier 4 Standards for engines >1200 hp.

B-2: Combined Winter Emission Report – Existing Operations

7/8/2010 9:15:03 AM

Urbemis 2007 Version 9.2.4

Combined Summer Emissions Reports (Pounds/Day)

File Name: C:\Documents and Settings\jdill\My Documents\Projects\ARTIC\June 2010 Docs\ARTIC Building_Existing Baseline_R2.urb924

Project Name: ARTIC Building

Project Location: South Coast AQMD

On-Road Vehicle Emissions Based on: Version : Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

Summary Report:

CONSTRUCTION EMISSION ESTIMATES

	<u>ROG</u>	<u>NOx</u>	<u>CO</u>	<u>SO2</u>	PM10 Dus	<u>t PM10 Exhaust</u>	<u>PM10</u>	PM2.5 Dust	PM2.5 Exhaust	<u>PM2.5</u>	<u>CO2</u>
AREA SOURCE EMISSION ESTIMATES											
		ROG	<u>NOx</u>	<u>CO</u>	<u>SO2</u>	<u>PM10</u>	<u>PM2.5</u>	<u>CO2</u>			
TOTALS (lbs/day, unmitigated)		0.13	0.07	1.59	0.00	0.01	0.01	57.37			
OPERATIONAL (VEHICLE) EMISSION ESTIMATE	S										
		ROG	<u>NOx</u>	<u>CO</u>	<u>SO2</u>	<u>PM10</u>	<u>PM2.5</u>	<u>CO2</u>			
TOTALS (lbs/day, unmitigated)		5.42	8.32	72.76	0.10	0.85	0.55	9,380.92			
SUM OF AREA SOURCE AND OPERATIONAL EN	ISSION E	STIMATES									
		ROG	<u>NOx</u>	<u>CO</u>	<u>SO2</u>	<u>PM10</u>	<u>PM2.5</u>	<u>CO2</u>			
TOTALS (lbs/day, unmitigated)		5.55	8.39	74.35	0.10	0.86	0.56	9,438.29			

7/8/2010 9:15:03 AM

Area Source Unmitigated Detail Report:

AREA SOURCE EMISSION ESTIMATES Summer Pounds Per Day, Unmitigated

Source	ROG	<u>NOx</u>	<u>CO</u>	<u>SO2</u>	<u>PM10</u>	<u>PM2.5</u>	<u>CO2</u>
Natural Gas	0.00	0.05	0.04	0.00	0.00	0.00	54.56
Hearth - No Summer Emissions							
Landscape	0.12	0.02	1.55	0.00	0.01	0.01	2.81
Consumer Products	0.00						
Architectural Coatings	0.01						
TOTALS (lbs/day, unmitigated)	0.13	0.07	1.59	0.00	0.01	0.01	57.37

Area Source Changes to Defaults

The nonresidential percentage of surface area repainted each year changed from 10% to 2%

Operational Unmitigated Detail Report:

OPERATIONAL EMISSION ESTIMATES Summer Pounds Per Day, Unmitigated

Source	ROG	NOX	со	SO2	PM10	PM25	CO2
Metrolink/Amtrak Station	5.42	8.32	72.76	0.10	0.85	0.55	9,380.92
TOTALS (lbs/day, unmitigated)	5.42	8.32	72.76	0.10	0.85	0.55	9,380.92

Operational Settings:

Does not include correction for passby trips

Does not include double counting adjustment for internal trips

Analysis Year: 2013 Temperature (F): 80 Season: Summer

7/8/2010 9:15:03 AM

Emfac: Version : Emfac2007 V2.3 Nov 1 2006

Summary of Land Uses											
Land Use Type	Acreage	Trip Rate	Unit Type	No. Units	Total Trips	Total VMT					
Metrolink/Amtrak Station		148.83	1000 sq ft	6.82	1,015.02	9,107.78					
					1,015.02	9,107.78					
		Vehicle Fleet N	<u>/lix</u>								
Vehicle Type	Percent	Туре	Non-Cataly	vst	Catalyst	Diesel					
Light Auto		51.3	C	.4	99.4	0.2					
Light Truck < 3750 lbs		7.3	1	.4	95.9	2.7					
Light Truck 3751-5750 lbs		23.1	C	.4	99.6	0.0					
Med Truck 5751-8500 lbs		10.7	C	.9	99.1	0.0					
Lite-Heavy Truck 8501-10,000 lbs		1.6	C	.0	81.2	18.8					
Lite-Heavy Truck 10,001-14,000 lbs		0.5	0	.0	60.0	40.0					
Med-Heavy Truck 14,001-33,000 lbs		0.9	0	.0	22.2	77.8					
Heavy-Heavy Truck 33,001-60,000 lbs		0.6	0	.0	0.0	100.0					
Other Bus		0.1	0	.0	0.0	100.0					
Urban Bus		0.1	0	.0	0.0	100.0					
Motorcycle		2.8	53	.6	46.4	0.0					
School Bus		0.1	0	.0	0.0	100.0					
Motor Home		0.9	Q	0	88 9	11 1					

7/8/2010 9:15:03 AM

Travel Conditions										
		Residential		Commercial						
	Home-Work	Home-Shop	Home-Other	Commute	Non-Work	Customer				
Urban Trip Length (miles)	12.7	7.0	9.5	13.3	7.4	8.9				
Rural Trip Length (miles)	17.6	12.1	14.9	15.4	9.6	12.6				
Trip speeds (mph)	30.0	30.0	30.0	30.0	30.0	30.0				
% of Trips - Residential	32.9	18.0	49.1							
% of Trips - Commercial (by land use)										
Metrolink/Amtrak Station				2.0	1.0	97.0				

B-3: Combined Winter Emission Report – Operations

7/8/2010 10:19:47 AM

Urbemis 2007 Version 9.2.4

Combined Winter Emissions Reports (Pounds/Day)

File Name: C:\Documents and Settings\jdill\My Documents\Projects\ARTIC\June 2010 Docs\ARTIC Building_R15_mitigation.urb924

Project Name: ARTIC Building

Project Location: South Coast AQMD

On-Road Vehicle Emissions Based on: Version : Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

7/8/2010 10:19:47 AM

Summary Report:			
CONSTRUCTION EMISSION ESTIMATES			
	ROG	<u>NOx</u>	<u>CO</u>
2011 TOTALS (lbs/day unmitigated)	7.64	70.72	31.74

2011 TOTALS (lbs/day mitigated)	7.64	61.37	31.74	0.02	10.99	3.02	14.01	2.30	2.78	5.08	8,741.73
2012 TOTALS (lbs/day unmitigated)	9.69	86.50	57.10	0.08	41.63	3.59	44.98	8.74	3.30	11.95	12,977.76
2012 TOTALS (lbs/day mitigated)	9.69	73.55	57.10	0.08	23.68	3.59	26.83	4.99	3.30	7.88	12,977.76
2013 TOTALS (lbs/day unmitigated)	51.76	47.51	47.88	0.05	41.49	2.50	43.78	8.69	2.29	10.79	9,212.30
2013 TOTALS (lbs/day mitigated)	47.25	40.45	47.88	0.05	21.58	2.50	23.88	4.54	2.29	6.64	9,212.30
AREA SOURCE EMISSION ESTIMATES											
		ROG	<u>NOx</u>	<u>CO</u>	<u>SO2</u>	<u>PM10</u>	PM2.5	<u>CO2</u>			
TOTALS (lbs/day, unmitigated)		0.64	2.65	2.23	0.00	0.00	0.00	3,178.80			
OPERATIONAL (VEHICLE) EMISSION EST	TIMATES										
		ROG	<u>NOx</u>	<u>CO</u>	<u>SO2</u>	<u>PM10</u>	<u>PM2.5</u>	<u>CO2</u>			
TOTALS (lbs/day, unmitigated)		29.69	46.43	323.78	0.37	3.96	2.54	39,434.75			
SUM OF AREA SOURCE AND OPERATIO	NAL EMISSION E	ESTIMATES									
		ROG	<u>NOx</u>	<u>CO</u>	<u>SO2</u>	<u>PM10</u>	<u>PM2.5</u>	<u>CO2</u>			
TOTALS (lbs/day, unmitigated)		30.33	49.08	326.01	0.37	3.96	2.54	42,613.55			

<u>SO2</u>

0.02

PM10 Dust PM10 Exhaust

3.02

41.38

<u>PM2.5</u> Exhaust

2.78

<u>PM2.5</u>

11.43

<u>CO2</u>

8,741.73

PM10 PM2.5 Dust

8.65

44.40

7/8/2010 10:19:47 AM

Operational Unmitigated Detail Report:

OPERATIONAL EMISSION ESTIMATES Winter Pounds Per Day, Unmitigated

Source	ROG	NOX	со	SO2	PM10	PM25	CO2
City park	0.00	0.00	0.00	0.00	0.00	0.00	0.06
Fast food rest. w/o drive thru	0.05	0.00	0.01	0.00	0.00	0.00	1.49
Convenience market (24 hour)	0.01	0.00	0.00	0.00	0.00	0.00	0.41
ARTIC Terminal Building	29.50	46.43	323.74	0.37	3.96	2.54	39,429.28
Platforms	0.13	0.00	0.03	0.00	0.00	0.00	3.51
TOTALS (lbs/day, unmitigated)	29.69	46.43	323.78	0.37	3.96	2.54	39,434.75

Operational Settings:

Does not include correction for passby trips Does not include double counting adjustment for internal trips

Analysis Year: 2013 Temperature (F): 60 Season: Winter

Emfac: Version : Emfac2007 V2.3 Nov 1 2006

Summary of Land Uses									
Land Use Type	Acreage	Trip Rate	Unit Type	No. Units	Total Trips	Total VMT			
City park		0.01	acres	0.69	0.01	0.06			
Fast food rest. w/o drive thru		0.01	1000 sq ft	18.00	0.18	1.60			
Convenience market (24 hour)		0.01	1000 sq ft	5.00	0.05	0.44			
ARTIC Terminal Building		14.64	1000 sq ft	322.00	4,714.08	42,299.44			

7/8/2010 10:19:47 AM

		Summary of Land L	lses			
Land Use Type	Acre	age Trip Rate	Unit Type	No. Units	Total Trips	Total VMT
Platforms		0.01	1000 sq ft	42.00	0.42	3.77
					4,714.74	42,305.31
		Vehicle Fleet	Mix			
Vehicle Type	Pe	ercent Type	Non-Cataly	st	Catalyst	Diesel
Light Auto		51.3	0.	.4	99.4	0.2
Light Truck < 3750 lbs		7.3	1.	.4	95.9	2.7
Light Truck 3751-5750 lbs		23.1	0.	.4	99.6	0.0
Med Truck 5751-8500 lbs		10.7	0.	9	99.1	0.0
Lite-Heavy Truck 8501-10,000 lbs		1.6	0.	.0	81.2	18.8
Lite-Heavy Truck 10,001-14,000 lbs		0.5	0.	.0	60.0	40.0
Med-Heavy Truck 14,001-33,000 lbs		0.9	0.	.0	22.2	77.8
Heavy-Heavy Truck 33,001-60,000 lbs		0.6	0.	.0	0.0	100.0
Other Bus		0.1	0.	.0	0.0	100.0
Urban Bus		0.1	0.	.0	0.0	100.0
Motorcycle		2.8	53.	.6	46.4	0.0
School Bus		0.1	0.	.0	0.0	100.0
Motor Home		0.9	0.	.0	88.9	11.1
		Travel Conditi	ions			
	l	Residential			Commercial	
	Home-Work	Home-Shop	Home-Other	Commute	e Non-Work	Customer
Urban Trip Length (miles)	12.7	7.0	9.5	13.3	3 7.4	8.9

7/8/2010 10:19:47 AM

	Travel Conditions									
		Residential			Commercial					
	Home-Work	Home-Shop	Home-Other	Commute	Non-Work	Customer				
Rural Trip Length (miles)	17.6	12.1	14.9	15.4	9.6	12.6				
Trip speeds (mph)	30.0	30.0	30.0	30.0	30.0	30.0				
% of Trips - Residential	32.9	18.0	49.1							
% of Trips - Commercial (by land use)										
City park				0.0	0.0	100.0				
Fast food rest. w/o drive thru				0.0	0.0	100.0				
Convenience market (24 hour)				0.0	0.0	100.0				
ARTIC Terminal Building				2.0	1.0	97.0				
Platforms				2.0	1.0	97.0				

Operational Changes to Defaults

APPENDIX C

CAL3QHC Model Input and Output CO Hot Spots

C-1: EMFAC Input and Output Files C-2: CAL3QHC Input Detail and Summary Results C-3: CAL3QHC Input and Output Files (Available on CD) C-1: EMFAC Input and Output Files

ARTIC_Emfac07_0C_2009-2013-2035_Emfact Mode_AII Speeds Emfac2007-Header Version 2 30 3 501 Scenario-Count 1 End-Header Begin-Scenario 1 Title ARTIC_Emfac2007_Orange County_2009-2013-2035_EMAC Mode_CO Program-Mode Emfac Area-Method One-County Area-Type County Area-Number 30 [Orange County] HC-Mode ROG PM-Mode PM10 CYr 2009 2013 2035 MYr All Vehicles All Season Annual Emfac-Reports RTS RTL Emfac-Speed 0 1. 2. 3. 4. 5. 10. 15. 20. 25. 30. 35. 40. 45. 50. 55. 60. 65. Emfac-RH 65. Emfac-Temp 73. End-Scenari o

Title Versi Run [Scen Seaso Area ****	A e : ART on : Emf Date : 201 Year: 200 Dn : Ann Ora 0ra **********	RTIC_En IC_Emfa ac2007 0/04/07 9 Al ual nge	nfac07_0C_2 ac2007_0ran V2.3 Nov 1 7 16:10:26 I model ye	009-2013- ge County 2006 ars in th	2035_Emfa _2009-201 e range 1	ct Mode_AI 3-2035_EM4 965 to 200	I Speed AC Mode_ 09 seled	ds.rts _CO cted	****
	Year: 200 Emfac2007	9 Mo Emissi	odel Years on Factors	1965 to 2 : V2.3 No	009 Inclu v 1 2006	ısi ve Ar	nnual		
Avera	County Ave age	erage				Orange		Cou	nty
grams	s∕idle-hou	r)	Та	ble 1:	Runni ng	Exhaust En	ni ssi ons	s (grams/m	ile;
65%	Pol I utant	Name:	Reactive O	rg Gases	Te	emperature:	73F	Rel ati ve	Humi di ty:
	Speed MPH	LDA	LDT	MDT	HDT	UBUS	MCY	ALL	
	0 1 2 3 4 5 10 15 20 25 30 35 40 45 50 55 60 65	0. 000 0. 452 0. 452 0. 431 0. 392 0. 358 0. 234 0. 161 0. 117 0. 090 0. 073 0. 062 0. 056 0. 053 0. 055 0. 061 0. 071	0.000 0.506 0.483 0.440 0.401 0.263 0.182 0.132 0.101 0.082 0.070 0.062 0.059 0.058 0.061 0.067 0.077	3. 364 0. 798 0. 798 0. 771 0. 721 0. 676 0. 443 0. 305 0. 221 0. 167 0. 133 0. 111 0. 098 0. 090 0. 087 0. 089 0. 096 0. 109	8. 058 5. 213 5. 213 5. 213 5. 213 5. 213 3. 070 1. 676 1. 015 0. 798 0. 640 0. 528 0. 455 0. 414 0. 405 0. 424 0. 471 0. 547	0.000 4.102 4.102 4.102 4.102 4.102 2.794 1.982 1.464 1.126 0.901 0.751 0.650 0.586 0.549 0.535 0.542 0.571	0.000 4.862 4.862 4.862 4.862 4.862 3.766 3.060 2.608 2.332 2.189 2.157 2.231 2.422 2.758 3.292 4.119 5.396	0. 698 0. 685 0. 685 0. 663 0. 622 0. 587 0. 378 0. 251 0. 179 0. 140 0. 114 0. 098 0. 089 0. 089 0. 086 0. 087 0. 093 0. 105 0. 125	Humi di tv:
65%	Speed	Name.				inperature.	751	Ker attive	num ur ty.
	MPH	LDA	LDT	MDT	HDT	UBUS	MCY	ALL	
	0 1 2 3 4 5 10 15 20 25 30 35 40	$\begin{array}{c} 0.\ 000\\ 4.\ 972\\ 4.\ 972\\ 4.\ 890\\ 4.\ 733\\ 4.\ 585\\ 3.\ 965\\ 3.\ 493\\ 3.\ 123\\ 2.\ 827\\ 2.\ 588\\ 2.\ 394\\ 2.\ 239 \end{array}$	$\begin{array}{c} 0.\ 000\\ 6.\ 050\\ 6.\ 050\\ 5.\ 953\\ 5.\ 768\\ 5.\ 593\\ 4.\ 851\\ 4.\ 279\\ 3.\ 827\\ 3.\ 463\\ 3.\ 168\\ 2.\ 927\\ 2.\ 734 \end{array}$	20. 685 8. 093 8. 093 7. 985 7. 780 7. 589 6. 089 5. 080 4. 372 3. 858 3. 477 3. 195 2. 990	42. 021 23. 332 23. 332 23. 332 23. 332 23. 332 16. 078 11. 482 8. 608 6. 918 5. 768 4. 996 4. 511 age 1	$\begin{array}{c} 0.\ 000\\ 34.\ 412\\ 34.\ 412\\ 34.\ 412\\ 34.\ 412\\ 34.\ 412\\ 22.\ 565\\ 15.\ 662\\ 11.\ 504\\ 8.\ 942\\ 7.\ 353\\ 6.\ 398\\ 5.\ 888 \end{array}$	$\begin{array}{c} 0.\ 000\\ 32.\ 077\\ 32.\ 077\\ 32.\ 077\\ 32.\ 077\\ 32.\ 077\\ 26.\ 545\\ 23.\ 054\\ 20.\ 996\\ 20.\ 049\\ 20.\ 082\\ 21.\ 118\\ 23.\ 343 \end{array}$	$\begin{array}{c} 4.\ 076\\ 6.\ 480\\ 6.\ 480\\ 6.\ 392\\ 6.\ 225\\ 6.\ 068\\ 5.\ 052\\ 4.\ 328\\ 3.\ 798\\ 3.\ 403\\ 3.\ 100\\ 2.\ 869\\ 2.\ 700 \end{array}$	

	ARTIC_Emf	ac07_0C_2	009-2013-	2035_Emfa	ct Mode_A	ALL Speeds	. rts
45	2.120	2.582	2.854	4. 268	5.732	27. 159	2.589
50	2.036	2.472	2.786	4.253	5.902	33.296	2.539
55	1. 991	2.404	2.793	4.480	6. 427	43.052	2.562
60	1. 992	2.389	2.894	4.992	7.403	58.737	2.683
65	2.057	2.440	3. 128	5.882	9.019	84.565	2.950

Speed MPHLDALDTMDTHDTUBUSMCYALL00.0000.0003.69669.9810.0000.0002.49910.3180.5551.00318.77226.4330.8791.05320.3180.5551.00318.77226.4330.8791.05330.3130.5460.99318.77226.4330.8791.04640.3030.5280.97218.77226.4330.8791.021100.2570.5120.95318.77226.4330.8791.021100.2570.4400.82413.84020.4940.8930.813150.2290.3880.73210.76316.7270.9110.676200.2080.3490.6689.44214.3530.9330.604250.1930.3210.6258.96712.9280.9600.566300.1820.3010.5998.66812.2030.9890.541350.1750.2880.5868.55012.4551.0210.527400.1710.2810.5868.55012.4551.0930.533500.1720.2840.6279.11115.2141.1330.552550.1770.2940.6719.71518.0201.1750.585	65%	Pollutant	Name:	Oxides of	Ni trogen	Τe	emperature:	73F	Rel ati ve	Humi di ty:
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Speed MPH	LDA	LDT	MDT	HDT	UBUS	MCY	ALL	
60 0.186 0.311 0.736 10.614 22.395 1.221 0.636 65 0.198 0.336 0.829 11.914 29.251 1.269 0.711		0 1 2 3 4 5 10 15 20 25 30 35 40 45 50 55 60 65	$\begin{array}{c} 0.\ 000\\ 0.\ 318\\ 0.\ 318\\ 0.\ 313\\ 0.\ 303\\ 0.\ 295\\ 0.\ 257\\ 0.\ 257\\ 0.\ 208\\ 0.\ 193\\ 0.\ 182\\ 0.\ 175\\ 0.\ 175\\ 0.\ 171\\ 0.\ 170\\ 0.\ 172\\ 0.\ 177\\ 0.\ 186\\ 0.\ 198\\ \end{array}$	$\begin{array}{c} 0.\ 000\\ 0.\ 555\\ 0.\ 555\\ 0.\ 546\\ 0.\ 528\\ 0.\ 512\\ 0.\ 440\\ 0.\ 388\\ 0.\ 349\\ 0.\ 321\\ 0.\ 301\\ 0.\ 288\\ 0.\ 281\\ 0.\ 281\\ 0.\ 284\\ 0.\ 284\\ 0.\ 294\\ 0.\ 311\\ 0.\ 336\end{array}$	$\begin{array}{c} 3.\ 696\\ 1.\ 003\\ 1.\ 003\\ 0.\ 993\\ 0.\ 972\\ 0.\ 953\\ 0.\ 824\\ 0.\ 732\\ 0.\ 668\\ 0.\ 625\\ 0.\ 599\\ 0.\ 586\\ 0.\ 586\\ 0.\ 586\\ 0.\ 600\\ 0.\ 627\\ 0.\ 671\\ 0.\ 736\\ 0.\ 829 \end{array}$	69.981 18.772 18.772 18.772 18.772 13.840 10.763 9.442 8.967 8.668 8.530 8.550 8.550 8.736 9.111 9.715 10.614 11.914	$\begin{array}{c} 0.\ 000\\ 26.\ 433\\ 26.\ 433\\ 26.\ 433\\ 26.\ 433\\ 26.\ 433\\ 20.\ 494\\ 16.\ 727\\ 14.\ 353\\ 12.\ 928\\ 12.\ 928\\ 12.\ 928\\ 12.\ 928\\ 12.\ 955\\ 13.\ 457\\ 15.\ 214\\ 18.\ 020\\ 22.\ 395\\ 29.\ 251\\ \end{array}$	$\begin{array}{c} 0.\ 000\\ 0.\ 879\\ 0.\ 879\\ 0.\ 879\\ 0.\ 879\\ 0.\ 879\\ 0.\ 893\\ 0.\ 911\\ 0.\ 933\\ 0.\ 960\\ 0.\ 989\\ 1.\ 021\\ 1.\ 056\\ 1.\ 093\\ 1.\ 133\\ 1.\ 175\\ 1.\ 221\\ 1.\ 269 \end{array}$	$\begin{array}{c} 2.\ 499\\ 1.\ 053\\ 1.\ 053\\ 1.\ 046\\ 1.\ 033\\ 1.\ 021\\ 0.\ 813\\ 0.\ 676\\ 0.\ 604\\ 0.\ 566\\ 0.\ 541\\ 0.\ 527\\ 0.\ 525\\ 0.\ 533\\ 0.\ 552\\ 0.\ 533\\ 0.\ 552\\ 0.\ 585\\ 0.\ 636\\ 0.\ 711\end{array}$	

Pollutant Name: Carbon Dioxide 65%

Temperature: 73F Relative Humidity:

Speed MPH	LDA	LDT	MDT	HDT	UBUS	MCY	ALL
0 1 2	0.000 1179.570 1179.570	0.000 1460.693 1460.693	840.088 2004.852 2004.852	4509.884 2493.054 2493.054	0.000 2560.202 2560.202	0.000 237.713 237.713	245.001 1417.830 1417.830
3 4	1078.313	1417.075	1955.877	2493.054	2560. 202	237.713	1379.278
5	1017.689	1260. 207	1779.740	2493.054	2560. 202	237.713	1240. 627
10	764.213	946.911	1313.372	2092.561	2406.322	201.492	935.677
20	486.034	740.864 602.884	818, 244	1600, 060	2315.451	174.358	601.759
25	410.900	509.925	688.273	1514.381	2225.734	138.837	513.416
30	360. 926	448.081	602.890	1450.701	2204.311	127.801	454.607
35 40	329.209	408.892	549.298	1371.555	2191.420	120. 188	396.512
45	306. 481	380.650	511.156	1351.994	2182.761	113.786	389.859
50	312.346	387.886	521.313	1344.963	2185.481	114.878	396.361
55 60	329.887	409.579	551.465	1350.988	2193.258	119.183	416.564
65	408.798	507.263	689.117	1409.968	2230.848	140. 715	508.682

Pollutant Name: Sulfur Dioxide

Temperature: 73F Relative Humidity:

	Speed MPH	LDA	LDT	MDT	HDT	UBUS	MCY	ALL	
	$\begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 10 \\ 15 \\ 20 \\ 25 \\ 30 \\ 35 \\ 40 \\ 45 \\ 50 \\ 55 \\ 60 \\ 65 \end{array}$	$\begin{array}{c} 0.\ 000\\ 0.\ 011\\ 0.\ 011\\ 0.\ 011\\ 0.\ 010\\ 0.\ 010\\ 0.\ 007\\ 0.\ 006\\ 0.\ 005\\ 0.\ 004\\ 0.\ 003\\ 0.\ 003\\ 0.\ 003\\ 0.\ 003\\ 0.\ 003\\ 0.\ 003\\ 0.\ 003\\ 0.\ 003\\ 0.\ 003\\ 0.\ 003\\ 0.\ 003\\ 0.\ 003\\ 0.\ 004\\ \end{array}$	$\begin{array}{c} 0.\ 000\\ 0.\ 014\\ 0.\ 014\\ 0.\ 014\\ 0.\ 013\\ 0.\ 012\\ 0.\ 009\\ 0.\ 007\\ 0.\ 006\\ 0.\ 007\\ 0.\ 006\\ 0.\ 005\\ 0.\ 004\\ 0.\ 004\\ 0.\ 004\\ 0.\ 004\\ 0.\ 004\\ 0.\ 004\\ 0.\ 004\\ 0.\ 005\\ \end{array}$	$\begin{array}{c} 0.\ 008\\ 0.\ 019\\ 0.\ 019\\ 0.\ 019\\ 0.\ 019\\ 0.\ 018\\ 0.\ 017\\ 0.\ 013\\ 0.\ 010\\ 0.\ 008\\ 0.\ 007\\ 0.\ 006\\ 0.\ 005\\ 0.\ 005\\ 0.\ 005\\ 0.\ 005\\ 0.\ 005\\ 0.\ 005\\ 0.\ 005\\ 0.\ 005\\ 0.\ 005\\ 0.\ 005\\ 0.\ 005\\ 0.\ 005\\ 0.\ 005\\ 0.\ 007\\ \end{array}$	$\begin{array}{c} 0. \ 043\\ 0. \ 024\\ 0. \ 024\\ 0. \ 024\\ 0. \ 024\\ 0. \ 024\\ 0. \ 024\\ 0. \ 020\\ 0. \ 017\\ 0. \ 015\\ 0. \ 015\\ 0. \ 015\\ 0. \ 013\\ 0. \ 013\\ 0. \ 013\\ 0. \ 013\\ 0. \ 013\\ 0. \ 013\\ 0. \ 013\\ 0. \ 013\\ 0. \ 013\\ 0. \ 013\\ 0. \ 014\end{array}$	$\begin{array}{c} 0.\ 000\\ 0.\ 025\\ 0.\ 025\\ 0.\ 025\\ 0.\ 025\\ 0.\ 025\\ 0.\ 025\\ 0.\ 025\\ 0.\ 022\\ 0.\ 022\\ 0.\ 022\\ 0.\ 021\\ 0.\ 0.\ 021\\ 0.\ 0.\ 021\\ 0.\ 0.\ 021\\ 0.\ 0.\ 0.\ 021\\ 0.\ 0.\ 0.\ 0.\ 021\\ $	$\begin{array}{c} 0.\ 000\\ 0.\ 003\\ 0.\ 003\\ 0.\ 003\\ 0.\ 003\\ 0.\ 003\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 003\\ \end{array}$	$\begin{array}{c} 0.\ 002\\ 0.\ 014\\ 0.\ 014\\ 0.\ 013\\ 0.\ 013\\ 0.\ 012\\ 0.\ 007\\ 0.\ 007\\ 0.\ 006\\ 0.\ 007\\ 0.\ 006\\ 0.\ 005\\ 0.\ 004\\ 0.\ 004\\ 0.\ 004\\ 0.\ 004\\ 0.\ 004\\ 0.\ 004\\ 0.\ 005\\ \end{array}$	
65%	Pol I utant	Name: PN	110		Ter	nperature:	73F	Rel ati ve	Humidity:
	Speed MPH	LDA	LDT	MDT	HDT	UBUS	MCY	ALL	
	$\begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 10 \\ 15 \\ 20 \\ 25 \\ 30 \\ 35 \\ 40 \\ 45 \\ 50 \\ 55 \\ 60 \\ 65 \end{array}$	$\begin{array}{c} 0.\ 000\\ 0.\ 062\\ 0.\ 059\\ 0.\ 059\\ 0.\ 054\\ 0.\ 049\\ 0.\ 032\\ 0.\ 022\\ 0.\ 016\\ 0.\ 012\\ 0.\ 012\\ 0.\ 010\\ 0.\ 008\\ 0.\ 007\\ 0.\ 007\\ 0.\ 007\\ 0.\ 007\\ 0.\ 008\\ 0.\ 009\\ \end{array}$	$\begin{array}{c} 0.\ 000\\ 0.\ 122\\ 0.\ 122\\ 0.\ 117\\ 0.\ 106\\ 0.\ 097\\ 0.\ 064\\ 0.\ 044\\ 0.\ 032\\ 0.\ 024\\ 0.\ 020\\ 0.\ 017\\ 0.\ 015\\ 0.\ 014\\ 0.\ 014\\ 0.\ 014\\ 0.\ 016\\ 0.\ 018\\ \end{array}$	$\begin{array}{c} 0.\ 039\\ 0.\ 121\\ 0.\ 121\\ 0.\ 116\\ 0.\ 107\\ 0.\ 098\\ 0.\ 065\\ 0.\ 045\\ 0.\ 045\\ 0.\ 045\\ 0.\ 021\\ 0.\ 026\\ 0.\ 021\\ 0.\ 018\\ 0.\ 016\\ 0.\ 015\\ 0.\ 016\\ 0.\ 018\\ 0.\ 0.\ 018\\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\$	$\begin{array}{c} 1.\ 067\\ 1.\ 245\\ 1.\ 245\\ 1.\ 245\\ 1.\ 245\\ 1.\ 245\\ 0.\ 878\\ 0.\ 612\\ 0.\ 451\\ 0.\ 378\\ 0.\ 323\\ 0.\ 286\\ 0.\ 263\\ 0.\ 263\\ 0.\ 262\\ 0.\ 282\\ 0.\ 315\\ 0.\ 361 \end{array}$	$\begin{array}{c} 0.\ 000\\ 0.\ 733\\ 0.\ 733\\ 0.\ 733\\ 0.\ 733\\ 0.\ 733\\ 0.\ 733\\ 0.\ 531\\ 0.\ 398\\ 0.\ 309\\ 0.\ 249\\ 0.\ 207\\ 0.\ 179\\ 0.\ 160\\ 0.\ 148\\ 0.\ 142\\ 0.\ 141\\ 0.\ 145\\ 0.\ 155 \end{array}$	$\begin{array}{c} 0.\ 000\\ 0.\ 056\\ 0.\ 056\\ 0.\ 056\\ 0.\ 056\\ 0.\ 056\\ 0.\ 056\\ 0.\ 044\\ 0.\ 037\\ 0.\ 032\\ 0.\ 029\\ 0.\ 027\\ 0.\ 027\\ 0.\ 027\\ 0.\ 028\\ 0.\ 030\\ 0.\ 034\\ 0.\ 041\\ 0.\ 050\\ 0.\ 066\\ \end{array}$	$\begin{array}{c} 0.\ 036\\ 0.\ 124\\ 0.\ 124\\ 0.\ 120\\ 0.\ 113\\ 0.\ 106\\ 0.\ 072\\ 0.\ 050\\ 0.\ 050\\ 0.\ 036\\ 0.\ 029\\ 0.\ 024\\ 0.\ 021\\ 0.\ 018\\ 0.\ 018\\ 0.\ 019\\ 0.\ 021\\ 0.\ 024\\ 0.\ 024\\ \end{array}$	
65%	Pol I utant	Name: PN	110 – Tir	re Wear	Ter	nperature:	73F	Rel ati ve	Humi di ty:
	Speed MPH	LDA	LDT	MDT	HDT	UBUS	MCY	ALL	
	0 1 2 3	0.000 0.008 0.008 0.008	0.000 0.008 0.008 0.008	0.000 0.009 0.009 0.009	0.000 0.020 0.020 0.020	0.000 0.009 0.009 0.009	0.000 0.004 0.004 0.004	0.000 0.008 0.008 0.008	

Page 3

65%

	ARTIC_Emf	ac07_0C_2	009-2013-2	2035_Emfa	ct Mode_A	<pre>II Speeds</pre>	. rts
4	0.008	0.008	0.009	0. 020	0.009	0.004	0.008
5	0.008	0.008	0.009	0. 020	0.009	0.004	0.008
10	0.008	0.008	0.009	0.020	0.009	0.004	0.008
15	0.008	0.008	0.009	0. 020	0.009	0.004	0.008
20	0.008	0.008	0.009	0.020	0.009	0.004	0.008
25	0.008	0.008	0.009	0. 020	0.009	0.004	0.008
30	0.008	0.008	0.009	0.020	0.009	0.004	0.008
35	0.008	0.008	0.009	0. 020	0.009	0.004	0.008
40	0.008	0.008	0.009	0.020	0.009	0.004	0.008
45	0.008	0.008	0.009	0.020	0.009	0.004	0.008
50	0.008	0.008	0.009	0.020	0.009	0.004	0.008
55	0.008	0.008	0.009	0.020	0.009	0.004	0.008
60	0.008	0.008	0.009	0.020	0.009	0.004	0.008
65	0.008	0.008	0.009	0.020	0.009	0.004	0.008

65%	Pol I utant	Name:	PM10 - Bra	ke Wear	Ter	mperature:	73F	Rel ati ve	Humi di ty:
	Speed MPH	LDA	LDT	MDT	HDT	UBUS	MCY	ALL	
	0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	1	0.013	0.013	0.013	0.018	0.013	0.006	0.013	
	2	0.013	0.013	0.013	0.018	0.013	0.006	0.013	
	3	0.013	0.013	0.013	0.018	0.013	0.006	0.013	
	4	0.013	0.013	0.013	0.018	0.013	0.006	0.013	
	5	0.013	0.013	0.013	0.018	0.013	0.006	0.013	
	10	0.013	0.013	0.013	0.018	0.013	0.006	0.013	
	15	0.013	0. 013	0.013	0.018	0.013	0.006	0.013	
	20	0.013	0.013	0.013	0.018	0.013	0.006	0.013	
	25	0.013	0.013	0.013	0.018	0.013	0.006	0.013	
	30	0.013	0.013	0.013	0.018	0.013	0.006	0.013	
	35	0.013	0.013	0.013	0.018	0.013	0.006	0.013	
	40	0.013	0.013	0.013	0.018	0.013	0.006	0.013	
	45	0.013	0.013	0.013	0.018	0.013	0.006	0.013	
	50	0.013	0.013	0.013	0.018	0.013	0.006	0.013	
	55	0.013	0.013	0.013	0.018	0.013	0.006	0.013	
	60	0.013	0.013	0.013	0.018	0.013	0.006	0.013	
	65	0.013	0. 013	0.013	0. 018	0.013	0.006	0. 013	

65%	Pollutant	Name:	Gasoline -	mi∕gal	Τe	emperature:	73F	Rel ati ve	Humi di ty:
	Speed MPH	LDA	LDT	MDT	HDT	UBUS	MCY	ALL	
	0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	1	7.451	5.989	4.253	3.373	3.207	29.173	6.644	
	2	7.451	5.989	4.253	3.373	3.207	29.173	6.644	
	3	7.680	6. 173	4.369	3.373	3.207	29.173	6.840	
	4	8. 150	6. 551	4.606	3.373	3.207	29.173	7.241	
	5	8.634	6. 941	4.850	3.373	3.207	29.173	7.656	
	10	11.489	9.235	6.541	5.070	4.821	34.698	10. 177	
	15	14.683	11.801	8.468	7.214	6.862	40.183	12. 998	
	20	18.042	14.500	10. 533	9.715	9.245	45.325	15.970	
	25	21.333	17.145	12. 589	12.385	11. 791	49.785	18.883	
	30	24.283	19. 517	14.455	14.944	14.235	53.202	21.495	
	35	26.620	21.397	15. 948	17.067	16. 268	55.223	23.563	
	40	28.115	22.600	16. 905	18.450	17.597	55.537	24.880	
				I	Page 4				

	ARTI C_Emf	fac07_0C_2	2009-2013-	2035_Emfa	act Mode_A	ALL Speeds	s. rts
45	28.623	23.010	17.223	18.877	18.017	53.930	25.316
50	28. 104	22. 594	16. 870	18.280	17.460	50.337	24.834
55	26.630	21. 408	15.897	16.755	16.014	44.912	23.497
60	24.361	19. 583	14. 421	14.535	13. 901	38.070	21.454
65	21. 520	17.297	12.601	11.934	11. 421	30.472	18. 907

65%	Pollutant Name: Diesel – mi⁄gal %			Те	Temperature:		Rel ati ve	Humi di ty:	
	Speed MPH	LDA	LDT	MDT	HDT	UBUS	MCY	ALL	
	0 1 2 3 4 5 10 15 20	0.000 27.922 27.922 27.922 27.922 27.922 27.922 27.922 27.922 27.922	0.000 29.024 29.024 29.024 29.024 29.024 29.024 29.024 29.024 29.024	0.000 19.715 19.715 19.715 19.715 19.715 19.715 19.715 19.715	0.000 4.986 4.986 4.986 4.986 4.986 5.222 5.516 5.824	0.000 3.921 3.921 3.921 3.921 3.921 3.921 3.921 3.921 3.921	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 10.177 10.177 10.177 10.177 10.177 10.335 10.531 10.736	
	25 30 35 40 45 50 55 60 65	27. 922 27. 922 27. 922 27. 922 27. 922 27. 922 27. 922 27. 922 27. 922 27. 922	29.024 29.024 29.024 29.024 29.024 29.024 29.024 29.024 29.024 29.024	19. 715 19. 715 19. 715 19. 715 19. 715 19. 715 19. 715 19. 715 19. 715	5. 957 6. 085 6. 201 6. 299 6. 373 6. 419 6. 431 6. 411 6. 358	3. 921 3. 921 3. 921 3. 921 3. 921 3. 921 3. 921 3. 921 3. 921	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	10. 825 10. 911 10. 988 11. 054 11. 103 11. 133 11. 142 11. 128 11. 093	

: ARTIC_Emfac2007_Orange County_2009-2013-2035_EMAC Mode_CO : Emfac2007 V2.3 Nov 1 2006 : 2010/04/07 16:10:26 Title Versi on Run Date : 2009 -- All model years in the range 1965 to 2009 selected Scen Year: Season Annual : 0range Area ****** ***** Year: 2009 -- Model Years 1965 to 2009 Inclusive -- Annual Emfac2007 Emission Factors: V2.3 Nov 1 2006 County County Average Orange Average Tabl e 2: Starting Emissions (grams/trip) Pollutant Name: Reactive Org Gases Temperature: 73F Relative Humidity: ALL Ti me LDA LDT MDT UBUS MCY ALL min HDT 5 0.071 0.065 0.140 0.400 0.271 0.105 1.110

Page 5

	ARTIC_Emf	ac07_0C_2	009-2013-	2035_Emfa	ct Mode_A	II Speeds	.rts
10	0. 115	0. 110	0. 251	0. 568	0. 411	1.165	0. 168
20	0. 199	0. 195	0.460	0.882	0. 671	1. 293	0. 286
30	0. 276	0. 273	0.647	1. 168	0. 906	1.444	0. 393
40	0.345	0.343	0. 815	1. 425	1. 115	1.619	0. 489
50	0.406	0.406	0.962	1.654	1. 298	1.817	0.575
60	0. 458	0.459	1. 086	1.832	1.442	1. 931	0.647
120	0.602	0. 622	1.401	2. 116	1. 678	2.098	0.833
180	0. 623	0. 645	1.471	2.254	1. 785	2.253	0. 870
240	0.660	0. 684	1. 558	2.388	1.889	2.418	0. 922
300	0. 697	0.722	1.642	2. 518	1.990	2. 581	0.973
360	0.732	0.759	1.724	2.645	2.089	2.744	1.023
420	0. 767	0.795	1. 804	2.769	2. 184	2.905	1.071
480	0. 801	0. 831	1.882	2.889	2.276	3.065	1. 119
540	0.834	0.866	1.959	3.005	2.366	3. 223	1. 165
600	0.867	0.900	2.033	3. 118	2.452	3.381	1. 210
660	0.898	0. 934	2. 105	3.227	2.536	3.537	1. 254
720	0. 929	0. 966	2. 175	3.333	2.617	3. 691	1. 297

Pollutant Name: Carbon Monoxide

Temperature: 73F Relative Humidity:

ALL

Time min	LDA	LDT	MDT	HDT	UBUS	MCY	ALL
$5 \\ 10 \\ 20 \\ 30 \\ 40 \\ 50 \\ 60 \\ 120 \\ 180 \\ 240 \\ 300 \\ 360 \\ 420 \\ 480 \\ 540 \\ 600 \\ 660 \\ 600 \\ 620 \\ 720 \\ $	$\begin{array}{c} 0. \ 657 \\ 1. \ 084 \\ 1. \ 898 \\ 2. \ 654 \\ 3. \ 355 \\ 4. \ 000 \\ 4. \ 588 \\ 6. \ 712 \\ 6. \ 848 \\ 7. \ 289 \\ 7. \ 692 \\ 8. \ 059 \\ 8. \ 389 \\ 8. \ 682 \\ 8. \ 938 \\ 9. \ 158 \\ 9. \ 341 \\ 0. \ 487 \end{array}$	0. 677 1. 178 2. 130 3. 017 3. 839 4. 597 5. 289 7. 777 7. 963 8. 483 8. 957 9. 385 9. 767 10. 104 10. 395 10. 639 10. 838 10. 991	1. 506 2. 703 4. 963 7. 044 8. 947 10. 670 12. 214 16. 710 17. 242 18. 099 18. 907 19. 667 20. 380 21. 044 21. 661 22. 229 22. 750 22. 750	5.031 7.150 11.150 14.833 18.198 21.247 23.979 31.511 33.335 35.088 36.768 38.376 39.912 41.377 42.769 44.089 45.337	$\begin{array}{c} 3. \ 113 \\ 5. \ 024 \\ 8. \ 614 \\ 11. \ 898 \\ 14. \ 874 \\ 17. \ 544 \\ 19. \ 906 \\ 25. \ 865 \\ 26. \ 981 \\ 28. \ 080 \\ 29. \ 164 \\ 30. \ 232 \\ 31. \ 284 \\ 32. \ 320 \\ 33. \ 341 \\ 34. \ 345 \\ 35. \ 334 \\ 24. \ 208 \end{array}$	5.052 4.878 4.610 4.449 4.395 4.448 4.609 7.574 9.322 11.032 12.559 13.903 15.065 16.044 16.840 17.453 17.883 121	1.057 1.717 2.969 4.128 5.197 6.174 7.059 9.969 10.283 10.892 11.457 11.977 12.454 12.886 13.274 13.619 13.919
120	9.487	10.991	23.223	40.513	30.308	10.131	14.1/4

Pollutant Name: Oxides of Nitrogen Temperature: 73F Relative Humidity:

ALL

Time min	LDA	LDT	MDT	HDT	UBUS	MCY	ALL
5 10 20 30 40 50 60 120 180 240	0. 219 0. 253 0. 313 0. 363 0. 402 0. 432 0. 450 0. 450 0. 471 0. 470 0. 467	0.366 0.410 0.489 0.555 0.608 0.647 0.673 0.712 0.711 0.706	0. 801 0. 971 1. 270 1. 517 1. 710 1. 851 1. 938 2. 008 2. 002 1. 989	0.662 0.983 1.548 2.008 2.364 2.616 2.764 2.778 2.766 2.749 2.749 age 6	$\begin{array}{c} 0.\ 710\\ 1.\ 064\\ 1.\ 686\\ 2.\ 192\\ 2.\ 584\\ 2.\ 861\\ 3.\ 023\\ 3.\ 038\\ 3.\ 026\\ 3.\ 008 \end{array}$	$\begin{array}{c} 0.\ 208\\ 0.\ 234\\ 0.\ 282\\ 0.\ 322\\ 0.\ 355\\ 0.\ 381\\ 0.\ 400\\ 0.\ 402\\ 0.\ 394\\ 0.\ 383 \end{array}$	0. 384 0. 459 0. 590 0. 699 0. 784 0. 847 0. 886 0. 920 0. 917 0. 911

	300 360 420 480 540 600 660 720	ARTI C_En O. 462 O. 455 O. 446 O. 436 O. 423 O. 410 O. 394 O. 377	nfac07_0C_ 0. 698 0. 687 0. 673 0. 657 0. 637 0. 615 0. 590 0. 563	2009-2013 1.970 1.944 1.912 1.874 1.829 1.779 1.722 1.659	-2035_Emf 2.726 2.698 2.664 2.624 2.578 2.527 2.470 2.407	act Mode_A 2. 985 2. 955 2. 919 2. 877 2. 829 2. 776 2. 716 2. 650	I Speed 0. 370 0. 355 0. 337 0. 316 0. 292 0. 266 0. 238 0. 207	ds. rts 0. 902 0. 889 0. 874 0. 855 0. 834 0. 809 0. 781 0. 751	
ALL	Polluta	nt Name:	Carbon Di	oxi de	Т	emperature	: 73F	Rel ati ve	Humi di ty:
	Time min	LDA	LDT	MDT	HDT	UBUS	MCY	ALL	
	$5 \\ 10 \\ 20 \\ 30 \\ 40 \\ 50 \\ 60 \\ 120 \\ 180 \\ 240 \\ 300 \\ 360 \\ 420 \\ 480 \\ 540 \\ 600 \\ 660 \\ 720 \\ \end{cases}$	$\begin{array}{c} 11.\ 166\\ 13.\ 495\\ 18.\ 506\\ 23.\ 985\\ 29.\ 933\\ 36.\ 349\\ 43.\ 234\\ 90.\ 820\\ 103.\ 840\\ 116.\ 603\\ 129.\ 111\\ 141.\ 364\\ 153.\ 360\\ 165.\ 101\\ 176.\ 587\\ 187.\ 817\\ 198.\ 791\\ 209.\ 509 \end{array}$	$\begin{array}{c} 13.\ 946\\ 16.\ 566\\ 22.\ 285\\ 28.\ 644\\ 35.\ 643\\ 43.\ 281\\ 51.\ 559\\ 111.\ 134\\ 126.\ 911\\ 142.\ 443\\ 157.\ 729\\ 172.\ 769\\ 187.\ 563\\ 202.\ 111\\ 216.\ 413\\ 230.\ 469\\ 244.\ 279\\ 257.\ 843 \end{array}$	$\begin{array}{c} 17.\ 429\\ 22.\ 209\\ 32.\ 267\\ 42.\ 991\\ 54.\ 380\\ 66.\ 435\\ 79.\ 155\\ 160.\ 493\\ 184.\ 706\\ 208.\ 248\\ 231.\ 120\\ 253.\ 321\\ 274.\ 851\\ 295.\ 710\\ 315.\ 899\\ 335.\ 416\\ 354.\ 263\\ 372.\ 439 \end{array}$	$\begin{array}{c} 7.899\\ 11.455\\ 18.491\\ 25.425\\ 32.257\\ 38.988\\ 45.616\\ 74.554\\ 85.948\\ 96.671\\ 106.721\\ 106.721\\ 116.100\\ 124.806\\ 132.841\\ 140.203\\ 146.894\\ 152.913\\ 158.259\end{array}$	$\begin{array}{c} 4.\ 000\\ 5.\ 807\\ 9.\ 382\\ 12.\ 906\\ 16.\ 377\\ 19.\ 797\\ 23.\ 166\\ 37.\ 870\\ 43.\ 664\\ 49.\ 116\\ 54.\ 227\\ 58.\ 996\\ 63.\ 423\\ 67.\ 509\\ 71.\ 252\\ 74.\ 655\\ 77.\ 715\\ 80.\ 434 \end{array}$	$\begin{array}{c} 25.\ 430\\ 28.\ 048\\ 33.\ 149\\ 38.\ 071\\ 42.\ 815\\ 47.\ 381\\ 51.\ 768\\ 72.\ 062\\ 73.\ 895\\ 75.\ 622\\ 77.\ 244\\ 78.\ 761\\ 80.\ 173\\ 81.\ 479\\ 82.\ 680\\ 83.\ 776\\ 84.\ 766\\ 85.\ 651 \end{array}$	$\begin{array}{c} 13.\ 003\\ 15.\ 907\\ 22.\ 103\\ 28.\ 817\\ 36.\ 050\\ 43.\ 801\\ 52.\ 070\\ 107.\ 831\\ 123.\ 424\\ 138.\ 672\\ 153.\ 575\\ 168.\ 133\\ 182.\ 346\\ 196.\ 214\\ 209.\ 738\\ 222.\ 916\\ 235.\ 750\\ 248.\ 238\end{array}$	
ALL	Polluta	nt Name:	Sulfur Di	oxi de	Т	emperature	: 73F	Rel ati ve	Humidity:
	Time min	LDA	LDT	MDT	HDT	UBUS	MCY	ALL	
	$5 \\ 10 \\ 20 \\ 30 \\ 40 \\ 50 \\ 60 \\ 120 \\ 180 \\ 240 \\ 300 \\ 360 \\ 420 \\ 480 \\ 540 \\ 600 \\ 660 \\ 720 \\ \end{cases}$	$\begin{array}{c} 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 001\\ 0.\ 001\\ 0.\ 001\\ 0.\ 001\\ 0.\ 001\\ 0.\ 001\\ 0.\ 001\\ 0.\ 002\\ 0.\ 0.\ 002\\ 0.\ 0.\ 002\\ 0.\ 0.\ 002\\ 0.\ 0.\ 002\\ 0.\ 0.\ 002\\ 0.\ 0.\ 002\\ 0.\ 0.\ 0.\ 0.\ 0$	$\begin{array}{c} 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 001\\ 0.\ 001\\ 0.\ 001\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 003\\ 0.\ 003\\ 0.\ 003\\ \end{array}$	$\begin{array}{c} 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 001\\ 0.\ 001\\ 0.\ 001\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 003\\ 0.\ 003\\ 0.\ 003\\ 0.\ 003\\ 0.\ 003\\ 0.\ 004\\ 0.\ 004\\ 0.\ 004\\ 0.\ 004\\ \end{array}$	$\begin{array}{c} 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 001\\ 0.\ 001\\ 0.\ 001\\ 0.\ 001\\ 0.\ 001\\ 0.\ 001\\ 0.\ 002\\ 0.\ 0$	$\begin{array}{c} 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 001\\ 0.\ 0.\ 0.\ 001\\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\$	$\begin{array}{c} 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 001\\ 0.\ 0.\ 001\\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\$	$\begin{array}{c} 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 001\\ 0.\ 001\\ 0.\ 001\\ 0.\ 001\\ 0.\ 001\\ 0.\ 001\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 003\\ 0.\ 003\\ 0.\ 003\\ \end{array}$	

0.002

0.003

0.003

0.004

0.005

0.006

0.006

0.006

0.006

0.007

0.007

0.007

0.007

0.008

0.008

0.001

0.002

0.002

0.002

0.003

0.003

0.004

0.004

0.004

0.004

0.004

0.004

0.004

0.004

0.005

0.008

0.006

0.005

0.004

0.010

0.015

0.020

0.024

0.028

0.031

0.033

0.035

0.036

0.037

0.038

0.005

0.006

0.007

0.008

0.012

0.013

0.014

0.014

0.015

0.016

0.016

0.017

0.017

0.017

0.018

Pol I utant	Name:	PM10		-	Temperature:	73F	Rel ati ve
Time min	LDA	LDT	MDT	HDT	UBUS	MCY	ALL
5 10 20	0. 001 0. 001 0. 002	0. 001 0. 002 0. 004	0. 001 0. 002 0. 004	0. 001 0. 001 0. 002	0. 000 0. 001 0. 001	0. 014 0. 013 0. 010	0. 001 0. 002 0. 003

0.006

0.007

0.009

0.010

0.015

0.016

0.016

0.017

0.018

0.019

0.019

0.020

0.020

0.021

0.021

Title :	ARTIC_Emfac2007_Orange
Run Date	2010/04/07 16:10:26
Scen Year:	2009 All model years in the range 1965 to 2009 selected
Season :	Annual
Area :	0range ************************************
* * * * *	
Voor	2000 Medal Vaara 1065 to 2000 Lpalusiva Appual

Year: 2009 -- Model Years 1965 to 2009 Inclusive -- Annual Emfac2007 Emission Factors: V2.3 Nov 1 2006

County Average Average Orange County

Humidity:

Table 4: Hot Soak Emissions (grams/trip)

Temperature: 73F Relative Humidity:

ALL

ALL

30

40

50

60

120

180

240

300

360

420

480

540

600

660

720

0.003

0.004

0.005

0.006

0.009

0.009

0.010

0.011

0.011

0.011

0.012

0.012

0.012

0.013

0.013

0.006

0.008

0.010

0.011

0.017

0.018

0.019

0.020

0.021

0.022

0.023

0.024

0.024

0.025

0.025

Pollutant Name: Reactive Org Gases

Time min	LDA	LDT	MDT	HDT	UBUS	MCY	ALL
5 10 20 30	0. 061 0. 114 0. 195 0. 252	0.050 0.093 0.160 0.208	0. 035 0. 064 0. 112 0. 146	0. 012 0. 023 0. 039 0. 051	0.067 0.123 0.210 0.270	0. 146 0. 271 0. 468 0. 610	0. 052 0. 096 0. 165 0. 215
40	0.274	0. 227	0. 159	0.056	0. 292	0.666	0.233

Hot soak results are scaled to reflect zero emissions for trip lengths of less than Page 8

ARTIC_Emfac07_0C_2009-2013-2035_Emfact Mode_All Speeds.rts 5 minutes (about 25% of in-use trips).

: ARTIC_Emfac2007_Orange County_2009-2013-2035_EMAC Mode_CO Title Version : Emfac2007 V2.3 Nov 1 2006 Run Date : 2010/04/07 16:10:26 Scen Year: 2009 -- All model years in the range 1965 to 2009 selected Season Annual . Area : Orange Area ******* ***** Year: 2009 -- Model Years 1965 to 2009 Inclusive -- Annual Emfac2007 Emission Factors: V2.3 Nov 1 2006 County Average Orange County Average Table 5a: Partial Day Diurnal Loss Emissions (grams/hour) Pollutant Name: Reactive Org Gases Temperature: ALL Relative Humidity: ALL Temp degF LDA LDT MDT HDT UBUS MCY ALL 73 0.136 0.010 0.004 0.126 0. 112 0.086 0.338 : ARTIC_Emfac2007_Orange County_2009-2013-2035_EMAC Mode_CO : Emfac2007 V2.3 Nov 1 2006 : 2010/04/07 16:10:26 Title Versi on Run Date : Scen Year: 2009 -- All model years in the range 1965 to 2009 selected Season Annual : Area Orange *********** ***** Year: 2009 -- Model Years 1965 to 2009 Inclusive -- Annual Emfac2007 Emission Factors: V2.3 Nov 1 2006 County Average 0range County Average Table 5b: Multi-Day Diurnal Loss Emissions (grams/hour) Pollutant Name: Reactive Org Gases Temperature: ALL Relative Humidity: ALL Temp degF LDA LDT MDT HDT UBUS MCY ALL 0.007 73 0.011 0.009 0.000 0.001 0.029 0.010 Page 9

Title : ARTIC_Emfac2007_Orange County_2009-2013-2035_EMAC Mode_CO Version : Emfac2007 V2.3 Nov 1 2006 Run Date : 2010/04/07 16:10:26 Scen Year: 2009 -- All model years in the range 1965 to 2009 selected Season : Annual Orange Area **** ***** **** Year: 2009 -- Model Years 1965 to 2009 Inclusive -- Annual Emfac2007 Emission Factors: V2.3 Nov 1 2006 County Average 0range County Average Table 6a: Partial Day Resting Loss Emissions (grams/hour) Pollutant Name: Reactive Org Gases Temperature: ALL Relative Humidity: ALL Temp LDT MDT HDT UBUS MCY ALL degF LDA 73 0.055 0.048 0.038 0.005 0.002 0.119 0.051 Title : ARTIC_Emfac2007_Orange County_2009-2013-2035_EMAC Mode_CO Version : Emfac2007 V2.3 Nov 1 2006 Run Date : 2010/04/07 16:10:26 Scen Year: 2009 -- All model years in the range 1965 to 2009 selected Season : Annual Area : Oran ***** Area **** Year: 2009 -- Model Years 1965 to 2009 Inclusive -- Annual Emfac2007 Emission Factors: V2.3 Nov 1 2006 County Average 0range County Average Table 6b: Multi-Day Resting Loss Emissions (grams/hour) Pollutant Name: Reactive Org Gases Temperature: ALL Relative Humidity: ALL Temp degF LDA LDT MDT HDT UBUS MCY ALL 73 0.004 0.004 0.010 0.004 0.003 0.000 0.000

Page 10

: ARTIC_Emfac2007_Orange County_2009-2013-2035_EMAC Mode_CO Title Emfac2007 V2.3 Nov 1 2006 Version : Run Date : 2010/04/07 16:10:26 Scen Year: 2009 -- All model years in the range 1965 to 2009 selected Season Annual Area Orange **** Year: 2009 -- Model Years 1965 to 2009 Inclusive -- Annual Emfac2007 Emission Factors: V2.3 Nov 1 2006 County Average Orange County Average Tabl e Estimated Travel Fractions 7: Pollutant Name: Temperature: ALL Relative Humidity: ALL MDT MCY LDA LDT HDT UBUS ALL %VMT 0.506 0.319 0.140 0.028 0.001 0.006 1.000 %TRI P 0.278 0.177 1.000 0.489 0.048 0.000 0.008 0.300 0.122 0.000 0.028 1.000 %VEH 0.530 0.020 : ARTIC_Emfac2007_Orange County_2009-2013-2035_EMAC Mode_CO : Emfac2007 V2.3 Nov 1 2006 : 2010/04/07 16:10:26 Title Versi on Run Date : Scen Year: 2009 -- All model years in the range 1965 to 2009 selected Season Annual : Area Orange *********** * * * * * Year: 2009 -- Model Years 1965 to 2009 Inclusive -- Annual Emfac2007 Emission Factors: V2.3 Nov 1 2006 County Average 0range County Average Tabl e 8: Evaporative Running Loss Emissions (grams/minute) Pollutant Name: Reactive Org Gases Temperature: 73F Relative Humidity: ALL Ti me LDA LDT MDT HDT UBUS MCY ALL min 1 0.021 0.307 0.280 0.197 0.464 0.080 0.155

Page 11

	ARTIC_Emf	ac07_0C_2	009-2013-	2035_Emfa	ct Mode_A	II Speeds	. rts
2	0. 025	0. 159	0. 146	0. 107	0. 251	0. 116	0. 088
3	0. 029	0. 112	0. 103	0.078	0. 180	0. 135	0.068
4	0.032	0.090	0. 083	0.063	0. 145	0. 145	0.059
5	0.035	0.076	0. 071	0.054	0. 124	0. 153	0.054
10	0.039	0.053	0.049	0.038	0. 082	0. 170	0.046
15	0. 041	0.047	0.044	0.032	0. 068	0. 177	0.044
20	0.042	0. 046	0.043	0.030	0. 062	0. 182	0.044
25	0.043	0. 047	0.044	0.029	0. 058	0. 186	0.045
30	0.042	0.047	0.043	0.029	0. 058	0. 184	0.044
35	0.042	0.046	0.043	0.028	0.057	0. 182	0.044
40	0.042	0. 045	0.042	0. 028	0.057	0. 181	0.043
45	0. 041	0.045	0.042	0.028	0.057	0. 179	0.043
50	0.040	0.044	0. 041	0. 028	0.056	0. 175	0. 042
55	0.039	0.044	0. 041	0.028	0.056	0. 171	0. 042
60	0.039	0.044	0.041	0.027	0.055	0. 167	0.041

Title : ARTIC_Emfac2007_Orange County_2009-2013-2035_EMAC Mode_CO Version : Emfac2007 V2.3 Nov 1 2006 Run Date : 2010/04/07 16:10:26 Scen Year: 2013 -- All model years in the range 1969 to 2013 selected Season : Annual Area : Orange ****** Year: 2013 -- Model Years 1969 to 2013 Inclusive -- Annual Emfac2007 Emission Factors: V2.3 Nov 1 2006

County Average Average

1: Running Exhaust Emissions (grams/mile;

Tabl e

Orange

County

Temperature: 73F Relative Humidity:

grams/idle-hour)

Pollutant Name: Reactive Org Gases 65%

Speed MPH	LDA	LDT	MDT	HDT	UBUS	MCY	ALL
0 1	0. 000 0. 260	0. 000 0. 357	3. 321 0. 602	7.350 3.798	0. 000 3. 831	0.000 4.732	0. 679 0. 477
2	0.260	0.357	0.602	3.798	3.831	4.732	0.477
3 4	0.247	0.340	0.580	3.798 3.798	3.831	4.732 4.732	0.462
5	0.204	0. 281	0.505	3.798	3.831	4.732	0.411
10 15	0.131 0.089	0.181 0.124	0.329	2.216 1.199	2.608 1.850	3.605 2.885	0.262 0.172
20	0.064	0.089	0.163	0.733	1.367	2. 427	0. 122
25 30	0.049	0.068 0.055	0.124	0.584 0.474	1.051 0.841	2.147 1 997	0.096
35	0.033	0.046	0.082	0.394	0.701	1.953	0.068
40 45	0.029	0.041	0.072	0.340	0.607	2.010 2.173	0.062
50	0.020	0.039	0.064	0.298	0.547	2.470	0.060
55	0.029	0.040	0.066	0.306	0.499	2.948	0.065
65	0.032	0.044	0.080	0.334	0.533	4.847	0.074
	Speed			_			
-----	-----------	-------	--------	--------	----		
65%	Pollutant	Name:	Carbon	Monoxi	de		

Temperature: 73F Relative Humidity:

Speea MPH	LDA	LDT	MDT	HDT	UBUS	MCY	ALL
0	0.000	0.000	20. 580	40.855	0.000	0.000	4.069
1	3. 193	4.546	6. 195	16. 132	31. 116	26. 383	4.609
2	3. 193	4.546	6. 195	16.132	31. 116	26.383	4.609
3	3. 149	4. 481	6. 118	16.132	31. 116	26. 383	4.556
4	3.063	4.357	5.970	16. 132	31.116	26.383	4.453
5	2.982	4.240	5.832	16. 132	31.116	26.383	4.355
10	2.631	3.729	4.769	10. 978	20.395	22.144	3.672
15	2.351	3.322	4.038	7.718	14.150	19.394	3. 177
20	2.122	2.991	3.513	5.746	10. 390	17.697	2.808
25	1, 931	2.719	3.123	4.647	8.073	16.819	2.529
30	1.772	2.491	2.825	3.904	6.637	16.663	2.310
35	1.638	2.301	2.598	3.411	5.773	17.242	2.138
40	1.526	2.143	2.425	3.108	5.312	18.689	2.007
45	1.433	2.014	2.302	2.965	5.170	21.288	1.914
50	1.359	1.911	2.226	2.971	5.323	25.560	1.860
55	1.304	1.836	2.201	3.135	5.797	32.431	1.854
60	1.271	1.791	2.240	3.484	6.677	43.552	1,911
65	1.265	1.785	2.366	4.076	8.134	61.934	2.060

	Pollutant	Name:	0xi des	of	Ni trogen
65%					U

Temperature: 73F Relative Humidity:

0 0.000 0.000 3.734 74.300 0.000 0.000 2.000 1 0.207 0.405 0.758 13.071 24.387 0.932 0.207 2 0.207 0.405 0.758 13.071 24.387 0.932 0.33 3 0.204 0.398 0.750 13.071 24.387 0.932 0.932 4 0.198 0.386 0.734 13.071 24.387 0.932 0.932	peed MPH	LDA	LDT	MDT	HDT	UBUS	MCY	ALL
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 1 2 3 4 5 10 15 20 25 30 35 40 45 50 55 60 65	$\begin{array}{c} 0.\ 000\\ 0.\ 207\\ 0.\ 207\\ 0.\ 204\\ 0.\ 198\\ 0.\ 192\\ 0.\ 167\\ 0.\ 148\\ 0.\ 134\\ 0.\ 124\\ 0.\ 116\\ 0.\ 111\\ 0.\ 108\\ 0.\ 107\\ 0.\ 108\\ 0.\ 111\\ 0.\ 116\\ 0.\ 111\\ 0.\ 123\end{array}$	$\begin{array}{c} 0.\ 000\\ 0.\ 405\\ 0.\ 405\\ 0.\ 398\\ 0.\ 386\\ 0.\ 374\\ 0.\ 322\\ 0.\ 283\\ 0.\ 255\\ 0.\ 234\\ 0.\ 219\\ 0.\ 209\\ 0.\ 203\\ 0.\ 202\\ 0.\ 204\\ 0.\ 211\\ 0.\ 223\\ 0.\ 240\\ \end{array}$	$\begin{array}{c} 3. \ 734 \\ 0. \ 758 \\ 0. \ 758 \\ 0. \ 750 \\ 0. \ 734 \\ 0. \ 720 \\ 0. \ 622 \\ 0. \ 553 \\ 0. \ 504 \\ 0. \ 471 \\ 0. \ 451 \\ 0. \ 441 \\ 0. \ 441 \\ 0. \ 441 \\ 0. \ 450 \\ 0. \ 470 \\ 0. \ 503 \\ 0. \ 551 \\ 0. \ 622 \end{array}$	$\begin{array}{c} 74.\ 300\\ 13.\ 071\\ 13.\ 071\\ 13.\ 071\\ 13.\ 071\\ 13.\ 071\\ 13.\ 071\\ 9.\ 727\\ 7.\ 596\\ 6.\ 615\\ 6.\ 234\\ 5.\ 983\\ 5.\ 850\\ 5.\ 833\\ 5.\ 938\\ 6.\ 181\\ 6.\ 591\\ 7.\ 212\\ 8.\ 120\\ \end{array}$	$\begin{array}{c} 0.\ 000\\ 24.\ 387\\ 24.\ 387\\ 24.\ 387\\ 24.\ 387\\ 24.\ 387\\ 18.\ 911\\ 15.\ 437\\ 13.\ 248\\ 11.\ 935\\ 11.\ 267\\ 11.\ 131\\ 11.\ 501\\ 12.\ 425\\ 14.\ 046\\ 16.\ 634\\ 20.\ 669\\ 26.\ 992\end{array}$	$\begin{array}{c} 0.\ 000\\ 0.\ 932\\ 0.\ 932\\ 0.\ 932\\ 0.\ 932\\ 0.\ 932\\ 0.\ 932\\ 0.\ 915\\ 0.\ 909\\ 0.\ 910\\ 0.\ 910\\ 0.\ 918\\ 0.\ 933\\ 0.\ 953\\ 0.\ 978\\ 1.\ 045\\ 1.\ 045\\ 1.\ 087\\ 1.\ 135\\ 1\ 191 \end{array}$	$\begin{array}{c} 2. \ 721 \\ 0. \ 768 \\ 0. \ 763 \\ 0. \ 754 \\ 0. \ 745 \\ 0. \ 595 \\ 0. \ 495 \\ 0. \ 495 \\ 0. \ 440 \\ 0. \ 391 \\ 0. \ 391 \\ 0. \ 380 \\ 0. \ 376 \\ 0. \ 381 \\ 0. \ 395 \\ 0. \ 420 \\ 0. \ 457 \\ 0. \ 513 \end{array}$

65%	Pol I utant	Name:	Carbon	Di oxi c	le	Temp	erature:	73F	Rel ati ve	Humi di ty:
	Speed MPH	LDA	LDT	-	MDT	HDT	UBUS	MCY	ALL	

	ARTI C_En	nfac07_0C_	_2009-2013	3-2035_Em1	fact Mode_	All Speed	s. rts
0	0.000	0.000	862.969	4616.954	0.000	0.000	256. 718
1	1169.635	1463.615	2005.392	2541.044	2542.069	253. 168	1415.424
2	1169. 635	1463.615	2005.392	2541.044	2542.069	253.168	1415.424
3	1134.718	1419.892	1956.715	2541.044	2542.069	253.168	1377.125
4	1069. 248	1337.909	1865.441	2541.044	2542.069	253.168	1305.311
5	1009.146	1262.648	1781.650	2541.044	2542.069	253. 168	1239. 384
10	757.674	948.539	1313.927	2134.453	2365.562	212.610	934.951
15	592.382	741.963	1014.247	1833. 929	2261.329	183.224	734.903
20	481.738	603.631	817.804	1627.189	2197.863	161. 987	601.389
25	407.219	510. 437	687.677	1540.453	2158.420	146. 929	513.317
30	357.660	448.438	602.222	1475.290	2133.847	136.787	454.669
35	326. 268	409. 152	548.597	1427.033	2119.060	130.808	417.383
40	309.004	387.530	519.321	1393.127	2111.277	128.636	396.691
45	303.680	380. 841	510.439	1372.315	2109.128	130. 279	390.032
50	309. 501	388.095	520. 602	1364.262	2112.248	136.130	396. 493
55	326.898	409.842	550.780	1369.456	2121.169	147.060	416.623
60	357.626	448. 285	604.485	1389.353	2137.476	164.617	452.552
65	405.139	507.761	688.631	1426.814	2164.285	191.376	508.470

Pollutant Name: Sulfur Dioxide 65%

Speed LDT MDT HDT UBUS MCY МРН LDA ALL 0.000 0.009 0.044 0.000 0.000 0.003 0 0.000 1 0.014 0.019 0.024 0.025 0.003 0.014 0.011 2 3 4 5 0.011 0.014 0.019 0.024 0.025 0.003 0.014 0.019 0.025 0.003 0.011 0.014 0.024 0.013 0.018 0.025 0.003 0.010 0.013 0.024 0.013 0.010 0.012 0.017 0.024 0.025 0.003 0.012 10 0.007 0.009 0.013 0.020 0.023 0.002 0.009 0.006 0.002 15 0.007 0.010 0.018 0.022 0.007 0.008 20 0.005 0.006 0.002 0.016 0.021 0.006 25 0.004 0.005 0.007 0.021 0.002 0.005 0.015 30 0.003 0.004 0.006 0.014 0.020 0.002 0.004 35 0.003 0.004 0.005 0.014 0.020 0.002 0.004 0.004 0.005 40 0.003 0.013 0.020 0.002 0.004 45 0.003 0.004 0.005 0.020 0.002 0.004 0.013 50 0.003 0.004 0.005 0.013 0.020 0.002 0.004 55 0.003 0.004 0.005 0.013 0.020 0.002 0.004 0.003 0.004 0.006 0.020 0.002 60 0.013 0.004 0.007 0.003 65 0.004 0.005 0.014 0.021 0.005

Pollutant Name: PM10

Temperature: 7

Temperature:

73F Relative Humidity:

73F Relative Humidity:

Speed MPH	LDA	LDT	MDT	HDT	UBUS	MCY	ALL
0	0.000	0.000	0.038	0.839	0.000	0.000	0.030
1	0.065	0.140	0.142	0.818	0.681	0.042	0.122
2	0.065	0. 140	0. 142	0.818	0. 681	0.042	0. 122
3	0.062	0. 133	0. 136	0.818	0. 681	0.042	0. 118
4	0.056	0. 121	0. 125	0.818	0. 681	0.042	0. 110
5	0.051	0. 111	0. 115	0.818	0. 681	0.042	0. 103
10	0.033	0.072	0.075	0.586	0.493	0.033	0.069
15	0.023	0.050	0.052	0.417	0.369	0.027	0.048
20	0.017	0.036	0.038	0.314	0.287	0.024	0.035
			D.	a a a 1 1			

Page 14

	AI	RTIC_Em	nfac07_0C_20	09-2013-	2035_Emfac	ct Mode_AI	I Speed	ls.rts	
	25	0.013	0.027	0.029	0.265	0.231	0.021	0.027	
	35	0.009	0.022	0.024	0.229	0. 192	0.020	0.023	
	40	0.008	0.017	0.018	0. 193	0.149	0.021	0.018	
	45	0.007	0.016	0.017	0.190	0.138	0.022	0.017	
	50 55	0.007	0.015	0.016	0.197	0.132	0.025	0.017	
	55 60	0.007	0.018	0.017	0.213	0.131	0.030	0.018	
	65	0.009	0.020	0.021	0.272	0.144	0.049	0.023	
	Pollutant	Name:	PM10 - Tir	e Wear	Ter	nperature:	73F	Relative	Humidity:
65%						-			-
	Speed								
	MPH	LDA	LDT	MDT	HDT	UBUS	MCY	ALL	
	0	0 000	0,000	0 000	0.000	0.000	0 000	0,000	
	0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	2	0.008	0.008	0.009	0.021	0.009	0.004	0.008	
	3	0.008	0.008	0.009	0.021	0.009	0.004	0.008	
	4	0.008	0.008	0.009	0.021	0.009	0.004	0.008	
	5 10	0.008	0.008	0.009	0.021	0.009	0.004	0.008	
	15	0.008	0.008	0.009	0.021	0.009	0.004	0.008	
	20	0.008	0.008	0.009	0.021	0.009	0.004	0.008	
	25	0.008	0.008	0.009	0.021	0.009	0.004	0.008	
	35	0.008	0.008	0.009	0.021	0.009	0.004	0.008	
	40	0.008	0.008	0.009	0.021	0.009	0.004	0.008	
	45	0.008	0.008	0.009	0.021	0.009	0.004	0.008	
	50 55	0.008	0.008	0.009	0.021	0.009	0.004	0.008	
	55 60	0.008	0.008	0.009	0.021	0.009	0.004	0.008	
	65	0.008	0.008	0.009	0.021	0.009	0.004	0.008	
	Pollutant	Name:	PM10 - Bra	ke Wear	Ter	nperature:	73F	Relative	Humidity:
65%									
	Speed								
	МРН	LDA	LDT	MDT	HDT	UBUS	MCY	ALL	
	0	0 000	0 000	0 000	0 000	0 000	0 000	0 000	
	ĩ	0.013	0.013	0.013	0.018	0.013	0.006	0.013	
	2	0.013	0.013	0.013	0.018	0.013	0.006	0.013	
	3	0.013	0.013	0.013	0.018	0.013	0.006	0.013	
	5	0.013	0.013	0.013	0.018	0.013	0.000	0.013	
	10	0.013	0.013	0.013	0.018	0.013	0.006	0.013	
	15	0.013	0.013	0.013	0.018	0.013	0.006	0.013	
	20 25	0.013	0.013	0.013 0.012	0.018 0.018	0.013 0.012	0.006	0.013 0.012	
	30	0.013	0.013	0.013	0.018	0.013	0.006	0.013	
	35	0.013	0.013	0.013	0.018	0.013	0.006	0.013	
	40	0.013	0.013	0.013	0.018	0.013	0.006	0.013	
	45 50		0.013	0.013	0.018 0.018	0.013	0.006	0.013 0.012	
	55	0.013	0.013	0.013	0.018	0.013	0.006	0.013	
	60	0.013	0.013	0.013	0.018	0.013	0.006	0.013	
	65	0.013	0.013	0.013	0.018	0.013	0.006	0.013	

Page 15

	Pollutant	Name:	Gasol i ne	-	mi⁄gal
65%					U U

Temperature: 73F Relative Humidity:

Speed MPH	LDA	LDT	MDT	HDT	UBUS	MCY	ALL
0 1 2 3 4 5 10 15 20 25 30 35 40 45 50 55	$\begin{array}{c} 0.\ 000\\ 7.\ 535\\ 7.\ 535\\ 7.\ 766\\ 8.\ 241\\ 8.\ 731\\ 11.\ 622\\ 14.\ 856\\ 18.\ 259\\ 21.\ 593\\ 24.\ 581\\ 26.\ 947\\ 28.\ 459\\ 28.\ 969\\ 28.\ 439\\ 26.\ 942\\ 24.\ 542\\ \end{array}$	0.000 5.998 5.998 6.183 6.561 6.952 9.251 11.823 14.529 17.182 19.560 21.444 22.649 23.058 22.639 21.448	$\begin{array}{c} 0.\ 000\\ 4.\ 260\\ 4.\ 375\\ 4.\ 611\\ 4.\ 855\\ 6.\ 550\\ 8.\ 485\\ 10.\ 559\\ 12.\ 624\\ 14.\ 500\\ 16.\ 001\\ 16.\ 964\\ 17.\ 282\\ 16.\ 927\\ 15.\ 947\\ 14.\ 462\\ \end{array}$	$\begin{array}{c} 0.\ 000\\ 3.\ 423\\ 3.\ 423\\ 3.\ 423\\ 3.\ 423\\ 3.\ 423\\ 5.\ 146\\ 7.\ 321\\ 9.\ 860\\ 12.\ 568\\ 15.\ 163\\ 17.\ 315\\ 18.\ 716\\ 19.\ 147\\ 18.\ 539\\ 16.\ 991\\ 14.\ 728\end{array}$	0. 000 3. 270 3. 270 3. 270 3. 270 3. 270 4. 916 6. 997 9. 426 12. 020 14. 510 16. 579 17. 931 18. 355 17. 785 16. 309 14. 555	$\begin{array}{c} 0.\ 000\\ 28.\ 605\\ 28.\ 605\\ 28.\ 605\\ 28.\ 605\\ 28.\ 605\\ 28.\ 605\\ 34.\ 204\\ 39.\ 719\\ 44.\ 810\\ 49.\ 114\\ 52.\ 266\\ 53.\ 942\\ 53.\ 893\\ 51.\ 985\\ 48.\ 245\\ 42.\ 892\\ 24.\ 892\\ 24.\ 892\\ 24.\ 892\\ 25.\ 892\\ 24.\ 892\\ $	0. 000 6. 700 6. 700 6. 897 7. 302 7. 719 10. 265 13. 114 16. 115 19. 056 21. 692 23. 777 25. 103 25. 538 25. 046 23. 694
65	21.765	17.326	12.633	12.099	11.627	29.230	19.061

	Pollutant	Name:	Di esel	- mi/gal
65%				U

Temperature: 73F Relative Humidity:

Speed MPH	LDA	LDT	MDT	HDT	UBUS	MCY	ALL
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1	28. 106	29.038	19. 670	4.882	3.953	0.000	9. 245
2	28. 106	29.038	19.670	4.882	3.953	0.000	9. 245
3	28. 106	29.038	19. 670	4.882	3.953	0.000	9. 245
4	28. 106	29.038	19.670	4.882	3.953	0.000	9. 245
5	28. 106	29.038	19.670	4.882	3.953	0.000	9. 245
10	28. 106	29.038	19.670	5.132	3.953	0.000	9.422
15	28. 106	29.038	19.670	5.444	3.953	0.000	9.641
20	28. 106	29.038	19.670	5.771	3.953	0.000	9.872
25	28. 106	29.038	19.670	5.912	3.953	0.000	9.972
30	28. 106	29.038	19.670	6.047	3.953	0.000	10.067
35	28. 106	29.038	19.670	6. 171	3.953	0.000	10. 154
40	28. 106	29.038	19.670	6.275	3.953	0.000	10. 227
45	28. 106	29.038	19.670	6.354	3.953	0.000	10. 283
50	28. 106	29.038	19.670	6.402	3.953	0.000	10.317
55	28. 106	29.038	19.670	6.415	3.953	0.000	10. 326
60	28. 106	29.038	19.670	6.393	3.953	0.000	10. 311
65	28. 106	29.038	19.670	6.337	3.953	0.000	10. 271

Title : ARTIC_Emfac2007_Orange County_2009-2013-2035_EMAC Mode_CO Version : Emfac2007 V2.3 Nov 1 2006

Average

Table 2: Starting Emissions (grams/trip)

Temperature:

73F Relative Humidity:

	Pollutant	Name:	Reacti ve	0rg	Gases
ALL					

Ti me LDT HDT UBUS MCY LDA MDT ALL min 5 0.037 0.042 0.103 0.251 0.242 0.874 0.067 10 0.190 0.389 0.378 0.967 0.075 0.065 0.114 0.354 20 0.119 0.137 0.647 0.629 1.156 0.200 1.352 30 0.168 0.195 0.502 0.878 0.855 0.280 1.056 40 0.212 0.247 0.636 1.083 1.554 0.351 50 0.251 0.293 0.754 1.263 1.230 1.762 0.415 60 0.285 0.334 0.856 1.405 1.369 1.898 0.469 1.150 1.635 0.391 0.470 1.596 120 2.124 0.624 1. 206 1. 277 1. 347 180 0.404 0.486 1.739 1.697 2.253 0.651 0.429 1.839 1.795 2.408 240 0.516 0.690 2.561 2.712 300 0.544 1.937 1.891 0.728 0.452 360 0.475 0.573 1.416 2.032 1.984 0.765 420 0.498 0.600 1.483 2.125 2.073 2.860 0.802 1.549 2.214 2.300 480 0.521 0.628 2.160 3.007 0.838 2.245 540 0.543 0.655 1.613 3.151 0.873 1.676 0.564 2.384 2.326 3.294 0.907 600 0.681 0.707 0.585 1.737 2.464 2.404 3.434 0.940 660 720 0.605 0.732 1.797 2.542 2.480 3.573 0.973

ALL	Pollutant	tant Name: Carbon Monoxide				emperature:	73F	Relative Humidity	Humi di ty:
	Time min	LDA	LDT	MDT	HDT	UBUS	MCY	ALL	
	5	0. 379	0.473	1.086	3. 195	2.829	4. 087	0.699	
	10	0. 683	0.868	2.004	5.029	4.676	4.214	1. 211	
	20	1.263	1. 620	3.743	8.480	8. 145	4.497	2. 184	
	30	1.805	2.323	5.352	11.639	11. 315	4.816	3. 087	
	40	2.307	2.977	6.831	14.506	14. 185	5.173	3. 920	
	50	2.772	3. 582	8. 180	17.082	16.755	5.566	4.684	
	60	3. 197	4.138	9.399	19.365	19. 027	5.997	5.379	
	120	4.765	6. 192	13. 201	25.169	24.672	9. 161	7.702	
	180	4.868	6.352	13.642	26.315	25.682	10.368	7.941	
	240	5.196	6.790	14.405	27.439	26. 683	11.757	8. 425	
	300	5.493	7.185	15. 112	28.540	27.676	13.011	8.870	
	360	5.760	7.539	15.763	29.619	28.659	14.131	9. 276	
	420	5.996	7.850	16.358	30.676	29.634	15.115	9.643	
	480	6. 201	8. 120	16. 898	31.711	30. 599	15.965	9.972	
	540	6.377	8.347	17.381	32.724	31.555	16.679	10.262	

Page 17

	ARTIC_Emf	ac07_0C_2	2009-2013-	-2035_Emfa	act Mode_A	ALL Speeds	s. rts
600	6. 521	8. 531	17.808	33.714	32.503	17. 259	10. 513
660	6.635	8.674	18. 180	34.682	33. 441	17.703	10. 725
720	6.719	8.775	18. 495	35.628	34.370	18.013	10. 899

ALL	Pol I utant	Name:	Oxides of	Ni trogen	-	Temperature:	73F	Rel ati ve	Humi di ty:
	Time min	LDA	LDT	MDT	HDT	UBUS	MCY	ALL	
	5102030405060120180240300360420480540600660720	$\begin{array}{c} 0. \ 165\\ 0. \ 185\\ 0. \ 221\\ 0. \ 251\\ 0. \ 275\\ 0. \ 293\\ 0. \ 305\\ 0. \ 322\\ 0. \ 322\\ 0. \ 320\\ 0. \ 311\\ 0. \ 305\\ 0. \ 298\\ 0. \ 279\\ 0. \ 268\\ 0. \ 256\\ \end{array}$	$\begin{array}{c} 0. \ 301 \\ 0. \ 331 \\ 0. \ 386 \\ 0. \ 431 \\ 0. \ 468 \\ 0. \ 475 \\ 0. \ 515 \\ 0. \ 549 \\ 0. \ 549 \\ 0. \ 548 \\ 0. \ 544 \\ 0. \ 538 \\ 0. \ 529 \\ 0. \ 518 \\ 0. \ 505 \\ 0. \ 490 \\ 0. \ 472 \\ 0. \ 452 \\ 0. \ 430 \end{array}$	$\begin{array}{c} 0.\ 781\\ 0.\ 907\\ 1.\ 129\\ 1.\ 313\\ 1.\ 459\\ 1.\ 566\\ 1.\ 635\\ 1.\ 712\\ 1.\ 708\\ 1.\ 696\\ 1.\ 679\\ 1.\ 655\\ 1.\ 625\\ 1.\ 590\\ 1.\ 548\\ 1.\ 501\\ 1.\ 447\\ 1.\ 387\end{array}$	$\begin{array}{c} 0.\ 539\\ 0.\ 805\\ 1.\ 274\\ 1.\ 656\\ 1.\ 951\\ 2.\ 160\\ 2.\ 282\\ 2.\ 293\\ 2.\ 284\\ 2.\ 271\\ 2.\ 253\\ 2.\ 230\\ 2.\ 203\\ 2.\ 171\\ 2.\ 135\\ 2.\ 093\\ 2.\ 048\\ 1.\ 998 \end{array}$	$\begin{array}{c} 0.\ 693\\ 1.\ 040\\ 1.\ 649\\ 2.\ 145\\ 2.\ 529\\ 2.\ 800\\ 2.\ 958\\ 2.\ 973\\ 2.\ 961\\ 2.\ 961\\ 2.\ 944\\ 2.\ 921\\ 2.\ 892\\ 2.\ 857\\ 2.\ 857\\ 2.\ 817\\ 2.\ 770\\ 2.\ 718\\ 2.\ 659\\ 2.\ 595 \end{array}$	$\begin{array}{c} 0. \ 183\\ 0. \ 214\\ 0. \ 270\\ 0. \ 317\\ 0. \ 355\\ 0. \ 383\\ 0. \ 403\\ 0. \ 404\\ 0. \ 398\\ 0. \ 390\\ 0. \ 379\\ 0. \ 366\\ 0. \ 351\\ 0. \ 333\\ 0. \ 314\\ 0. \ 292\\ 0. \ 268\\ 0. \ 242\\ \end{array}$	$\begin{array}{c} 0.\ 332\\ 0.\ 386\\ 0.\ 482\\ 0.\ 561\\ 0.\ 624\\ 0.\ 670\\ 0.\ 700\\ 0.\ 700\\ 0.\ 732\\ 0.\ 730\\ 0.\ 725\\ 0.\ 718\\ 0.\ 707\\ 0.\ 695\\ 0.\ 679\\ 0.\ 661\\ 0.\ 641\\ 0.\ 618\\ 0.\ 592 \end{array}$	
ALL	Pol I utant	Name:	Carbon Di	oxi de	-	Temperature:	73F	Rel ati ve	Humi di ty:
	Time min	LDA	LDT	MDT	HDT	UBUS	MCY	ALL	
	$\begin{array}{c} 5\\ 10\\ 20\\ 30\\ 40\\ 50\\ 60\\ 120\\ 180\\ 120\\ 180\\ 1\\ 300\\ 1\\ 300\\ 1\\ 360\\ 1\\ 360\\ 1\\ 420\\ 1\\ 540\\ 1\\ 600\\ 1\\ 660\\ 1\\ 720\\ 2\end{array}$	11. 398 13. 335 17. 626 22. 476 27. 882 33. 847 40. 369 88. 967 01. 472 13. 828 26. 034 38. 090 49. 996 61. 752 73. 359 84. 815 96. 122 207. 279	$\begin{array}{c} 14.\ 326\\ 16.\ 671\\ 21.\ 896\\ 27.\ 835\\ 34.\ 486\\ 41.\ 851\\ 49.\ 929\\ 110.\ 833\\ 126.\ 344\\ 141.\ 689\\ 156.\ 868\\ 171.\ 880\\ 186.\ 727\\ 201.\ 407\\ 215.\ 920\\ 230.\ 268\\ 244.\ 450\\ 258.\ 465\\ \end{array}$	$\begin{array}{c} 18.\ 749\\ 22.\ 861\\ 31.\ 711\\ 41.\ 398\\ 51.\ 922\\ 63.\ 283\\ 75.\ 481\\ 159.\ 762\\ 183.\ 123\\ 206.\ 015\\ 228.\ 437\\ 250.\ 390\\ 271.\ 873\\ 292.\ 887\\ 313.\ 431\\ 333.\ 506\\ 353.\ 111\\ 372.\ 246\end{array}$	5.448 8.720 15.202 21.599 27.912 34.141 40.286 67.007 78.101 88.539 98.324 107.453 115.929 123.750 130.916 137.428 143.285 148.488	3.818 5.867 9.923 13.924 17.870 21.761 25.598 42.305 49.113 55.520 61.525 67.128 72.330 77.130 81.529 85.526 89.121 92.315	$\begin{array}{c} 20.\ 233\\ 22.\ 676\\ 27.\ 451\\ 32.\ 078\\ 36.\ 556\\ 40.\ 887\\ 45.\ 070\\ 64.\ 190\\ 67.\ 071\\ 69.\ 784\\ 72.\ 329\\ 74.\ 706\\ 76.\ 916\\ 78.\ 958\\ 80.\ 832\\ 82.\ 538\\ 84.\ 077\\ 85.\ 447 \end{array}$	$\begin{array}{c} 13.\ 324\\ 15.\ 835\\ 21.\ 317\\ 27.\ 414\\ 34.\ 125\\ 41.\ 451\\ 49.\ 391\\ 106.\ 551\\ 121.\ 702\\ 136.\ 617\\ 151.\ 295\\ 165.\ 737\\ 179.\ 943\\ 193.\ 912\\ 207.\ 645\\ 221.\ 141\\ 234.\ 401\\ 247.\ 424 \end{array}$	

Pollutant Name: Sulfur Dioxide

Temperature: 73F Relative Humidity:

	T: ma	ARTIC_Emf	ac07_0C_2	009-2013-	2035_Emfa	ct Mode_AI	I Speed	ds.rts	
	min	LDA	LDT	MDT	HDT	UBUS	MCY	ALL	
	5102030405060120180240300360420480540600660720	$\begin{array}{c} 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 001\\ 0.\ 001\\ 0.\ 001\\ 0.\ 001\\ 0.\ 001\\ 0.\ 001\\ 0.\ 001\\ 0.\ 002\\ 0.\ 0$	$\begin{array}{c} 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 001\\ 0.\ 001\\ 0.\ 001\\ 0.\ 001\\ 0.\ 001\\ 0.\ 001\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 003 \end{array}$	$\begin{array}{c} 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 001\\ 0.\ 001\\ 0.\ 001\\ 0.\ 001\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 003\\ 0.\ 003\\ 0.\ 003\\ 0.\ 003\\ 0.\ 004\\ 0.\ 004\\ 0.\ 004\\ \end{array}$	$\begin{array}{c} 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 001\\ 0.\ 001\\ 0.\ 001\\ 0.\ 001\\ 0.\ 001\\ 0.\ 001\\ 0.\ 001\\ 0.\ 001\\ 0.\ 001\\ 0.\ 002\\ 0.\ 0.\ 002\\ 0.\ 0.\ 002\\ 0.\ 0.\ 0.\ 002\\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\$	$\begin{array}{c} 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 001\\ 0.\ 0.\ 001\\ 0.\ 0.\ 001\\ 0.\ 0.\ 0.\ 001\\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\$	$\begin{array}{c} 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 001\\ 0.\ 0.\ 001\\ 0.\ 0.\ 001\\ 0.\ 0.\ 001\\ 0.\ 0.\ 001\\ 0.\ 0.\ 0.\ 001\\ 0.\ 0.\ 0.\ 001\\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\$	$\begin{array}{c} 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 001\\ 0.\ 001\\ 0.\ 001\\ 0.\ 001\\ 0.\ 001\\ 0.\ 001\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 002\\ 0.\ 003 \end{array}$	
ALL	Pollutan	t Name: Pl	M10		Те	emperature:	73F	Rel ati ve	Humi di ty:
	Time min	LDA	LDT	MDT	HDT	UBUS	MCY	ALL	
	$5 \\ 10 \\ 20 \\ 30 \\ 40 \\ 50 \\ 60 \\ 120 \\ 180 \\ 240 \\ 300 \\ 360 \\ 420 \\ 480 \\ 540 \\ 600 \\ 600 \\ 660 \\ 60 \\$	$\begin{array}{c} 0. \ 001 \\ 0. \ 002 \\ 0. \ 003 \\ 0. \ 004 \\ 0. \ 005 \\ 0. \ 006 \\ 0. \ 009 \\ 0. \ 010 \\ 0. \ 011 \\ 0. \ 011 \\ 0. \ 011 \\ 0. \ 012 \\ 0. \ 012 \\ 0. \ 013 \\ 0. \ 013 \\ 0. \ 014 \end{array}$	$\begin{array}{c} 0. \ 001 \\ 0. \ 002 \\ 0. \ 005 \\ 0. \ 007 \\ 0. \ 009 \\ 0. \ 011 \\ 0. \ 013 \\ 0. \ 020 \\ 0. \ 022 \\ 0. \ 022 \\ 0. \ 023 \\ 0. \ 025 \\ 0. \ 025 \\ 0. \ 026 \\ 0. \ 027 \\ 0. \ 028 \\ 0. \ 029 \\ 0. \ 029 \\ 0. \ 030 \end{array}$	$\begin{array}{c} 0. \ 001 \\ 0. \ 002 \\ 0. \ 004 \\ 0. \ 006 \\ 0. \ 008 \\ 0. \ 010 \\ 0. \ 011 \\ 0. \ 017 \\ 0. \ 017 \\ 0. \ 017 \\ 0. \ 018 \\ 0. \ 019 \\ 0. \ 020 \\ 0. \ 021 \\ 0. \ 022 \\ 0. \ 023 \\ 0. \ 024 \\ 0. \ 025 \end{array}$	$\begin{array}{c} 0.\ 001\\ 0.\ 002\\ 0.\ 002\\ 0.\ 003\\ 0.\ 003\\ 0.\ 004\\ 0.\ 005\\ 0.\ 006\\ 0.\ 006\\ 0.\ 006\\ 0.\ 006\\ 0.\ 006\\ 0.\ 006\\ 0.\ 006\\ 0.\ 006\\ 0.\ 007\\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\$	$\begin{array}{c} 0. \ 000\\ 0. \ 001\\ 0. \ 002\\ 0. \ 002\\ 0. \ 002\\ 0. \ 002\\ 0. \ 003\\ 0. \ 004\\ 0. \ 004\\ 0. \ 004\\ 0. \ 004\\ 0. \ 004\\ 0. \ 004\\ 0. \ 004\\ 0. \ 004\\ 0. \ 004\\ 0. \ 005\\ 0. \ 0.\ 0.\ 005\\ 0. \ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.$	$\begin{array}{c} 0. \ 011 \\ 0. \ 010 \\ 0. \ 008 \\ 0. \ 006 \\ 0. \ 005 \\ 0. \ 004 \\ 0. \ 003 \\ 0. \ 003 \\ 0. \ 012 \\ 0. \ 012 \\ 0. \ 016 \\ 0. \ 019 \\ 0. \ 022 \\ 0. \ 024 \\ 0. \ 026 \\ 0. \ 028 \\ 0. \ 029 \\ 0. \ 029 \\ 0. \ 029 \end{array}$	$\begin{array}{c} 0.\ 001\\ 0.\ 002\\ 0.\ 003\\ 0.\ 005\\ 0.\ 006\\ 0.\ 007\\ 0.\ 009\\ 0.\ 013\\ 0.\ 014\\ 0.\ 016\\ 0.\ 016\\ 0.\ 016\\ 0.\ 017\\ 0.\ 018\\ 0.\ 019\\ 0.\ 020\\ 0.\ 020\\ 0.\ 020\\ 0.\ 020\\ \end{array}$	

Title	:	ARTIC_Emfac2007_Orange County_2009-2013-2035_EMAC Mode_CO
Versi on	:	Emfac2007 V2.3 Nov 1 2006
Run Date	:	2010/04/07 16: 10: 26
Scen Year	:	2013 All model years in the range 1969 to 2013 selected
Season	:	Annual
Area	:	Orange
* * * * * * * * *	* >	***************************************
* * * * *		

ARTIC_Emfac07_0C_2009-2013-2035_Emfact Mode_ALL Speeds.rts Year: 2013 -- Model Years 1969 to 2013 Inclusive -- Annual Emfac2007 Emission Factors: V2.3 Nov 1 2006

County AverageOrangeCountyAverageTable 4: Hot Soak Emissions (grams/trip)

Pollutant Name: Reactive Org Gases Temperature: 73F Relative Humidity: ALL Ti me LDT MDT HDT UBUS MCY ALL min LDA 5 0.053 0.052 0.036 0.008 0.056 0.119 0.048 10 0.099 0.090 0.097 0.067 0.016 0.104 0.221 0.169 0.115 0.027 0.383 20 0.166 0.178 0.154 30 0.218 0.215 0.149 0.035 0.228 0.501 0.198 0.162 40 0.237 0.233 0.038 0.247 0.547 0.215

Hot soak results are scaled to reflect zero emissions for trip lengths of less than 5 minutes (about 25% of in-use trips).

Title Versi Run [e : ART on : Emf Date : 201	lC_Emfa ac2007 0/04/07	ac2007_0rang V2.3 Nov 1 7 16:10:26	ge County 2006	r_2009-201	3-2035_EM	AC Mode_	_C0		
Scen Seaso Area	en Year: 2013 All model years in the range 1969 to 2013 selected ason : Annual ea : Orange ************************************									
* * * * *	k									
	Year: 201 Emfac2007	3 Mo 'Emissi	odel Years on Factors:	1969 to 2 V2.3 No	2013 Inclu ov 1 2006	sive A	nnual			
Avera	County Av age	verage				0range		Cou	inty	
(aron	(hour)		Tal	ole 5a:	Partial	Day Diurn	al Loss	Emissions	;	
(yi al	is/nour)									
ALL	Pol I utant	Name:	Reactive O	rg Gases	Τe	mperature	: ALL	Rel ati ve	Humi di ty:	
	Temp degF	LDA	LDT	MDT	HDT	UBUS	MCY	ALL		
	73	0.099	0.098	0. 080	0.007	0.004	0. 323	0. 101		

Title : ARTIC_Emfac2007_Orange County_2009-2013-2035_EMAC Mode_CO Version : Emfac2007 V2.3 Nov 1 2006

Run I Scen Seaso Area	Al Date : 2010 Year: 2013 on : Anni : Orai : Orai	RTIC_Er 0/04/03 3 Al ual nge	nfac07_0C_ 7 16: 10: 26 I model y	2009-2013- ears in th	2035_Em ⁻ e range	fact Mode_Al 1969 to 201	I Speed 3 sel ed	ds.rts cted *********	****		
****	* Year: 201: Emfac2007	3 Ma Emissi	odel Years on Factor	5 1969 to 2 rs: V2.3 No	013 Incl v 1 2000	lusive An 6	nual				
Avera	County Ave age	erage				Orange		Cou	inty		
(grar	(grams/hour) Table 5b: Multi-Day Diurnal Loss Emissions										
ALL	Pol I utant	Name:	Reacti ve	Org Gases	-	Temperature:	ALL	Rel ati ve	Humi di ty:		
	Temp degF	LDA	LDT	MDT	HDT	UBUS	MCY	ALL			
	73	0.008	0.008	0.006	0.000	0. 001	0. 029	0.008			
Title Versi Run I Scen Seaso Area	e : ART ion : Emfa Date : 2010 Year: 2013 on : Annu : Orau ***********	I C_Emfa ac2007 0/04/03 3 Al ual nge ******	ac2007_0ra V2.3 Nov 7 16:10:26 I model y	nge County 1 2006 Wears in th	_2009-20	013-2035_EMA 1969 to 201	C Mode <u>.</u> 3 sel e	_CO cted	****		
	Emfac2007	3 Ma Emissi	on Factor	s: V2.3 No	v 1 200	fusive An 6	nuai				
Avera	County Ave age	erage				Orange		Cou	nty		
(grar	ns/hour)		T	able 6a:	Parti al	l Day Restin	g Loss	Emissions	ì		
ALL	Pol I utant	Name:	Reacti ve	Org Gases	-	Temperature:	ALL	Rel ati ve	Humi di ty:		
	Temp degF	LDA	LDT	MDT	HDT	UBUS	MCY	ALL			
	73	0. 044	0. 047	0. 040	0. 003	0.002	0. 113	0. 045			

Title : ARTIC_Emfac2007_Orange County_2009-2013-2035_EMAC Mode_CO Version : Emfac2007 V2.3 Nov 1 2006 Run Date : 2010/04/07 16:10:26

Scen Sease Area	A Year: 201 on : Ann : Ora	RTIC_Em 3 Al ual nge *******	nfac07_0C_ I model y	2009-2013- ears in th	2035_Emfa e range 1 ********	ct Mode_AI 969 to 201 *********	I Speed 3 select	ds.rts cted *********	* * * * * * * *
	Year: 201 Emfac2007	3 Mc Emissi	del Years on Factor	1969 to 2 s: V2.3 No	013 Inclu v 1 2006	sive Ar	inual		
Avera	County Av age	erage				Orange		Cou	nty
(grai	ms/hour)		Т	able 6b:	Multi-Da	y Resting	Loss Er	missions	
ALL	Pollutant	Name:	Reacti ve	Org Gases	Те	mperature:	ALL	Rel ati ve	Humi di ty:
	Temp degF	LDA	LDT	MDT	HDT	UBUS	MCY	ALL	
	73	0.004	0.004	0.003	0.000	0.000	0. 011	0.004	
Run I Scen Sease Area ****	Ton : Emi Date : 201 Year: 201 on : Ann : Ora ********** Year: 201 Emfac2007	ac2007 0/04/07 3 Al ual nge ******* 3 Mc Emissi	v2.3 NOV 16:10:26 I model y ********** del Years on Factor	ears in th ********** 1969 to 2 s: V2.3 No	e range 1 ********* 013 Inclu v 1 2006	969 to 201 ********** sive Ar	3 sel eo	cted *********	*****
Avera	County Av age	erage				Orange		Cou	nty
			Т	able 7:	Estimate	d Travel F	racti o	ns	
ALL	Pol I utant	Name:			Те	mperature:	ALL	Rel ati ve	Humi di ty:
		LDA	LDT	MDT	HDT	UBUS	MCY	ALL	
	%VMT %TRI P %VEH	0. 508 0. 485 0. 526	0. 316 0. 278 0. 301	0. 139 0. 180 0. 124	0. 030 0. 048 0. 020	0.001 0.000 0.000	0. 006 0. 008 0. 028	1.000 1.000 1.000	

Title : ARTIC_Emfac2007_Orange County_2009-2013-2035_EMAC Mode_CO Version : Emfac2007 V2.3 Nov 1 2006

ARTIC_Emfac07_OC_2009-2013-2035_Emfact Mode_AII Speeds.rts Run Date : 2010/04/07 16:10:26 Scen Year: 2013 -- All model years in the range 1969 to 2013 selected : Annual Season : 0range Area ****** ***** Year: 2013 -- Model Years 1969 to 2013 Inclusive -- Annual Emfac2007 Emission Factors: V2.3 Nov 1 2006 County Average Orange County Average Tabl e 8: Evaporative Running Loss Emissions (grams/minute) Pollutant Name: Reactive Org Gases Temperature: 73F Relative Humidity: ALL Ti me LDA LDT MDT HDT UBUS MCY ALL min 0. 301 0. 156 1 0.014 0.319 0.200 0.551 0.028 0.157 0.290 0.085 0.164 0.105 0.065 2 0.016 3 0.019 0.114 0.109 0.074 0.203 0.084 0.064 4 0.022 0.091 0.087 0.059 0.160 0.095 0.055

5 10 15 20 25 30 35 40	0. 024 0. 028 0. 030 0. 030 0. 031 0. 031 0. 030 0. 030	$\begin{array}{c} 0.\ 077\\ 0.\ 052\\ 0.\ 045\\ 0.\ 043\\ 0.\ 043\\ 0.\ 042\\ 0.\ 042\\ 0.\ 042\\ 0.\ 042\\ \end{array}$	0.074 0.050 0.044 0.042 0.041 0.041 0.040 0.040	0.050 0.032 0.026 0.024 0.022 0.022 0.022 0.022 0.022	0. 134 0. 083 0. 066 0. 058 0. 053 0. 053 0. 053 0. 053	0. 102 0. 117 0. 122 0. 124 0. 126 0. 124 0. 123 0. 121	0. 049 0. 039 0. 037 0. 036 0. 037 0. 036 0. 036 0. 035
25	0.031	0.043	0.041	0.022	0.053	0.126	0.037
30	0. 031	0. 042	0. 041	0. 022	0.053	0. 124	0.036
35	0. 030	0. 042	0. 040	0. 022	0. 053	0. 123	0.036
40	0. 030	0. 042	0. 040	0. 022	0. 052	0. 121	0.035
45	0.030	0. 041	0.040	0.022	0.052	0. 120	0.035
50	0. 029	0. 041	0.039	0. 022	0.052	0. 118	0.035
55	0. 029	0.040	0.039	0. 021	0. 051	0. 116	0. 034
60	0. 028	0.040	0.039	0. 021	0. 051	0. 114	0.034

Title : Version : Run Date : Scen Year: Season : Area : ******	ARTIC_Emfac: Emfac2007 V 2010/04/07 2035 All Annual Orange	2007_Orange Cou 2.3 Nov 1 2006 16:10:26 model years ir	nty	_2009-2013-2035_ e range 1991 to	_EMAC Mode 2035 sele	_CO cted
Year: Emfac	2035 Mode 2007 Emissio	el Years 1991 t n Factors: V2.3	:o 20 8 No	035 Inclusive v 1 2006	- Annual	
Count Average	y Average			Orange	e	County
grams/idle	-hour)	Tabl e	1:	Runni ng Exhaust	t Emission	s (grams/mile;
Pollu 65%	tant Name: R	eactive Org Gas	ses	Temperatu	ure: 73F	Relative Humidity:

	Speed MPH	LDA	LDT	MDT	HDT	UBUS	MCY	ALL	
	0 1 2 3 4 5 10 15 20 25 30 35 40 45 50 55 60 65	$\begin{array}{c} 0.\ 000\\ 0.\ 051\\ 0.\ 051\\ 0.\ 049\\ 0.\ 044\\ 0.\ 039\\ 0.\ 024\\ 0.\ 016\\ 0.\ 012\\ 0.\ 009\\ 0.\ 007\\ 0.\ 006\\ 0.\ 005\\ 0.\ 005\\ 0.\ 005\\ 0.\ 005\\ 0.\ 005\\ 0.\ 005\\ 0.\ 007\\ \end{array}$	$\begin{array}{c} 0.\ 000\\ 0.\ 103\\ 0.\ 103\\ 0.\ 098\\ 0.\ 087\\ 0.\ 078\\ 0.\ 078\\ 0.\ 047\\ 0.\ 032\\ 0.\ 023\\ 0.\ 017\\ 0.\ 014\\ 0.\ 011\\ 0.\ 010\\ 0.\ 010\\ 0.\ 010\\ 0.\ 010\\ 0.\ 011\\ 0.\ 013\\ \end{array}$	$\begin{array}{c} 3. \ 197\\ 0. \ 144\\ 0. \ 144\\ 0. \ 137\\ 0. \ 124\\ 0. \ 113\\ 0. \ 070\\ 0. \ 048\\ 0. \ 035\\ 0. \ 026\\ 0. \ 021\\ 0. \ 018\\ 0. \ 016\\ 0. \ 015\\ 0. \ 016\\ 0. \ 018\\ 0. \ 018\\ \end{array}$	6.082 1.189 1.189 1.189 1.189 0.681 0.362 0.232 0.199 0.171 0.149 0.131 0.101 0.097 0.097	$\begin{array}{c} 0.\ 000\\ 1.\ 243\\ 1.\ 243\\ 1.\ 243\\ 1.\ 243\\ 1.\ 243\\ 0.\ 867\\ 0.\ 630\\ 0.\ 476\\ 0.\ 373\\ 0.\ 304\\ 0.\ 258\\ 0.\ 227\\ 0.\ 207\\ 0.\ 207\\ 0.\ 196\\ 0.\ 193\\ 0.\ 197\\ 0.\ 209\end{array}$	$\begin{array}{c} 0.\ 000\\ 4.\ 650\\ 4.\ 650\\ 4.\ 650\\ 4.\ 650\\ 4.\ 650\\ 3.\ 485\\ 2.\ 749\\ 2.\ 283\\ 1.\ 996\\ 1.\ 785\\ 1.\ 825\\ 1.\ 966\\ 2.\ 229\\ 2.\ 659\\ 3.\ 333\\ 4.\ 389 \end{array}$	$\begin{array}{c} 0.\ 719\\ 0.\ 148\\ 0.\ 148\\ 0.\ 148\\ 0.\ 136\\ 0.\ 130\\ 0.\ 080\\ 0.\ 052\\ 0.\ 080\\ 0.\ 052\\ 0.\ 038\\ 0.\ 031\\ 0.\ 021\\ 0.\ 021\\ 0.\ 021\\ 0.\ 023\\ 0.\ 027\\ 0.\ 033\\ \end{array}$	
65%	Pol I utant	Name:	Carbon Mor	noxi de		Temperature:	73F	Rel ati ve	Humidity:
	Speed MPH	LDA	LDT	MDT	HDT	UBUS	MCY	ALL	
	0 1 2 3 4 5 10 15 20 25 30 35 40 45 50 55 60 65	$\begin{array}{c} 0.\ 000\\ 0.\ 907\\ 0.\ 907\\ 0.\ 898\\ 0.\ 881\\ 0.\ 865\\ 0.\ 788\\ 0.\ 720\\ 0.\ 660\\ 0.\ 559\\ 0.\ 516\\ 0.\ 559\\ 0.\ 516\\ 0.\ 479\\ 0.\ 445\\ 0.\ 445\\ 0.\ 445\\ 0.\ 388\\ 0.\ 363\\ 0.\ 342\\ \end{array}$	$\begin{array}{c} 0.\ 000\\ 1.\ 597\\ 1.\ 597\\ 1.\ 581\\ 1.\ 551\\ 1.\ 522\\ 1.\ 385\\ 1.\ 265\\ 1.\ 159\\ 1.\ 064\\ 0.\ 981\\ 0.\ 906\\ 0.\ 840\\ 0.\ 781\\ 0.\ 728\\ 0.\ 681\\ 0.\ 638\\ 0.\ 601 \end{array}$	$\begin{array}{c} 20.\ 070\\ 2.\ 145\\ 2.\ 145\\ 2.\ 126\\ 2.\ 090\\ 2.\ 055\\ 1.\ 814\\ 1.\ 623\\ 1.\ 467\\ 1.\ 336\\ 1.\ 224\\ 1.\ 128\\ 1.\ 045\\ 0.\ 973\\ 0.\ 911\\ 0.\ 858\\ 0.\ 813\\ 0.\ 778\\ \end{array}$	37. 299 4. 761 4. 761 4. 761 3. 080 2. 032 1. 487 1. 251 1. 099 1. 006 0. 957 0. 945 0. 965 1. 019 1. 111 1. 250	$\begin{array}{c} 0.\ 000\\ 9.\ 542\\ 9.\ 542\\ 9.\ 542\\ 9.\ 542\\ 9.\ 542\\ 9.\ 542\\ 9.\ 542\\ 0.\ 542\\ 3.\ 129\\ 2.\ 420\\ 1.\ 982\\ 1.\ 718\\ 1.\ 576\\ 1.\ 531\\ 1.\ 573\\ 1.\ 573\\ 1.\ 711\\ 1.\ 970\\ 2.\ 400 \end{array}$	$\begin{array}{c} 0.\ 000\\ 21.\ 596\\ 21.\ 596\\ 21.\ 596\\ 21.\ 596\\ 21.\ 596\\ 13.\ 596\\ 14.\ 596\\ 14.\ 132\\ 13.\ 801\\ 13.\ 973\\ 14.\ 731\\ 16.\ 259\\ 18.\ 895\\ 23.\ 240\\ 30.\ 368\\ 42.\ 241\\ \end{array}$	$\begin{array}{c} 4.\ 477\\ 1.\ 575\\ 1.\ 575\\ 1.\ 539\\ 1.\ 539\\ 1.\ 516\\ 1.\ 314\\ 1.\ 160\\ 1.\ 043\\ 0.\ 953\\ 0.\ 878\\ 0.\ 878\\ 0.\ 816\\ 0.\ 764\\ 0.\ 724\\ 0.\ 694\\ 0.\ 678\\ 0.\ 680\\ 0.\ 708\\ \end{array}$	
65%	Pollutant	Name:	Oxides of	Ni trogen		Temperature:	73F	Rel ati ve	Humi di ty:
	Speed MPH	LDA	LDT	MDT	HDT	UBUS	MCY	ALL	
	0 1 2 3 4	0.000 0.053 0.053 0.052 0.052	0.000 0.102 0.102 0.101 0.098	3. 674 0. 189 0. 189 0. 187 0. 187 0. 184 Pa	81. 434 3. 617 3. 617 3. 617 3. 617 age 24	0.000 11.362 11.362 11.362 11.362 11.362	0.000 0.990 0.990 0.990 0.990 0.990	3. 734 0. 253 0. 253 0. 251 0. 249	

ARTIC_Emfac07_0C_2009-2013-2035_Emfact Mode_AII Speeds.rts

0.247 0.200 0.166
0.200
0 166
0.100
0. 145
0. 133
0. 124
0. 118
0. 115
0. 116
0. 119
0. 126
0. 137
0. 155

Pollutant Name: Carbon Dioxide 65%

Temperature: 73F Relative Humidity:

Speed MPH	LDA	LDT	MDT	HDT	UBUS	MCY	ALL
0	0.000	0.000	887.050	4741.404	0.000	0.000	318. 696
1	1144.346	1466.838	2010. 604	2737.865	2390. 960	266.372	1442.721
2	1144.346	1466.838	2010. 604	2737.865	2390. 960	266.372	1442.721
3	1110. 189	1423.003	1962.200	2737.865	2390. 960	266.372	1404.738
4	1046. 144	1340.807	1871. 440	2737.865	2390.960	266.372	1333. 516
5	987.350	1265.352	1788. 121	2737.865	2390. 960	266.372	1268. 134
10	741. 173	950.081	1317.173	2274.614	2100. 173	222.040	957.437
15	579. 381	742.784	1015.739	1926.435	1928. 454	190. 713	752.743
20	471.092	603.992	818.316	1685.098	1823.896	168. 741	616.064
25	398. 166	510.500	687.631	1586.668	1758. 915	153.810	526.866
30	349.669	448.310	601.857	1511.606	1718. 432	144. 488	467.345
35	318. 954	408.910	548.058	1455.267	1694.072	139. 978	429.387
40	302.065	387.231	518. 702	1415.109	1681. 249	139. 987	408.197
45	296.860	380. 532	509.807	1389.881	1677.709	144.686	401. 202
50	302.560	387.818	520. 021	1379.249	1682.849	154.765	407.488
55	319.587	409.635	550.320	1383.699	1697.545	171.576	427.610
60	349.652	448.190	604.243	1404.680	1724.410	197.426	463.711
65	396. 133	507.827	688.759	1445.038	1768. 578	236.098	520. 016

65%	Pollutant	Name:	Sulfur Diox	i de	Т	emperature:	73F	Rel ati ve	Humi di ty:
	Speed MPH	LDA	LDT	MDT	HDT	UBUS	MCY	ALL	
	0	0.000	0.000	0.009	0.045	0.000	0.000	0.003	
	1	0.011	0.014	0.019	0. 026	0. 023	0.003	0.014	
	2	0.011	0.014	0.019	0. 026	0. 023	0.003	0.014	
	3	0.011	0.014	0.019	0.026	0. 023	0.003	0.014	
	4	0.010	0.013	0. 018	0. 026	0. 023	0.003	0. 013	
	5	0.009	0.012	0.017	0.026	0. 023	0.003	0.012	
	10	0.007	0.009	0.013	0.022	0. 020	0.003	0.009	
	15	0.006	0.007	0.010	0. 018	0. 018	0.002	0.007	
	20	0.005	0.006	0.008	0. 016	0. 017	0.002	0.006	
	25	0.004	0.005	0.007	0.015	0. 017	0.002	0.005	
	30	0.003	0.004	0.006	0.014	0. 016	0.002	0.004	
	35	0.003	0.004	0.005	0.014	0. 016	0.002	0.004	
	40	0.003	0.004	0.005	0.014	0. 016	0.002	0.004	
	45	0.003	0.004	0.005	0.013	0. 016	0.002	0.004	
				F	Page 25				

	ARTI C_E	mfac07_0C_	2009-2013-	-2035_Emfa	ct Mode_Al	I Speed	ds.rts	
5	0 0.003	0.004	0.005	0.013	0.016	0.002	0.004	
5	5 0.003	0.004	0.005	0.013	0. 016	0.002	0.004	
6	0 0.003	0.004	0.006	0.013	0.016	0.002	0.004	
6	5 0.004	0.005	0.007	0.014	0.017	0.003	0.005	
Pol 65%	lutant Name:	PM10		Те	mperature:	73F	Rel ati ve	Humi di

Speed MPH	LDA	LDT	MDT	HDT	UBUS	MCY	ALL
0	0.000	0.000	0.037	0.337	0.000	0.000	0.019
1	0.070	0.160	0.168	0. 182	0.386	0.030	0.119
2	0.070	0.160	0.168	0. 182	0.386	0.030	0.119
3	0. 067	0. 152	0. 160	0. 182	0. 386	0. 030	0. 114
4	0. 061	0. 138	0. 146	0. 182	0. 386	0. 030	0. 105
5	0. 056	0. 126	0. 134	0. 182	0. 386	0. 030	0. 096
10	0.036	0. 081	0. 087	0. 147	0. 278	0.024	0.063
15	0.024	0.055	0.060	0. 121	0. 207	0.019	0.044
20	0. 018	0.040	0.043	0. 102	0. 161	0.017	0. 032
25	0.013	0.030	0.033	0.089	0. 129	0.015	0. 025
30	0.011	0.024	0.026	0. 081	0. 107	0.014	0. 020
35	0.009	0.020	0.022	0.076	0.092	0.014	0.018
40	0.008	0.018	0.020	0.074	0.082	0.014	0.016
45	0.008	0.017	0.018	0.074	0.076	0.016	0.015
50	0.007	0.017	0.018	0.077	0.073	0.018	0.015
55	0.008	0.018	0.019	0.082	0.072	0.021	0.016
60	0 009	0 020	0 021	0 089	0 074	0.026	0 017
65	0 010	0 023	0 024	0 097	0 079	0 034	0 020
00	0.010	0.020	0.021	0.077	0.077	0.001	0.020

Speed MPH LDA LDT MDT HDT UBUS MCY ALL 0 0.000	65%	Pollutant	Name:	PM10 - Ti	re Wear	Tei	mperature:	73F	Rel ati ve	Humi di ty:
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Speed MPH	LDA	LDT	MDT	HDT	UBUS	MCY	ALL	
30 0.008 0.008 0.009 0.023 0.009 0.004 0.009 35 0.008 0.008 0.009 0.023 0.009 0.004 0.009 40 0.008 0.008 0.009 0.023 0.009 0.004 0.009 45 0.008 0.008 0.009 0.023 0.009 0.004 0.009 50 0.008 0.008 0.009 0.023 0.009 0.004 0.009 55 0.008 0.008 0.009 0.023 0.009 0.004 0.009 60 0.008 0.009 0.023 0.009 0.004 0.009		0 1 2 3 4 5 10 15 20 25 30 35 40 45 50 55 60	$\begin{array}{c} 0.\ 000\\ 0.\ 008\\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\$	$\begin{array}{c} 0.\ 000\\ 0.\ 008\\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\$	$\begin{array}{c} 0.\ 000\\ 0.\ 009\\ 0.\ 0009\\ 0.\ 0009\\ 0.\ 0009\\ 0.\ 0009\\ 0.\ 0009\\ 0.\ 0009\\ 0.\ 0000$	$\begin{array}{c} 0.\ 000\\ 0.\ 023\\ 0.\ 0.\ 023\\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\$	$\begin{array}{c} 0.\ 000\\ 0.\ 009\\ 0.\ 0$	$\begin{array}{c} 0.\ 000\\ 0.\ 004\\ 0.\ 0.\ 004\\ 0.\ 0.\ 004\\ 0.\ 0.\ 004\\ 0.\ 0.\ 0.\ 004\\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\$	$\begin{array}{c} 0.\ 000\\ 0.\ 009\\ 0.\ 0009\\ 0.\ 009\\ 0.\ 009\\ 0.\ 009\\ 0.\ 009\\ 0.\ 009\\ 0.\ 009\\ 0.\ $	

Pollutant Name: PM10 - Brake Wear Temperature: 73F Relative Humidity: 65%

ty:

	Speed MPH	LDA	LDT	MDT	HDT	UBUS	MCY	ALL	
	$\begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 10 \\ 15 \\ 20 \\ 35 \\ 40 \\ 55 \\ 60 \\ 65 \end{array}$	$\begin{array}{c} 0.\ 000\\ 0.\ 013\\ 0.\ 0.\ 013\\ 0.\ 0.\ 013\\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\$	$\begin{array}{c} 0.\ 000\\ 0.\ 013\\ 0.\ 0.\ 013\\ 0.\ 0.\ 0.\ 013\\ 0.\ 0.\ 0.\ 013\\ 0.\ 0.\ 0.\ 013\\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\$	$\begin{array}{c} 0.\ 000\\ 0.\ 013\\ 0.\ 0.\ 013\\ 0.\ 0.\ 0.\ 013\\ 0.\ 0.\ 0.\ 013\\ 0.\ 0.\ 0.\ 013\\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\$	$\begin{array}{c} 0.\ 000\\ 0.\ 020\\ 0.\ 0.\ 020\\ 0.\ 0.\ 00\\ 0.\ 0.\ 00\\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\$	$\begin{array}{c} 0.\ 000\\ 0.\ 013\\ 0.\ 0.\ 013\\ 0.\ 013\\ 0.\ 013\\ 0.\ 013\\ 0.\ 013\\ 0.\ 013\\ 0.\ 013\\ 0.\ 013\\ 0.\ 013\\ 0.\ 013\\ 0.\ 013\\ 0.\ 013\\ 0.\ 013\\ 0.\ 013\\ 0.\ 013\\ 0.\ 013\\ 0.\ 013\\ 0.\ 013\\ 0.\ 0.\ 0.\ 013\\ 0.\ 0.\ 0.\ 013\\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\$	$\begin{array}{c} 0. \ 000\\ 0. \ 006\\ 0.\ 006\\ 0.\ 0.\ 006\\ 0.\ 0.\ 0.\ 006\\ 0.\ 0.\ 006\\ 0.\ 0.\$	$\begin{array}{c} 0.\ 000\\ 0.\ 013\\ 0.\ 0.\ 013\\ 0.\ 0.\ 013\\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\$	
65%	Pollutan	t Name:	Gasol i ne 🕤	- mi∕gal	Т	emperature:	73F	Rel ati ve	Humi di ty:
	Speed MPH	LDA	LDT	MDT	HDT	UBUS	MCY	ALL	
	0 1 2 3 4 5 10 15 20 25 30 35 40 55 60 65	$\begin{array}{c} 0.\ 000\\ 7.\ 732\\ 7.\ 732\\ 7.\ 970\\ 8.\ 457\\ 8.\ 961\\ 11.\ 934\\ 15.\ 262\\ 18.\ 766\\ 22.\ 200\\ 25.\ 276\\ 27.\ 709\\ 29.\ 260\\ 29.\ 778\\ 29.\ 222\\ 27.\ 672\\ 25.\ 300\\ 22.\ 337 \end{array}$	$\begin{array}{c} 0.\ 000\\ 6.\ 028\\ 6.\ 028\\ 6.\ 214\\ 6.\ 594\\ 6.\ 987\\ 9.\ 303\\ 11.\ 895\\ 14.\ 624\\ 17.\ 299\\ 19.\ 696\\ 21.\ 593\\ 22.\ 804\\ 23.\ 210\\ 22.\ 781\\ 21.\ 574\\ 19.\ 725\\ 17.\ 415 \end{array}$	$\begin{array}{c} 0.\ 000\\ 4.\ 274\\ 4.\ 274\\ 4.\ 389\\ 4.\ 624\\ 4.\ 868\\ 6.\ 573\\ 8.\ 521\\ 10.\ 611\\ 12.\ 694\\ 14.\ 587\\ 16.\ 101\\ 17.\ 071\\ 17.\ 390\\ 17.\ 027\\ 16.\ 036\\ 14.\ 536\\ 12.\ 690 \end{array}$	$\begin{array}{c} 0.\ 000\\ 3.\ 515\\ 3.\ 515\\ 3.\ 515\\ 3.\ 515\\ 5.\ 283\\ 7.\ 516\\ 10.\ 121\\ 12.\ 899\\ 15.\ 559\\ 17.\ 764\\ 19.\ 195\\ 19.\ 633\\ 19.\ 005\\ 17.\ 413\\ 15.\ 101\\ 12.\ 395 \end{array}$	$\begin{array}{c} 0.\ 000\\ 3.\ 483\\ 3.\ 483\\ 3.\ 483\\ 3.\ 483\\ 3.\ 483\\ 5.\ 235\\ 7.\ 448\\ 10.\ 030\\ 12.\ 783\\ 15.\ 421\\ 17.\ 608\\ 19.\ 029\\ 19.\ 465\\ 18.\ 845\\ 17.\ 268\\ 14.\ 976\\ 12.\ 293\\ \end{array}$	0.000 28.114 28.114 28.114 28.114 28.114 33.777 39.317 44.362 48.527 51.448 52.825 52.460 50.295 46.429 41.137 34.856 28.144	$\begin{array}{c} 0.\ 000\\ 6.\ 678\\ 6.\ 678\\ 6.\ 877\\ 7.\ 283\\ 7.\ 703\\ 10.\ 260\\ 13.\ 128\\ 16.\ 152\\ 19.\ 118\\ 21.\ 778\\ 23.\ 882\\ 25.\ 219\\ 25.\ 656\\ 25.\ 158\\ 23.\ 794\\ 21.\ 716\\ 19.\ 132\end{array}$	
65%	Pol I utan	t Name:	Diesel – r	ni∕gal	Т	emperature:	73F	Rel ati ve	Humi di ty:
	Speed MPH	LDA	LDT	MDT	HDT	UBUS	MCY	ALL	
	0 1 2 3 4	0. 000 29. 156 29. 156 29. 156 29. 156	0.000 29.156 29.156 29.156 29.156 29.156	0.000 19.452 19.452 19.452 19.452 19.452	0.000 4.458 4.458 4.458 4.458 4.458	0.000 4.333 4.333 4.333 4.333 4.333	0.000 0.000 0.000 0.000 0.000 0.000	0. 000 7. 144 7. 144 7. 144 7. 144 7. 144	

ARTIC_Emfac07_0C_2009-2013-2035_Emfact Mode_AII Speeds.rts

Page 27

	ARTI C_Emf	fac07_0C_3	2009-2013-	2035_Emfa	ct Mode_A	II Speeds	. rts
5	29. 156	29. 156	19. 452	4.458	4.333	0.000	7.144
10	29. 156	29. 156	19. 452	4.767	4.333	0.000	7.390
15	29. 156	29. 156	19.452	5.151	4.333	0.000	7.694
20	29.156	29. 156	19.452	5.554	4.333	0.000	8.015
25	29. 156	29. 156	19.452	5.729	4.333	0.000	8.153
30	29.156	29. 156	19.452	5.896	4.333	0.000	8. 286
35	29.156	29. 156	19.452	6.048	4.333	0.000	8.406
40	29.156	29. 156	19.452	6. 176	4.333	0.000	8.508
45	29.156	29. 156	19.452	6.273	4.333	0.000	8.585
50	29. 156	29. 156	19.452	6.333	4.333	0.000	8.632
55	29.156	29. 156	19.452	6.349	4.333	0.000	8.645
60	29.156	29. 156	19.452	6.322	4.333	0.000	8.624
65	29. 156	29. 156	19.452	6.253	4.333	0.000	8.569

Title : ARTIC_Emfac2007_Orange County_2009-2013-2035_EMAC Mode_CO Version : Emfac2007 V2.3 Nov 1 2006 Run Date : 2010/04/07 16:10:26 Scen Year: 2035 -- All model years in the range 1991 to 2035 selected Season : Annual Area **** Year: 2035 -- Model Years 1991 to 2035 Inclusive -- Annual Emfac2007 Emission Factors: V2.3 Nov 1 2006

Tabl e

County Average Average

> Starting Emissions (grams/trip) 2:

0range

County

Temperature: 73F Relative Humidity:

	Pollutant	Name:	Reacti ve	0rg	Gases
ALL				-	

Time min	LDA	LDT	MDT	HDT	UBUS	MCY	ALL
5	0.003	0.006	0. 026	0.043	0. 110	0. 595	0. 014
10	0.006	0. 013	0. 052	0. 083	0. 214	0. 738	0. 026
20	0. 012	0. 025	0. 101	0. 157	0. 406	1.014	0.047
30	0. 018	0.037	0. 148	0. 223	0. 576	1.273	0. 068
40	0. 024	0. 048	0. 194	0. 280	0. 723	1. 517	0. 087
50	0. 029	0.059	0. 237	0. 328	0. 848	1.744	0. 105
60	0. 034	0.070	0. 278	0.368	0. 951	1. 911	0. 122
120	0. 056	0. 120	0.474	0.435	1.124	2. 223	0. 191
180	0. 058	0. 124	0. 492	0. 461	1. 192	2.324	0. 199
240	0.062	0. 132	0. 523	0. 487	1.259	2.470	0. 211
300	0.066	0. 140	0. 554	0. 512	1.323	2.613	0. 224
360	0.069	0. 147	0. 586	0. 536	1. 385	2.753	0. 236
420	0.073	0. 155	0. 616	0.559	1. 445	2.890	0. 248
480	0. 076	0. 163	0. 647	0. 581	1. 503	3.024	0.260
540	0. 080	0. 171	0. 678	0.603	1. 558	3. 155	0.272
600	0. 084	0. 179	0.709	0. 623	1.612	3. 283	0. 284
660	0. 087	0. 186	0.739	0.643	1.663	3.408	0. 295
720	0.091	0. 194	0.769	0.662	1.712	3.529	0.307

	A	RTIC_En	nfac07_0C_2	009-2013-	2035_Emfa	nct Mode_A	II Speed	ds.rts	
ALL	Pol I utant	Name:	Carbon Mon	oxi de	Τe	emperature	: 73F	Rel ati ve	Humi di ty:
	Time min	LDA	LDT	MDT	HDT	UBUS	MCY	ALL	
	5 10 20 30 40 50 60 120 180 240 300 360 420	0. 058 0. 114 0. 223 0. 327 0. 426 0. 520 0. 608 0. 987 1. 030 1. 122 1. 204 1. 274 1. 332	0. 110 0. 217 0. 425 0. 624 0. 812 0. 992 1. 161 1. 887 1. 971 2. 150 2. 306 2. 441 2. 554	0.349 0.690 1.349 1.978 2.575 3.143 3.679 5.943 6.228 6.787 7.278 7.702 8.057	0.620 1.214 2.327 3.339 4.251 5.062 5.773 7.423 7.640 7.864 8.095 8.334 8.579	1.160 2.273 4.357 6.253 7.960 9.479 10.809 13.898 14.305 14.724 15.157 15.604 16.064	2.868 3.404 4.433 5.407 6.323 7.183 7.986 11.499 11.989 12.975 13.887 14.726 15.491	0. 177 0. 337 0. 643 0. 933 1. 206 1. 462 1. 701 2. 644 2. 759 2. 982 3. 180 3. 353 3 501	
	480 540 600 660 720	1. 380 1. 416 1. 441 1. 455 1. 458	2. 634 2. 715 2. 763 2. 789 2. 793	8. 345 8. 564 8. 716 8. 801 8. 817	8.832 9.092 9.359 9.633 9.914	16. 537 17. 024 17. 524 18. 037 18. 564	16. 184 16. 803 17. 349 17. 821 18. 221	3. 624 3. 722 3. 795 3. 843 3. 866	

LL	Pollutant	Name:	0xi des	of	Ni trogen	
	Time					

Temperature: 73F Relative Humidity:

LDA	LDT	MDT	HDT	UBUS	MCY	ALL	
0.030	0.074	0.565	0. 168	0. 525	0. 150	0. 158	
0. 031	0.077	0. 589	0.254	0. 791	0. 189	0. 169	
0.034	0. 082	0.633	0.403	1. 258	0.257	0. 189	
0.036	0. 087	0. 671	0. 525	1.639	0.314	0. 206	
0.038	0. 091	0.705	0.620	1.933	0.359	0. 220	
0.039	0.095	0.732	0. 686	2. 141	0. 391	0. 231	
0.041	0.097	0.754	0.725	2.262	0. 412	0. 239	
0.044	0. 107	0.825	0.729	2.273	0.414	0. 258	
0.044	0. 107	0.824	0.726	2.265	0.409	0. 257	
0.044	0. 106	0. 818	0.722	2.252	0. 403	0. 255	
0.044	0. 104	0.807	0.716	2.235	0.395	0. 252	
0.043	0. 102	0. 792	0.710	2.213	0. 386	0. 248	
0.042	0. 100	0.773	0. 701	2. 187	0.375	0. 242	
0.040	0.097	0.750	0. 691	2. 157	0.362	0. 236	
0.039	0.093	0.723	0. 680	2. 122	0.347	0. 228	
0.037	0.089	0. 691	0. 668	2.083	0. 331	0. 219	
0.035	0.085	0.656	0.654	2.039	0.313	0. 209	
0.033	0.079	0. 616	0.638	1. 991	0. 294	0. 197	
	LDA 0. 030 0. 031 0. 034 0. 036 0. 038 0. 039 0. 041 0. 044 0. 044 0. 044 0. 044 0. 044 0. 044 0. 044 0. 043 0. 042 0. 040 0. 039 0. 037 0. 035 0. 033	LDALDT0.0300.0740.0310.0770.0340.0820.0360.0870.0380.0910.0390.0950.0410.0970.0440.1070.0440.1070.0440.1070.0440.1060.0430.1020.0420.1000.0430.1020.0400.0970.0390.0930.0370.0890.0350.0850.0330.079	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	LDALDTMDTHDTUBUS0.0300.0740.5650.1680.5250.0310.0770.5890.2540.7910.0340.0820.6330.4031.2580.0360.0870.6710.5251.6390.0380.0910.7050.6201.9330.0390.0950.7320.6862.1410.0410.0970.7540.7252.2620.0440.1070.8250.7292.2730.0440.1070.8240.7262.2650.0440.1040.8070.7162.2350.0430.1020.7920.7102.2130.0420.1000.7730.7012.1870.0400.0970.7500.6802.1220.0370.0890.6910.6682.0830.0350.0850.6560.6542.0390.0330.0790.6160.6381.991	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	LDALDTMDTHDTUBUSMCYALL0.0300.0740.5650.1680.5250.1500.1580.0310.0770.5890.2540.7910.1890.1690.0340.0820.6330.4031.2580.2570.1890.0360.0870.6710.5251.6390.3140.2060.0380.0910.7050.6201.9330.3590.2200.0390.0950.7320.6862.1410.3910.2310.0410.0970.7540.7252.2620.4120.2390.0440.1070.8250.7292.2730.4140.2580.0440.1060.8180.7222.2520.4030.2550.0440.1040.8070.7162.2350.3950.2520.0430.1020.7920.7102.1370.3860.2480.0420.1000.7730.7012.1870.3620.2360.0390.0930.7230.6802.1220.3470.2280.0370.0890.6910.6682.0830.3310.2190.0350.0850.6560.6542.0390.3130.2090.0330.0790.6160.6381.9910.2940.197

ALL	Pollutan	nt Name: (Carbon Dic	oxi de	Те	mperature	: 73F	Relative Humidi		
	Time min	LDA	LDT	MDT	HDT	UBUS	MCY	ALL		
	5 10	12. 036 13. 464	15. 428 17. 268	22. 026 24. 761 Pa	2.817 5.619 age 29	3. 300 6. 581	13.097 15.288	14. 540 16. 426		

	ARTIC_Em	fac07_0C_	2009-2013	-2035_Emf	act Mode_/	ALI Speed	s. rts
20	16.815	21. 582	31. 130	11. 175	13.089	19. 590	20. 783
30	20.829	26.744	38.699	16.669	19. 524	23. 785	25.920
40	25.503	32.752	47.468	22. 101	25.886	27.875	31.839
50	30.840	39.609	57.437	27.470	32.175	31. 858	38.538
60	36.838	47.312	68.607	32.777	38.390	35.736	46.017
120	86.247	110. 691	159. 590	55.749	65.296	53.141	106. 221
180	97.847	125. 588	181. 184	65.863	77.142	57.411	120. 658
240	109.441	140. 475	202.736	75.380	88. 289	61.430	135.048
300	121.027	155.350	224.245	84.301	98.737	65. 198	149. 389
360	132.606	170. 214	245.712	92.624	108. 485	68.716	163. 682
420	144. 178	185.067	267.137	100.350	117.535	71. 983	177. 928
480	155.743	199. 909	288. 520	107.480	125.885	75.000	192. 125
540	167.301	214.739	309.860	114.012	133. 536	77.766	206. 275
600	178.852	229. 558	331. 158	119. 948	140. 488	80. 281	220. 376
660	190.396	244.365	352.414	125.286	146. 741	82.546	234.430
720	201.933	259. 162	373.628	130. 028	152. 294	84.560	248.436

Pollutant Name: Sulfur Dioxide

Temperature: 73F Relative Humidity:

ALL

Time min	LDA	LDT	MDT	HDT	UBUS	MCY	ALL	
5	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
10	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
30	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
40	0.000	0.000	0. 001	0.000	0.000	0.000	0.000	
50	0.000	0.000	0. 001	0.000	0.000	0.000	0.000	
60	0.000	0.000	0. 001	0.000	0. 001	0. 001	0.000	
120	0. 001	0. 001	0.002	0.001	0. 001	0.001	0. 001	
180	0.001	0. 001	0.002	0.001	0. 001	0. 001	0. 001	
240	0.001	0. 001	0.002	0.001	0. 001	0. 001	0. 001	
300	0. 001	0.002	0.002	0. 001	0. 001	0. 001	0. 001	
360	0. 001	0.002	0.002	0.001	0. 001	0.001	0.002	
420	0. 001	0.002	0.003	0. 001	0. 001	0. 001	0.002	
480	0.002	0.002	0.003	0.001	0.002	0. 001	0.002	
540	0.002	0.002	0.003	0. 001	0.002	0. 001	0.002	
600	0.002	0.002	0.003	0.001	0.002	0.001	0.002	
660	0.002	0.002	0.004	0. 001	0.002	0. 001	0.002	
720	0.002	0.003	0.004	0.001	0.002	0.001	0.002	

Pollutant Name: PM10

Temperature: 73F Relative Humidity:

ALL

Time min	LDA	LDT	MDT	HDT	UBUS	MCY	ALL
5	0.001	0. 001	0.001	0.000	0.001	0.007	0.001
10	0. 001	0. 002	0. 002	0. 001	0. 001	0.006	0. 002
20	0.002	0.005	0.004	0.001	0.002	0.005	0.003
30	0.003	0.007	0.006	0.002	0.003	0.004	0.005
40	0.004	0.009	0.008	0.003	0.004	0.003	0.006
50	0.005	0.011	0.009	0.003	0.004	0.003	0.007
60	0.006	0.013	0.011	0.004	0.005	0.003	0.009
120	0.009	0. 021	0.018	0.005	0.007	0.006	0.014
180	0.011	0.023	0.020	0.005	0.007	0.008	0.016
240	0.012	0.026	0.022	0.005	0.007	0.010	0.017
300	0.013	0.027	0.024	0.005	0.007	0.012	0.019
			D.				

Page 30

	ARTIC_Emf	ac07_0C_2	009-2013-	2035_Emfa	ct Mode_A	II Speeds	. rts
360	0.013	0. 029	0. 025	0.005	0.007	0. 014	0. 020
420	0.014	0. 031	0. 026	0.006	0.008	0.015	0. 021
480	0.014	0.032	0.027	0.006	0.008	0.017	0. 021
540	0.015	0. 032	0. 028	0.006	0.008	0. 018	0. 022
600	0.015	0.033	0.028	0.006	0.008	0. 018	0. 022
660	0.015	0. 033	0. 029	0.006	0.009	0.019	0. 023
720	0.015	0. 033	0. 029	0.006	0.009	0.019	0. 023

: ARTIC_Emfac2007_Orange County_2009-2013-2035_EMAC Mode_CO Title Version Emfac2007 V2. 3 Nov 1 2006 2010/04/07 16: 10: 26 Run Date : Scen Year: 2035 -- All model years in the range 1991 to 2035 selected Season : Annual Area : Orange * * * * * * * * * * ***** Year: 2035 -- Model Years 1991 to 2035 Inclusive -- Annual Emfac2007 Emission Factors: V2.3 Nov 1 2006 County Average Orange County Average Tabl e 4: Hot Soak Emissions (grams/trip) Pollutant Name: Reactive Org Gases Temperature: 73F Relative Humidity: ALL Ti me LDA LDT MDT HDT UBUS MCY ALL mi n 0.029 5 0.022 0.037 0.003 0.018 0.126 0.027 10 0.041 0.068 0.053 0.006 0.033 0.234 0.051 0.090 20 0.070 0.117 0.009 0.056 0.403 0.087 0.091 0.116 0.150 0.012 0.525 30 0.071 0.111 0.098 0.126 0.077 0.572 40 0.162 0.013 0.120 Hot soak results are scaled to reflect zero emissions for trip lengths of less than 5 minutes (about 25% of in-use trips).

: ARTIC_Emfac2007_Orange County_2009-2013-2035_EMAC Mode_CO Title : Emfac2007 V2.3 Nov 12006 Version Run Date : 2010/04/07 16: 10: 26 Scen Year: 2035 -- All model years in the range 1991 to 2035 selected Season Annual : Area Orange ***** Year: 2035 -- Model Years 1991 to 2035 Inclusive -- Annual Emfac2007 Emission Factors: V2.3 Nov 1 2006

Avera	County A	ARTIC_Er verage	nfac07_0C_2	2009-2013-	2035_Emf	act Mode_All Orange	Speed	ds.rts County
(gram	is/hour)		Та	able 5a:	Partial	Day Diurnal	Loss	Emissions
ALL	Pol I utan	t Name:	Reactive (Org Gases	Т	emperature:	ALL	Relative Humidity:
	Temp degF	LDA	LDT	MDT	HDT	UBUS	MCY	ALL
	73	0. 021	0.057	0. 059	0.002	0.001	0. 350	0.044
Title Versi Run D Scen Seaso Area ***** Avera (gram	on : Em late : 20 Year: 20 n : An : Or : 0r : 20 Year: 20 Emfac200 County A ge	TIC_Emfa fac2007 10/04/03 35 Al nual ange 35 Ma 7 Emissi verage	ac2007_Oran V2.3 Nov 7 16:10:26 I model ye ********** odel Years on Factors Ta	nge County 1 2006 ears in th ********** 1991 to 2 s: V2.3 No able 5b:	2009-20 ne range ********* 035 Incl ov 1 2006 Multi-D	13-2035_EMAC 1991 to 2035 *********** usive Anr Orange ay Diurnal L	C Mode_ 5 sel ec hual	_CO cted ***************************** County ni ssi ons
ALL	Pollutan	t Name:	Reactive	Urg Gases	I	emperature:	ALL	Relative Humidity:
	Temp degF	LDA	LDT	MDT	HDT	UBUS	MCY	ALL
	73	0. 002	0.004	0.004	0.000	0.000	0. 033	0.003
Ti tl e Versi Run D Scen Seaso Area *****	e : AR on : Em late : 20 Year: 20 in : An : Or ******* Year: 20 Emfac200	TIC_Emfa fac2007 10/04/03 35 Al nual ange ******* 35 Mo 7 Emissi	ac2007_0ra V2.3 Nov 7 16:10:26 I model ye ********** odel Years on Factor:	nge County 1 2006 ears in th ********* 1991 to 2 s: V2.3 No	2009-20 ne range ******** 2035 Incl 2006	13-2035_EMAC 1991 to 2035 *********** usi ve Anr	C Mode <u>-</u> 5 sel ec ******	_CO cted

Avera	A age	RTIC_En	nfac07_0C_20	09-2013-	2035_Emfa	ct Mode_AI	I Spee	ds.rts
(grai	ms/hour)		Tat	ole 6a:	Parti al	Day Restin	g Loss	Emissions
ALL	Pollutant	Name:	Reactive Or	rg Gases	Те	mperature:	ALL	Relative Humidity:
	Temp degF	LDA	LDT	MDT	HDT	UBUS	MCY	ALL
	73	0. 013	0. 041	0. 043	0. 001	0. 001	0. 127	0. 028
Titl Vers Run Scen Seas Area	e : ART ion : Emf Date : 201 Year: 203 on : Ann : Ora	IC_Emfa ac2007 0/04/07 5 Al ual nge	ic2007_0rang V2.3 Nov 1 7 16:10:26 I model yea	ge County 2006 ars in th	_2009-201 e range 1	3-2035_EMA 991 to 203	C Mode 5 sele	_CO cted
****	* * * * * * * * * * * *	******	********	********	*******	*******	*****	* * * * * * * * * * * * * * * * * * * *
	Year: 203 Emfac2007	5 Mc Emissi	on Factors:	V2.3 No	035 Inclu v 1 2006	sive An	nual	
Avera	County Av age	erage				Orange		County
(grai	ms/hour)		Tat	ble 6b:	Multi-Da	y Resting	Loss E	missions
ALL	Pol I utant	Name:	Reactive Or	rg Gases	Те	mperature:	ALL	Relative Humidity:
	Temp degF	LDA	LDT	MDT	HDT	UBUS	MCY	ALL
	73	0. 001	0.003	0.003	0.000	0.000	0.013	0.002
Titl Vers Run Scen Seas Area ****	e : ART ion : Emf Date : 201 Year: 203 on : Ann : Ora ********** Year: 203 Emfac2007	I C_Emfa ac2007 0/04/07 5 Al ual nge ****** 5 Mc Emissi	ac2007_Orang V2.3 Nov 1 16:10:26 I model yea ************* odel Years f on Factors:	ge County 2006 ars in th ********* 1991 to 2 V2.3 No	2009-201 e range 1 ********* 035 Inclu v 1 2006	3-2035_EMA 991 to 203 ********** sive An	C Mode 5 sel e ***** nual	_CO cted *******
Aver	County Av age	erage		Pa	age 33	Orange		County

ARTIC_Emfac07_0C_2009-2013-2035_Emfact Mode_AII Speeds.rts

Table 7: Estimated Travel Fractions

ALL	Pollutant	Name:			Т	emperature:	ALL	Relative Humidity:
		LDA	LDT	MDT	HDT	UBUS	MCY	ALL
	%VMT %TRI P %VEH	0. 472 0. 452 0. 494	0. 333 0. 289 0. 322	0. 150 0. 200 0. 137	0. 039 0. 052 0. 027	0.002 0.000 0.001	0.004 0.006 0.020	1.000 1.000 1.000
Ti tl Vers Run Scen Seas Area ****	e : ARTI ion : Emfa Date : 2010 Year: 2035 on : Annu : Orar *********** Year: 2035 Emfac2007 County Ave	IC_Emfac2 ac2007 V2 D/04/07 1 5 All ual nge ********* 5 Mode Emission erage	007_0rang .3 Nov 1 6:10:26 model yea ********* I Years 1 Factors:	e County_ 2006 rs in the ******** 991 to 20 V2.3 Nov	2009-20 range ******* 35 Incl 1 2006	13-2035_EMA(1991 to 203 ********** usive Ann Orange	C Mode <u>-</u> 5 sel ec ****** nual	_CO cted *****************
Aver	age		Tab	le 8 [.]	Evapora	Fmissions		
(gra	ms/minute)		140	10 0.	Lvapora		J 2033	
ALL	Pol I utant	Name: Re	active Or	g Gases	Т	emperature:	73F	Relative Humidity:
	Time min	LDA	LDT	MDT	HDT	UBUS	MCY	ALL
	1 2 3 4 5 10 15 20 25 30 35 40 45 50 55 60	$\begin{array}{c} 0. \ 010 \\ 0. \ 008 \\ 0. \ 009 \\ 0. \ 010 \\ 0. \ 012 \\ 0. \ 012 \\ 0. \ 015 \\ 0. \ 0. \ 015 \\ 0. \ 0. \ 015 \\ 0. \ 0. \ 0. \ 015 \\ 0. \ 0. \ 0. \ 0. \ 0. \ 0. \ 0. \ 0.$	$\begin{array}{c} 0. \ 188\\ 0. \ 096\\ 0. \ 068\\ 0. \ 056\\ 0. \ 048\\ 0. \ 034\\ 0. \ 030\\ 0. \ 029\\ 0. \ 029\\ 0. \ 028\\ 0. \ 028\\ 0. \ 028\\ 0. \ 028\\ 0. \ 028\\ 0. \ 027\\ 0. \ 027\\ 0. \ 027\\ 0. \ 027\\ 0. \ 026\end{array}$	$\begin{array}{c} 0.\ 207\\ 0.\ 106\\ 0.\ 075\\ 0.\ 061\\ 0.\ 052\\ 0.\ 036\\ 0.\ 032\\ 0.\ 030\\ 0.\ 029\\ 0.\ 029\\ 0.\ 029\\ 0.\ 029\\ 0.\ 029\\ 0.\ 029\\ 0.\ 028\\ 0.\ 0.\ 028\\ 0.\ 0.\ 028\\ 0.\ 0.\ 028\\ 0.\ 0.\ 028\\ 0.\ 0.\ 0.\ 028\\$	$\begin{array}{c} 0. \ 049\\ 0. \ 025\\ 0. \ 018\\ 0. \ 014\\ 0. \ 012\\ 0. \ 008\\ 0. \ 007\\ 0. \ 0. \ 0. \ 0. \ 0. \ 0. \ 0. \ 0. $	$\begin{array}{c} 0.\ 268\\ 0.\ 135\\ 0.\ 091\\ 0.\ 070\\ 0.\ 058\\ 0.\ 034\\ 0.\ 027\\ 0.\ 025\\ 0.\ 024\\ 0.\ 024\\ 0.\ 023\\ 0.\ 023\\ 0.\ 023\\ 0.\ 022\\ 0.\ 022\\ 0.\ 022\\ 0.\ 022\\ 0.\ 022\\ \end{array}$	$\begin{array}{c} 0.\ 005\\ 0.\ 037\\ 0.\ 054\\ 0.\ 064\\ 0.\ 070\\ 0.\ 082\\ 0.\ 085\\ 0.\ 085\\ 0.\ 086\\ 0.\ 085\\ 0.\ 083\\ 0.\ 082\\ 0.\ 081\\ 0.\ 080\\ 0.\ 079\\ 0.\ 078\\ \end{array}$	$\begin{array}{c} 0.\ 101\\ 0.\ 053\\ 0.\ 039\\ 0.\ 033\\ 0.\ 030\\ 0.\ 024\\ 0.\ 023\\ 0.\ 022\\ 0.\ 022\\ 0.\ 022\\ 0.\ 021\\ 0.\ 021\\ 0.\ 021\\ 0.\ 021\\ 0.\ 021\\ 0.\ 021\\ 0.\ 021\\ 0.\ 021\\ 0.\ 021\\ 0.\ 021\\ 0.\ 020 \end{array}$

ARTIC_Emfac07_0C_2009-2013-2035_Emfact Mode_AII Speeds.rts

C-2: CAL3QHC Input Detail and Summary Results

Table C-2a-1: TRAFFIC VOLUMES (AM and PM) FOR ALL VEHICLES at KATELLA-DOUGLASS INTERSECTION

CASE: 2013 No Project

		Eastboui	nd		Westbour	ıd	N	lorthbour	ıd	S	outhbour	ıd	Total Intersection		1011	
PEAK DURATION	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Volume	HCM V/C	icu	LOS
AM	409	980	58	20	989	100	36	17	7	108	12	57	2793	0.5	0.493	Α
PM	122	1022	44	31	1248	162	166	25	15	151	5	418	3409	0.59	0.57	Α

Notes

1. Total vehicle volumes and HCM V/C ratios reported in Appendix J1 (Signalized Intersection Worksheets – 2013 No Project) of Comprehensive Traffic Study (ARTIC Phase 1 - ACE Comprehensive Traffic Study), prepared by Cordoba Corp. September 4, 2009

2. ICU and LOS values are sourced from Table 14 of Comprehensive Traffic Study (ARTIC Phase 1 - ACE Comprehensive Traffic Study), prepared by Cordoba Corp. September 4, 2009

CASE: 2013 with ARTIC Phase 1

PEAK DURATION	E	Eastbound			Westbound			Northbound			Southbound		Total Intersection		ICU	1.05
PEAK DUKATION	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Volume		100	103
AM	409	980	685	151	989	100	169	45	58	108	103	57	3854	0.57	0.673	В
PM	122	1022	179	67	1224	159	650	109	129	151	20	418	4250	0.95	0.674	в

Notes

1. Total vehicle volumes and HCM V/C ratios reported in Appendix J2 (Signalized Intersection Worksheets – 2013 with ARTIC Phase 1) of Comprehensive Traffic Study (ARTIC Phase 1 - ACE Comprehensive Traffic Study), prepared by Cordoba Corp. September 4, 2009

2. ICU and LOS values are sourced from Table 16 of Comprehensive Traffic Study (ARTIC Phase 1 - ACE Comprehensive Traffic Study), prepared by Cordoba Corp. September 4, 2009

Table C-2a-2: TRAFFIC VOLUMES (AM and PM) FOR ALL VEHICLES at KATELLA-DOUGLASS INTERSECTION

CASE: 2035 No Project

	Eastbound		Westbound		Northbound		Southbound			Total Intersection	110111/0		1.00			
PEAK DURATION	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Volume	HCM V/C	ICU	LOS
AM	430	2000	1628	663	1270	320	420	135	229	900	512	130	8637	1.16	1.146	F
PM	260	1540	423	350	2190	850	1595	439	561	530	233	400	9371	1.31	1.385	F

Notes

1. Total vehicle volumes and HCM V/C ratios reported in Appendix J3 (Signalized Intersection Worksheets – 2035 No Project) of Comprehensive Traffic Study (ARTIC Phase 1 - ACE Comprehensive Traffic Study), prepared by Cordoba Corp. September 4, 2009

2. ICU and LOS values are sourced from Table 21 of Comprehensive Traffic Study (ARTIC Phase 1 - ACE Comprehensive Traffic Study), prepared by Cordoba Corp. September 4, 2009

CASE: 2035 with Buildout of ARTIC and Mixed Use Development

	Eastbound		Westbound		Northbound		Southbound		Total Intersection	otal Intersection		1.09				
FLAR DURATION	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Volume		100	L03
AM	470	2050	2018	953	1270	320	650	267	449	900	762	130	10239	2.1	1.939	F
PM	270	1540	803	670	2230	850	2245	789	931	530	343	400	11601	2.57	1.601	F

Notes

1. Total vehicle volumes reported on Figure 33; HCM V/C ratio reported in Appendix J4 (Signalized Intersection Worksheets – 2035 With ARTIC Buildout) of Comprehensive Traffic Study (ARTIC Phase 1 - ACE Comprehensive Traffic Study), prepared by Cordoba Corp. September 4, 2009

2. ICU and LOS values are sourced from Table 29 of Comprehensive Traffic Study (ARTIC Phase 1 - ACE Comprehensive Traffic Study), prepared by Cordoba Corp. September 4, 2009

TABLE C-2b: QUEUING TRAFFIC SIGNALIZATION DATA

INTERSECTION: Katella Ave and Douglass Rd

2013 With Artic Phase I - Peak PM Traffic

Queue Link	Signal Cycle Length (sec)	Green/Cycle	Green Time Length (sec)	Red Time Length (sec)	Clearance Lost Time (sec)
EBLQ	110	0.05	6	105	4
EBTQ	110	0.27	30	80	4
EBRQ	110	1	110	0	4
WBLQ	110	0.04	4	106	4
WBTQ	110	0.26	29	81	4
WBRQ	110	0.26	29	81	4
NBLQ	110	0.4	44	66	4
NBTQ	110	0.38	42	68	4
NBRQ	110	0.38	42	68	4
SBLQ	110	0.16	18	92	4
SBTQ	110	0.15	17	94	4
SBRQ	110	0.15	17	94	4

Title : ARTIC_Emfac2007_Orange County_2009-2013-2035_EMAC Mode_CO Version : Emfac2007 V2.3 Nov 1 2006 Run Date : 2010/03/29 17:09:49 Scen Year: 2013 -- All model years in the range 1969 to 2013 selected Season : Annual Area : Orange

Year: 2013 -- Model Years 1969 to 2013 Inclusive -- Annual Emfac2007 Emission Factors: V2.3 Nov 1 2006

County Average Orange

County Average

Table 1: Running Exhaust Emissions (grams/mile; grams/idle-hour)

Polluta	ant Nam	e: Carbo	on Mono	xide	Temp	erature:	73F	Relative Humidity	65%
Speed MPH	LDA	LDT	- MD	г нот	Γ υΒι	JS MC	Y	ALL	
0	0.000	0.000	20.580	40.855	0.000	0.000	4.25	6 ng	
2	3.458	4.619	6.195	16.132	31.116	26.383	4.82	21*	
3	3.149	4.481	6.118	16.132	31.116	26.383	4.5	56	
4	3.063	4.357	5.970	16.132	31.116	26.383	4.4	53	
5	3.230	4.308	5.832	16.132	31.116	26.383	4.5	55	
10	2.850	3.789	4.769	10.978	20.395	22.144	3.8	341	
15	2.546	3.376	4.038	7.718	14.150	19.394	3.32	22	
20	2.298	3.040	3.513	5.746	10.390	17.697	2.9	37	
25	2.092	2.762	3.123	4.647	8.073	16.819	2.64	5	
30	1.919	2.531	2.825	3.904	6.637	16.663	2.41	6	
35	1.774	2.338	2.598	3.411	5.773	17.242	2.23	6	
40	1.652	2.178	2.425	3.108	5.312	18.689	2.09	9	
45	1.552	2.046	2.302	2.965	5.170	21.288	2.00)2	
50	1.471	1.942	2.226	2.971	5.323	25.560	1.94	6	
55	1.412	1.865	2.201	3.135	5.797	32.431	1.94	0	
60	1.376	1.820	2.240	3.484	6.677	43.552	1.99	9	
65	1.370	1.814	2.366	4.076	8.134	61.934	2.15	54	

* Chosen for Idle Emission Factor since not all vehicle classes have factors at 0 mph and this is the highest value from 0 and 3 mph.

Title : ARTIC_Emfac2007_Orange County_2009-2013-2035_EMAC Mode_CO Version : Emfac2007 V2.3 Nov 1 2006 Run Date : 2010/03/29 17:09:49 Scen Year: 2035 -- All model years in the range 1991 to 2035 selected Season : Annual Area : Orange Year: 2035 -- Model Years 1991 to 2035 Inclusive -- Annual Emfac2007 Emission Factors: V2.3 Nov 1 2006

County Average Orange County Average

Table 1: Running Exhaust Emissions (grams/mile; grams/idle-hour)

Polluta	ant Nam	e: Carb	on Mono	xide	Tem	perature:	73F	Relative Humidity:	65%
Speed MPH	LDA	LD1	MD1	L HD.	T UB	US MO	CY	ALL	
0	0.000	0.000	20.070	37.299	0.000	0.000	4.64	2	
1	0.907	1.597	2.145	4.761	9.542	21.596	1.575	5	
2	0.970	1.621	2.145	4.761	9.542	21.596	1.633	*	
3	0.898	1.581	2.126	4.761	9.542	21.596	1.563	3	
4	0.881	1.551	2.090	4.761	9.542	21.596	1.539	9	
5	0.925	1.545	2.055	4.761	9.542	21.596	1.572	2	
10	0.842	1.406	1.814	3.080	6.213	18.470	1.36	2	
15	0.770	1.284	1.623	2.032	4.284	16.355	1.20	3	
20	0.705	1.176	1.467	1.487	3.129	14.962	1.08	2	
25	0.648	1.080	1.336	1.251	2.420	14.132	0.98	8	
30	0.597	0.995	1.224	1.099	1.982	13.801	0.91	1	
35	0.552	0.920	1.128	1.006	1.718	13.973	0.84	6	
40	0.512	0.853	1.045	0.957	1.576	14.731	0.79	2	
45	0.476	0.793	0.973	0.945	1.531	16.259	0.75	0	
50	0.443	0.739	0.911	0.965	1.573	18.895	0.72	0	
55	0.414	0.691	0.858	1.019	1.711	23.240	0.70	3	
60	0.388	0.648	0.813	1.111	1.970	30.368	0.70	5	
65	0.365	0.610	0.778	1.250	2.400	42.241	0.73	4	

*Chosen for Idle Emission Factor since not all vehicle classes have factors at 0 mph and this is the highest value from 0 and 3 mph.

Table C-2d: CAL3QHC Summary Results

Units as ug/m³

Scenario	Highest Direct Model CO Output (ug/m ³)	1-hr Background (ug/m ³) (1)	Highest 1-Hour CO Concentrations (ug/m ³) (2)	1-Hour CAAQS (ug/m ³) (3)	8-hour CO from 1-hr model output (ug/m ³)	8-hr Background (ug/m ³) (4)	Highest 8- Hour CO Concentration s (ug/m ³) (5)	8-Hour CAAQS (ug/m ³) (3)
Scen 1 Year 2009 - Existing Conditions			0.0	23,000				10,000
Scen 4 Year 2013 - No project	342.90	6670	7013	23,000	240.03	4485	4725	10,000
Scen 5 Year 2013 - with ARTIC Phase 1	685.70	6670	7356	23,000	479.99	4485	4965	10,000
Scen 6 Year 2035 - No project	342.90	6670	7013	23,000	240.03	4485	4725	10,000
Scen 8 Year 2035 - with ARTIC Buildout and Mixed Use	228.60	6670	6899	23,000	160.02	4485	4645	10,000

Units as ppm

Scenario	Highest 1-hr Model CO Output (ppm)	1-hr Background (ppm) (1)	CO CO Concentrations	1-Hour CAAQS (ppm) (3)	from 1-hr model output	8-hr Background (ppm) (4)	Hour CO Concentration	8-Hour CAAQS (ppm) (3)
Year 2009 - Existing Conditions		5.80	5.8	20		3.9		9.0
Year 2013 - No project	0.30	5.8	6.1	20	0.21	3.9	4.1	9.0
Year 2013 - with ARTIC Phase 1	0.60	5.8	6.4	20	0.42	3.9	4.3	9.0
Year 2035 - No project	0.30	5.8	6.1	20	0.21	3.9	4.1	9.0
Year 2035 - with ARTIC Buildout and Mixed Use	0.20	5.8	6.0	20	0.14	3.9	4.0	9.0

(1) 1-Hour Background =

ug/m³ (5.8 ppm)

(2) Highest 1-Hour CO Concentration = Highest Direct Model Output +1-Hour Background (3) CAAQS = California Ambient Air Quality Standards

6670

(4) 8-Hour Background =

 (4) 8-Hour Background = 4485 ug/m³ (3.9 ppm)
(5) Highest 8- Hour CO Concentration = (Highest 1-Hour Modeled CO Concentration x 0.7) +(8- Hour Background) (3.9 ppm) where, 0.7 = SCAQMD Recommended Persistence Factor for CO Non-Attainment Areas.

C-3: CAL3QHC Input and Output Files (see folder Appendix C-3)